Assessment of Green Hydrogen as Energy Supply Alternative for Isolated Power Systems and Microgrids
Abstract
:1. Introduction
2. A Review on Hydrogen Uses in the Context of Isolated Power Systems
3. Isolated Power Systems in Brazil—A Brief Overview
3.1. Energy Cost in Isolated Power Systems
3.2. Socio-Environmental Impact of Energy Generation in Isolated Systems
4. Production and Use of Hydrogen
4.1. Role of Hydrogen in the Low-Carbon Economy
4.2. Overview of the Hydrogen Chain
4.3. Hydrogen Applications in Isolated Systems
4.4. Green Hydrogen Applications in Isolated Systems—An Overview of Economic Analysis
4.5. Main Findings on Hydrogen in Isolated Systems
Ref. | USD/kWh (LCOE) | USD/kg H2 (LCOH) | CAPEX Electrolyzer (USD/kW) | OPEX Electrolyzer (USD/kW/Year) |
---|---|---|---|---|
[60] | 1.35 | - | 17,000 | 20 |
[57] | - | 6.64 | 856.60 | 53.54 |
[42] | - | 7.60 | 340 | 14.88 |
[42] | - | 8.55 | 420 | 15.86 |
[42] | - | 10.16 | 520 | 18.78 |
[42] | - | 7.16 | 520 | 18.69 |
[70] | 0.55 | - | 6666.67 | 10 |
[73] | 0.19 | - | - | - |
[47] | 0.83 | - | 5000 | - |
[21] | 0.41 | 5.84 | 1347 | 28 |
[21] | 0.41 | 7.43 | 3496 | 75 |
[27] | - | 2.33 | 600 | 12 |
[51] | 0.66 | 22.70 | 2000 | - |
[51] | 0.61 | 20 | 2000 | - |
[51] | 0.50 | 17.60 | 2000 | - |
[51] | 0.63 | 20.10 | 2000 | - |
[51] | 0.53 | 16.70 | 2000 | - |
[52] | 0.24 | - | 1500 | 43 |
[58] | - | 3.75 | 784 | 17 |
[99] | - | - | - | - |
[61] | 0.34 | - | - | - |
[100] | - | - | - | - |
[113] | 0.55 | 16.01 | 200 | - |
[114] | - | 3.48 | 1070.75 | 42.83 |
[74] | - | 6.83 | 700 | 14 |
[77] | 1.02 | 14.46 | - | - |
[78] | - | 11.70 | - | - |
[56] | 0.42 | - | 1400 | 28 |
[93] | - | - | - | - |
[59] | - | 3.30 | 1163 | 23.26 |
[59] | - | 3.20 | 1163 | 23.26 |
[59] | - | 4 | 1163 | 23.26 |
[96] | 0.07 | - | 151 | 8 |
[48] | - | - | - | - |
[80] | 0.81 | 3.21 | 10,701.50 | - |
[84] | - | - | - | - |
[49] | - | - | - | - |
[79] | - | 30 | 300 | 39 |
[82] | 0.19 | - | 4280 | 89.18 |
[85] | - | - | 13,376.90 | 30 |
[97] | 2.80 | 21.51 | 8561.18 | 171.20 |
[104] | - | - | - | - |
[66] | 2.80 | 21.51 | 8561.18 | 171.20 |
[86] | - | - | - | - |
[105] | - | - | 1500 | - |
[111] | - | - | - | - |
[89] | - | - | 8000 | 230.10 |
[112] | 0.29 | - | 600 | 15 |
[95] | - | - | - | - |
[90] | - | - | - | - |
[68] | 0.11 | 9.75 | 1093.43 | 13.98 |
[91] | 0.70 | - | 250 | - |
[75] | 1.97 | 17.37 | - | 167.48 |
[62] | 1.93 | - | 2140 | 64.2 |
[62] | 3.00 | - | 2140 | 64.2 |
[62] | 0.83 | - | 2140 | 64.2 |
[62] | 1.28 | - | 4922 | 147.66 |
[87] | 0.13 | - | 729.57 | 14.59 |
[64] | 0.30 | - | 8778.13 | 526.75 |
[107] | - | - | - | - |
[43] | - | - | - | - |
[108] | - | - | 303.65 | - |
[53] | 0.49 | 6.69 | 2717.32 | 0.42 |
[109] | 0.51 | - | 1070 | - |
[71] | 0.44 | - | 800 | 16 |
[101] | 0.79 | - | - | - |
[65] | 0.20 | - | 434 | 14.10 |
[54] | - | - | - | - |
[116] | - | - | - | - |
[67] | 2.5 | 83 | 1300 | 26 |
[83] | 0.002 | - | - | - |
[45] | 0.66 | - | 100 | 8 |
[72] | 0.18 | - | - | - |
[46] | - | - | 1498 | 44.94 |
[76] | - | - | - | - |
[115] | 0.36 | - | 1500 | - |
[55] | 0.68 | 12.88 | 2668.89 | 0.41 |
[55] | 0.49 | 6.88 | 2668.89 | 0.41 |
[55] | 0.37 | 7.26 | 2668.89 | 0.41 |
[110] | - | - | - | - |
[98] | 1.10 | - | - | - |
[94] | - | - | 3000 | - |
[103] | - | - | - | - |
[81] | 0.22 | - | - | - |
[106] | 0.33 | - | 1960 | 4 |
[69] | 0.16 | 4.18 | 599.50 | 11.99 |
[50] | 4.82 | - | 5350 | 160.50 |
[44] | - | - | 267.50 | - |
[63] | - | 5.70 | - | - |
[92] | - | - | - | - |
[88] | - | - | - | - |
5. Main Results and General Discussions
5.1. Historical Hydrogen Costs
5.2. Hydrogen Compression
5.3. Hydrogen Storage
5.4. Hydrogen Water Processing
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunawardane, K. Evolution of hydrogen energy and its potential opportunities around the globe. In Hydrogen Energy Conversion and Management; Khan, M.M.K., Azad, A.K., Oo, A.M.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; Chapter 1; pp. 3–33. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Hydrogen Overview. Available online: https://www.irena.org/Energy-Transition/Technology/Hydrogen#:~:text=As at the end of,around 4%25 comes from electrolysis (accessed on 24 February 2023).
- Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Mapeamento do Setor de Hidrogênio Brasileiro Panorama Atual e Potenciais para o Hidrogênio Verde; GIZ: Bonn, Germany, 2021; pp. 1–114. [Google Scholar]
- de Oliveira, R.C. TD 2787—Panorama do Hidrogênio no Brasil; Texto para Discussão; Instituto de Pesquisa Econômica Aplicada: Brasília, Brazil, 2022; pp. 1–59. [CrossRef]
- International Energy Agency. Global Hydrogen Review 2022; Organisation for Economic Co-Operation and Development (OECD): Paris, France, 2022.
- Brazilian National System Operator—ONS. Annual Plan for Energy Operation of Isolated Systems for 2021—In Portuguese: Plano Anual da Operação Energética dos Sistemas Isolados para 2021 PEN SISOL 2021; Brazilian National System Operator (ONS): Florianópolis, Brazil, 2020. [Google Scholar]
- Calili, R.F. Electric Power Generation in Isolated Systems: Challenges and Proposals for Increasing the Participation of Renewable Sources Based on a Multicriteria Analysis—Inportuguese: Geração de Energia Elétrica em Sistemas Isolados: Desafios e Propostas para Aumento da Participação de Fontes Renováveis com Base em Uma Análise Multicritérios; PUC-Rio: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- Brazilian National System Operator ONS. Revista–PEN SISOL 2022; Brazilian National System Operator (ONS): Florianópolis, Brazil, 2022. [Google Scholar]
- Arcos, J.M.M.; Santos, D.M.F. The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases 2023, 3, 25–46. [Google Scholar] [CrossRef]
- Brazilian Energy Research Company—EPE. Planning for Services to Isolated Systems—Cycle 2022. Workshop with Distribution Agents—In portuguese: Planejamento do Atendimento aos Sistemas Isolados—Ciclo 2022. Workshop com os Agentes de Distribuição. 2022. Available online: https://www.epe.gov.br./ (accessed on 20 April 2024).
- da Ponte, G.P.; Calili, R.F.; Souza, R.C. Energy generation in Brazilian isolated systems: Challenges and proposals for increasing the share of renewables based on a multicriteria analysis. Energy Sustain. Dev. 2021, 61, 74–88. [Google Scholar] [CrossRef]
- Presidency of the Republic of Brazil. Electricity Service of Isolated Systems, the Transmission Facilities of International Interconnections in the National Interconnected System—SIN—Decreto N°7.246 de 28 de Julho de 2010; Presidency of the Republic of Brazil: Brasilia, Brazil, 2010. [Google Scholar]
- Brazilian Energy Research Company—EPE. Report of Winners for Supply to Isolated Systems 2021—In Portuguese: Informe de Vencendores para Suprimento aos Sitemas Isolados 2021; Brazilian Energy Research Company (EPE): Brasília, Brazil, 2021. [Google Scholar]
- Brazilian Federal Regulatory Electricity Agency—ANEEL. Despacho No2.904 Processo n°48500.007/2022-49 (Sets the average cost of energy and power sold by distribution agents in the Regulated Contracting Environment); Brazilian Federal Regulatory Electricity Agency (ANEEL): Brasília, Brazil, 2022. [Google Scholar]
- Paiva, F.A.D.L.; Coelho, J.H.M.; Barbeiro, P.P. Environmental Accident Report 2020 (Relatório de Acidentes Ambientais 2020); Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (Brazilian Institute of Environment and Renewable Natural Resources): Brasília, Brazil, 2021; pp. 1–28. [Google Scholar]
- Palva, B. Oil Spill Threatens Rivers in the Amazon (Derramamento de Óleo Ameaça Rios na Amazônia). Available online: https://agenciabrasil.ebc.com.br/geral/noticia/2016-03/derramamento-de-oleo-ameaca-rios-na-amazonia (accessed on 20 January 2024).
- Globo. Truck Overturns on Trans-Amazonian Highway, Spilling 15,000 Liters of Diesel Oil on the Riverbank in the Amazon. Available online: https://g1.globo.com/am/amazonas/noticia/2023/07/16/carreta-tomba-na-transamazonica-e-derrama-15-mil-litros-de-oleo-diesel-as-margens-de-rio-no-am.ghtml (accessed on 1 June 2024).
- Hydrogen Council. Hydrogen Scaling up: A Sustainable Pathway for the Global Energy Transition; Hydrogen Council: Brussels, Belgium, 2017. [Google Scholar]
- Dimitrov, R.S. The Paris Agreement on Climate Change: Behind Closed Doors. Glob. Environ. Politics 2016, 16, 1–11. [Google Scholar] [CrossRef]
- Power, H.F.R. Technology Outlook for the Energy Transition; International Renewable Energy Agency (IRENA): Masdar City, United Arab Emirates, 2018.
- Bruce, S.; Temminghoff, M.; Hayward, J.; Schmidt, E.; Munnings, C.; Palfreyman, D.; Hartley, P. National Hydrogen Roadmap; CSIRO: Canberra, Australia, 2018.
- Quintino, F.M.; Nascimento, N.; Fernandes, E.C. Aspects of hydrogen and biomethane introduction in natural gas infrastructure and equipment. Hydrogen 2021, 2, 301–318. [Google Scholar] [CrossRef]
- Mejia, A.H.; Brouwer, J.; Kinnon, M.M. Hydrogen leaks at the same rate as natural gas in typical low-pressure gas infrastructure. Int. J. Hydrogen Energy 2020, 45, 8810–8826. [Google Scholar] [CrossRef]
- Mukherjee, U.; Elsholkami, M.; Walker, S.; Fowler, M.; Elkamel, A.; Hajimiragha, A. Optimal sizing of an electrolytic hydrogen production system using an existing natural gas infrastructure. Int. J. Hydrogen Energy 2015, 40, 9760–9772. [Google Scholar] [CrossRef]
- Lipiäinen, S.; Lipiäinen, K.; Ahola, A.; Vakkilainen, E. Use of existing gas infrastructure in Euro-pean hydrogen economy. Int. J. Hydrogen Energy 2023, 48, 31317–31329. [Google Scholar] [CrossRef]
- Mongkoldee, K.; Sukjit, E.; Kulworawanichpong, T. Optimal on-board energy buffer design for fuel-cell hybrid intercity vehicles. J. Energy Storage 2021, 46, 103820. [Google Scholar] [CrossRef]
- Armijo, J.; Philibert, C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. Int. J. Hydrogen Energy 2019, 45, 1541–1558. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, W.; Wang, W.; Li, X.; Zhou, H. Large scale of green hydrogen storage: Opportunities and challenges. Int. J. Hydrogen Energy 2024, 50, 379–396. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Gbadamosi, A.O.; Epelle, E.I.; Abdulrasheed, A.A.; Haq, B.; Patil, S.; Al-Shehri, D.; Kamal, M.S. Hydrogen production, transportation, utilization, and storage: Recent advances towards sustainable energy. J. Energy Storage 2023, 73, 109207. [Google Scholar] [CrossRef]
- Bhagavathy, S.; Thakur, J. Green Hydrogen: Challenges for Commercialization; IEEE Smart Grid: Piscataway, NJ, USA, 2021; Volume 201. [Google Scholar]
- Peschel, A. Industrial perspective on hydrogen purification, compression, storage, and distribution. Fuel Cells 2020, 20, 385–393. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2021, 47, 26238–26264. [Google Scholar] [CrossRef]
- Abad, A.V.; Dodds, P.E. Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy 2020, 138, 111300. [Google Scholar] [CrossRef]
- Notteboom, T.; Haralambides, H. Seaports as green hydrogen hubs: Advances, opportunities and challenges in Europe. Marit. Econ. Logist. 2023, 25, 1–27. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Joseph, A.; Elsayad, M.M.; Tareemi, A.A.; Kandeal, A.; Elkadeem, M.R. A review of recent advances in alkaline electrolyzer for green hydrogen production: Performance improvement and applications. Int. J. Hydrogen Energy 2024, 49, 458–488. [Google Scholar] [CrossRef]
- Li, Y.; Deng, X.; Zhang, T.; Liu, S.; Song, L.; Yang, F.; Ouyang, M.; Shen, X. Exploration of the configuration and operation rule of the multi-electrolyzers hybrid system of large-scale alkaline water hydrogen production system. Appl. Energy 2023, 331, 120413. [Google Scholar] [CrossRef]
- Tang, C.; Yao, Y.; Wang, N.; Zhang, X.; Zheng, F.; Du, L.; Luo, D.; Aoki, Y.; Ye, S. Green hydrogen production by intermediate-temperature protonic solid oxide electrolysis cells: Advances, challenges, and perspectives. InfoMat 2024, 6, e12515. [Google Scholar] [CrossRef]
- Vostakola, M.F.; Ozcan, H.; El-Emam, R.S.; Horri, B.A. Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production. Energies 2023, 16, 3327. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, J.; He, W.; Xia, H.; Cao, X.; Li, Y.; Sun, L. Magnetic field Pre-polarization enhances the efficiency of alkaline water electrolysis for hydrogen production. Energy Convers. Manag. 2023, 283, 116906. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, P.; Wang, J.; Wang, J.; Xia, H.; Xia, H.; He, W.; He, W. A novel industrial magnetically enhanced hydrogen production electrolyzer and effect of magnetic field configuration. Appl. Energy 2024, 367, 123402. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, J.; Sun, L.; Li, Y.; Xia, H.; He, W. Optimal electrode configuration and system design of compactly-assembled industrial alkaline water electrolyzer. Energy Convers. Manag. 2024, 299, 117875. [Google Scholar] [CrossRef]
- Jang, D.; Kim, J.; Kim, D.; Han, W.-B.; Kang, S. Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. Energy Convers. Manag. 2022, 258, 115499. [Google Scholar] [CrossRef]
- Ammari, C.; Belatrache, D.; Makhloufi, S.; Saifi, N. Techno-economic analysis of a stand-alone photovoltaic system with three different storage systems for feeding isolated houses in south Algeria. Energy Storage 2021, 3, e211. [Google Scholar] [CrossRef]
- Gomez-Villarreal, H.; Canas-Carreton, M.; Zarate-Minano, R.; Carrion, M. Generation Capacity Expansion Considering Hydrogen Power Plants and Energy Storage Systems. IEEE Access 2023, 11, 15525–15539. [Google Scholar] [CrossRef]
- Das, S.; Pradhan, S.; De, S. Multi criteria decision making for the most suitable combination of energy resources for a decentralized hybrid energy solution with green hydrogen as the storage option. Energy Convers. Manag. 2023, 285, 117028. [Google Scholar] [CrossRef]
- Alonso, A.M.; Matute, G.; Yusta, J.; Coosemans, T. Multi-state optimal power dispatch model for power-to-power systems in off-grid hybrid energy systems: A case study in Spain. Int. J. Hydrogen Energy 2023, 52, 1045–1061. [Google Scholar] [CrossRef]
- Kalinci, Y.; Hepbasli, A.; Dincer, I. Techno-economic analysis of a stand-alone hybrid renewable energy system with hydrogen production and storage options. Int. J. Hydrogen Energy 2015, 40, 7652–7664. [Google Scholar] [CrossRef]
- Duić, N.; Carvalho, M.D.G. Increasing renewable energy sources in island energy supply: Case study Porto Santo. Renew. Sustain. Energy Rev. 2004, 8, 383–399. [Google Scholar] [CrossRef]
- Khan, M.; Iqbal, M. Analysis of a small wind-hydrogen stand-alone hybrid energy system. Appl. Energy 2009, 86, 2429–2442. [Google Scholar] [CrossRef]
- Gracia, L.; Casero, P.; Bourasseau, C.; Chabert, A. Use of hydrogen in off-grid locations, a tech-no-economic assessment. Energies 2018, 11, 3141. [Google Scholar] [CrossRef]
- Abdin, Z.; Mérida, W. Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis. Energy Convers. Manag. 2019, 196, 1068–1079. [Google Scholar] [CrossRef]
- Rad, M.A.V.; Ghasempour, R.; Rahdan, P.; Mousavi, S.; Arastounia, M. Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran. Energy 2020, 190, 116421. [Google Scholar] [CrossRef]
- Hasan, T.; Emami, K.; Shah, R.; Hassan, N.; Anderson, J.; Thomas, D.; Louis, A. A study on green hydrogen-based isolated microgrid. Energy Rep. 2022, 8, 259–267. [Google Scholar] [CrossRef]
- Vilbergsson, K.V.; Dillman, K.; Emami, N.; Ásbjörnsson, E.J.; Heinonen, J.; Finger, D.C. Can remote green hydrogen production play a key role in decarbonizing Europe in the future? A cradle-to-gate LCA of hydrogen production in Austria, Belgium, and Iceland. Int. J. Hydrogen Energy 2023, 48, 17711–17728. [Google Scholar] [CrossRef]
- Hasan, T.; Emami, K.; Shah, R.; Hassan, N.; Belokoskov, V.; Ly, M. Techno-economic Assessment of a Hydrogen-based Islanded Microgrid in North-east. Energy Rep. 2023, 9, 3380–3396. [Google Scholar] [CrossRef]
- Ceylan, C.; Devrim, Y. Green hydrogen based off-grid and on-grid hybrid energy systems. Int. J. Hydrogen Energy 2023, 48, 39084–39096. [Google Scholar] [CrossRef]
- Zghaibeh, M.; Barhoumi, E.M.; Okonkwo, P.C.; Ben Belgacem, I.; Beitelmal, W.H.; Mansir, I.B. Analytical model for a techno-economic assessment of green hydrogen production in photovoltaic power station case study Salalah city-Oman. Int. J. Hydrogen Energy 2022, 47, 14171–14179. [Google Scholar] [CrossRef]
- Yates, J.; Daiyan, R.; Patterson, R.; Egan, R.; Amal, R.; Ho-Baille, A.; Chang, N.L. Techno-economic Analysis of Hydrogen Electrolysis from Off-Grid Stand-Alone Photovoltaics Incorporating Uncertainty Analysis. Cell Rep. Phys. Sci. 2020, 1, 100209. [Google Scholar] [CrossRef]
- Ibagon, N.; Muñoz, P.; Díaz, V.; Teliz, E.; Correa, G. Techno-economic analysis for off-grid green hydrogen production in Uruguay. J. Energy Storage 2023, 67, 107604. [Google Scholar] [CrossRef]
- Silva, S.B.; Severino, M.M.; De Oliveira, M.A.G. A stand-alone hybrid photovoltaic, fuel cell and battery system: A case study of Tocantins, Brazil. Renew. Energy 2013, 57, 384–389. [Google Scholar] [CrossRef]
- Salameh, T.; Alkasrawi, M.; Juaidi, A.; Abdallah, R.; Monna, S. Hybrid renewable energy system for a remote area in UAE. In Proceedings of the 12th International Renewable Engineering Conference (IREC), Amman, Jordan, 14–15 April 2021; pp. 1–6. [Google Scholar]
- Marocco, P.; Ferrero, D.; Gandiglio, M.; Ortiz, M.; Sundseth, K.; Lanzini, A.; Santarelli, M. A study of the techno-economic feasibility of H2-based energy storage systems in remote areas. Energy Convers. Manag. 2020, 211, 112768. [Google Scholar] [CrossRef]
- Al Rafea, K.; Elsholkami, M.; Elkamel, A.; Fowler, M. Integration of Decentralized Energy Systems with Utility-Scale Energy Storage through Underground Hydrogen–Natural Gas Co-Storage Using the Energy Hub Approach. Ind. Eng. Chem. Res. 2017, 56, 2310–2330. [Google Scholar] [CrossRef]
- Gutiérrez-Martín, F.; Calcerrada, A.; de Lucas-Consuegra, A.; Dorado, F. Hydrogen storage for off-grid power supply based on solar PV and electrochemical reforming of ethanol-water solutions. Renew. Energy 2020, 147, 639–649. [Google Scholar] [CrossRef]
- Viole, I.; Valenzuela-Venegas, G.; Zeyringer, M.; Sartori, S. A renewable power system for an off-grid sustainable telescope fueled by solar power, batteries and green hydrogen. Energy 2023, 282, 128570. [Google Scholar] [CrossRef]
- Lacko, R.; Drobnič, B.; Mori, M.; Sekavčnik, M.; Vidmar, M. Stand-alone renewable combined heat and power system with hydrogen technologies for household application. Energy 2014, 77, 164–170. [Google Scholar] [CrossRef]
- Madi, H.; Lytvynenko, D.; Schildhauer, T.; Jansohn, P. Decarbonisation of Geographical Islands and the Feasibility of Green Hydrogen Production Using Excess Electricity. Energies 2023, 16, 4094. [Google Scholar] [CrossRef]
- Prieto-Prado, I.; Del Río-Gamero, B.; Gómez-Gotor, A.; Pérez-Báez, S. Water and energy self-supply in isolated areas through renewable energies using hydrogen and water as a double storage system. Desalination 2017, 430, 1–14. [Google Scholar] [CrossRef]
- Case, T.; Island, S.; Zealand, A.N.; Mohseni, S.; Brent, A.C. Off-Grid Multi-Carrier Microgrid Design Optimisation: The Case of Rakiura–Stewart Island, Aotearoa–New Zealand. Energies 2021, 14, 6522. [Google Scholar] [CrossRef]
- Sanchez, V.M.; Chavez-Ramirez, A.; Duron-Torres, S.M.; Hernandez, J.; Arriaga, L.; Ramirez, J.M. Techno-economical optimization based on swarm intelligence algorithm for a stand-alone wind-photovoltaic-hydrogen power system at south-east region of Mexico. Int. J. Hydrogen Energy 2014, 39, 16646–16655. [Google Scholar] [CrossRef]
- Schöne, N.; Khairallah, J.; Heinz, B. Model-based techno-economic evaluation of power-to-hydrogen-to-power for the electrification of isolated African off-grid communities. Energy Sustain. Dev. 2022, 70, 592–608. [Google Scholar] [CrossRef]
- Liu, B.; Rahimpour, H.; Musleh, A.S.; Zhang, D.; Thattai, K.; Dong, Z.Y. Multi-objective optimal day-ahead scheduling of desalination-hydrogen system powered by hybrid renewable energy sources. J. Clean. Prod. 2023, 414, 137737. [Google Scholar] [CrossRef]
- Schnuelle, C.; Wassermann, T.; Stuehrmann, T. Mind the Gap—A Socio-Economic Analysis on Price Developments of Green Hydrogen, Synthetic Fuels, and Conventional Energy Carriers in Germany. Energies 2022, 15, 3541. [Google Scholar] [CrossRef]
- de León, C.M.; Ríos, C.; Brey, J. Cost of green hydrogen: Limitations of production from a stand-alone photovoltaic system. Int. J. Hydrogen Energy 2023, 48, 11885–11898. [Google Scholar] [CrossRef]
- Zhao, G.; Nielsen, E.R.; Troncoso, E.; Hyde, K.; Romeo, J.S.; Diderich, M.; Zhao, G.; Nielsen, E.R.; Troncoso, E.; Hyde, K.; et al. Life cycle cost analysis: A case study of hydrogen energy application on the Orkney Islands. Int. J. Hydrogen Energy 2019, 44, 9517–9528. [Google Scholar] [CrossRef]
- He, H.; Huang, Y.; Nakadomari, A.; Masrur, H.; Krishnan, N.; Hemeida, A.M.; Mikhaylov, A.; Senjyu, T. Potential and economic viability of green hydrogen production from seawater electrolysis using renewable energy in remote Japanese islands. Renew. Energy 2023, 202, 1436–1447. [Google Scholar] [CrossRef]
- Kalchschmid, V.; Erhart, V.; Angerer, K.; Roth, S.; Hohmann, A. Decentral Production of Green Hydrogen for Energy Systems: An Economically and Environmentally Viable Solution for Surplus Self-Generated Energy in Manufacturing Companies? Sustainability 2023, 15, 2994. [Google Scholar] [CrossRef]
- Gomonov, K.; Reshetnikova, M.; Ratner, S. Economic Analysis of Recently Announced Green Hydrogen Projects in Russia: A Multiple Case Study. Energies 2023, 16, 4023. [Google Scholar] [CrossRef]
- Troncoso, E.; Newborough, M. Electrolysers for mitigating wind curtailment and producing ‘green’ merchant hydrogen. Int. J. Hydrogen Energy 2011, 36, 120–134. [Google Scholar] [CrossRef]
- Poullikkas, A. Implementation of distributed generation technologies in isolated power systems. Renew. Sustain. Energy Rev. 2007, 11, 30–56. [Google Scholar] [CrossRef]
- Hessami, M.A.; Campbell, H.; Sanguinetti, C. A feasibility study of hybrid wind power systems for remote communities. Energy Policy 2011, 39, 877–886. [Google Scholar] [CrossRef]
- Parissis, O.S.; Zoulias, E.; Stamatakis, E.; Sioulas, K.; Alves, L.; Martins, R.; Tsikalakis, A.; Hatziargyriou, N.; Caralis, G.; Zervos, A. Integration of wind and hydrogen technologies in the power system of Corvo island, Azores: A cost-benefit analysis. Int. J. Hydrogen Energy 2011, 36, 8143–8151. [Google Scholar] [CrossRef]
- Elistratov, V.; Denisov, R. Development of isolated energy systems based on renewable energy sources and hydrogen storage. Int. J. Hydrogen Energy 2023, 48, 27059–27067. [Google Scholar] [CrossRef]
- Korpås, M.; Greiner, C.J. Opportunities for hydrogen production in connection with wind power in weak grids. Renew. Energy 2008, 33, 1199–1208. [Google Scholar] [CrossRef]
- Cau, G.; Cocco, D.; Petrollese, M.; Kær, S.K.; Milan, C. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system. Energy Convers. Manag. 2014, 87, 820–831. [Google Scholar] [CrossRef]
- Mendis, N.; Muttaqi, K.M.; Perera, S.; Kamalasadan, S. An Effective Power Management Strategy for a Wind-Diesel-Hydrogen-Based Remote Area Power Supply System to Meet Fluctuating Demands under Generation Uncertainty. IEEE Trans. Ind. Appl. 2015, 51, 1228–1238. [Google Scholar] [CrossRef]
- Tariq, J. Energy management using storage to facilitate high shares of variable renewable energy. Int. J. Sustain. Energy Plan. Manag. 2020, 25, 61–76. [Google Scholar] [CrossRef]
- Smaoui, M.; Krichen, L. Control, energy management and performance evaluation of desalination unit based renewable energies using a graphical user interface. Energy 2016, 114, 1187–1206. [Google Scholar] [CrossRef]
- Nasri, S.; Slama, S.B.; Yahyaoui, I.; Zafar, B.; Cherif, A. Autonomous hybrid system and coordinated intelligent management approach in power system operation and control using hydrogen storage. Int. J. Hydrogen Energy 2017, 42, 9511–9523. [Google Scholar] [CrossRef]
- Rawat, S.; Jha, B.; Panda, M.K. Operation and Control of a Hybrid Isolated Power System with Type-2 Fuzzy PID Controller. Iran. J. Sci. Technol.-Trans. Electr. Eng. 2018, 42, 403–417. [Google Scholar] [CrossRef]
- Phan, B.C.; Lai, Y.C. Control strategy of a hybrid renewable energy system based on reinforcement learning approach for an isolated Microgrid. Appl. Sci. 2019, 9, 4001. [Google Scholar] [CrossRef]
- Jesus, L.; Castro, R.; Lopes, A.S. Hydrogen-based solutions to help the electrical grid management: Application to the Terceira Island case. Int. J. Hydrogen Energy 2023, 48, 1514–1532. [Google Scholar] [CrossRef]
- Boynuegri, A.R.; Tekgun, B. Real-time energy management in an off-grid smart home: Flexible demand side control with electric vehicle and green hydrogen production. Int. J. Hydrogen Energy 2023, 48, 23146–23155. [Google Scholar] [CrossRef]
- García, P.; Torreglosa, J.P.; Fernández, L.M.; Jurado, F.; Langella, R.; Testa, A. Energy management system based on techno-economic optimization for microgrids. Electr. Power Syst. Res. 2016, 131, 49–59. [Google Scholar] [CrossRef]
- Rullo, P.G.; Costa-Castelló, R.; Roda, V.; Feroldi, D. Energy management strategy for a bioethanol isolated hybrid system: Simulations and experiments. Energies 2018, 11, 1362. [Google Scholar] [CrossRef]
- El, S.; Oueslati, F.; Horma, O.; Santana, D.; Amine, M.; Mezrhab, A. Techno-economic feasibility and performance analysis of an islanded hybrid renewable energy system with hydrogen storage in Morocco. J. Energy Storage 2023, 68, 107853. [Google Scholar] [CrossRef]
- Lacko, R.; Drobnič, B.; Sekavčnik, M.; Mori, M. Hydrogen energy system with renewables for isolated households: The optimal system design, numerical analysis and experimental evaluation. Energy Build. 2014, 80, 106–113. [Google Scholar] [CrossRef]
- Contreras, A.; Posso, F.; Guervos, E. Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela. Appl. Energy 2010, 87, 1376–1385. [Google Scholar] [CrossRef]
- Dimou, A.; Vakalis, S. Assessing the Utilization of Fuels Cells for the Valorization of Produced Excess Energy in Isolated Grids–The Green Transition of Agios Efstratios. In Proceedings of the 17th International Conference on Environmental Science and Technology, Athens, Greece, 1–4 September 2022; Volume 17. [Google Scholar] [CrossRef]
- Perinpanayagam, L. Modelling and Design of a Hybrid Solar and Fuel Cell Stand Solar And Fuel Cell Stand Alone Power System for a Remote Area Engineering Project b—Final Project Report; Deakin University: Geelong, Australia, 2021. [Google Scholar]
- Meziane, A.; Meziane, F.; Zouaoui, S. Wind Turbine-Fuel Cell Power System for Supplying Isolated Sites. J. Renew. Energ. 2022, 1, 125–138. [Google Scholar] [CrossRef]
- Das, H.S.; Tan, C.W.; Yatim, A.H.M.; Lau, K.Y. Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia. Renew. Sustain. Energy Rev. 2017, 76, 1332–1347. [Google Scholar] [CrossRef]
- Kinjyo, Y.; Asato, B.; Yona, A.; Senjyu, T.; Funabashi, T.; Kim, K.-H. Optimal Operation of Smart Grid with Fuel Cell in Isolated Islands. J. Int. Counc. Electr. Eng. 2012, 2, 423–429. [Google Scholar] [CrossRef]
- Jiménez-Fernández, S.; Salcedo-Sanz, S.; Gallo-Marazuela, D.; Gómez-Prada, G.; Maellas, J.; Portilla-Figueras, A. Sizing and maintenance visits optimization of a hybrid photovoltaic-hydrogen stand-alone facility using evolutionary algorithms. Renew. Energy 2014, 66, 402–413. [Google Scholar] [CrossRef]
- Smaoui, M.; Abdelkafi, A.; Krichen, L. Optimal sizing of stand-alone photovoltaic/wind/hydrogen hybrid system supplying a desalination unit. Sol. Energy 2015, 120, 263–276. [Google Scholar] [CrossRef]
- Samy, M.M.; Barakat, S.; Ramadan, H.S. A flower pollination optimization algorithm for an off-grid PV-Fuel cell hybrid renewable system. Int. J. Hydrogen Energy 2019, 44, 2141–2152. [Google Scholar] [CrossRef]
- Firtina-Ertis, I.; Acar, C.; Erturk, E. Optimal sizing design of an isolated stand-alone hybrid wind-hydrogen system for a zero-energy house. Appl. Energy 2020, 274, 115244. [Google Scholar] [CrossRef]
- Yuansheng, H.; Mengshu, S.; Weiye, W.; Hongyu, L. A two-stage planning and optimization model for water-hydrogen integrated energy system with isolated grid. J. Clean. Prod. 2021, 313, 127889. [Google Scholar] [CrossRef]
- Al-Othman, A.; Tawalbeh, M.; Martis, R.; Dhou, S.; Orhan, M.; Qasim, M.; Olabi, A.G. Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: Advances and prospects. Energy Convers. Manag. 2022, 253, 115154. [Google Scholar] [CrossRef]
- Ishaq, H.; Shehzad, M.F.; Crawford, C. Transient modeling of a green ammonia production system to support sustainable development. Int. J. Hydrogen Energy 2023, 48, 39254–39270. [Google Scholar] [CrossRef]
- Motalleb, M.; Dukić, A.; Firak, M. Solar hydrogen power system for isolated passive house. Int. J. Hydrogen Energy 2015, 40, 16001–16009. [Google Scholar] [CrossRef]
- Ye, B.; Zhang, K.; Jiang, J.J.; Miao, L.; Li, J. Towards a 90% renewable energy future: A case study of an island in the South China Sea. Energy Convers. Manag. 2017, 142, 28–41. [Google Scholar] [CrossRef]
- Nasser, M.; Megahed, T.F.; Ookawara, S.; Hassan, H. A review of water electrolysis–based systems for hydrogen production using hybrid/solar/wind energy systems. Environ. Sci. Pollut. Res. 2022, 29, 86994–87018. [Google Scholar] [CrossRef] [PubMed]
- Forndal, L.; Greiff, J. System Study of the Techno-Economic Potential of a Hydrogen System: A Case Study of Power to Mobility and Power to Power Hydrogen Systems, Stand-Alone or Integrated with a CHP. Dissertation. 2022. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-185662 (accessed on 1 June 2024).
- Schöne, N.; Heinz, B. Semi-Systematic Literature Review on the Contribution of Hydrogen to Universal Access to Energy in the Rationale of Sustainable Development Goal Target 7.1. Energies 2023, 16, 1658. [Google Scholar] [CrossRef]
- Muselli, P.A.; Antoniotti, J.N.; Muselli, M. Climate Change Impacts on Gaseous Hydrogen (H2) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe. Energies 2023, 16, 249. [Google Scholar] [CrossRef]
- Brazilian Energy Research Company EPE. GT Roraima Estudo para Contratação de Energia Elétrica e Potência Associada no Sistema de Boa Vista. 2017. Available online: http://www.epe.gov.br (accessed on 1 June 2024).
- Liu, X.; Seberry, G.; Kook, S.; Chan, Q.N.; Hawkes, E.R. Direct injection of hydrogen main fuel and diesel pilot fuel in a retrofitted single-cylinder compression ignition engine. Int. J. Hydrogen Energy 2022, 47, 35864–35876. [Google Scholar] [CrossRef]
- International Energy Agency. The Future of Hydrogen: Seizing Today’s Opportunities; IEA: Paris, France, 2019; p. 203.
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges; Elsevier Ltd.: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- BloombergNEF. New Energy Outlook 2020; BloombergNEF: London, UK, 2020. [Google Scholar]
- Henrik, B.; Madsen, T. Water Treatment fpr Green Hydrogen: What You Need Know. Hydrogen Tech World Magazine Oct 2022 for Green Hydrogen. 2022. Available online: https://hydrogentechworld.com/water-treatment-for-green-hydrogen-what-you-need-to-know (accessed on 10 September 2024).
- International Renewable Energy Agency (IRENA). Water for Hydrogen Production; IRENA: Masdar City, United Arab Emirates, 2023.
State | Final Price (USD/MWh) |
---|---|
Acre | 201.47 |
Amazonas | 163.30 |
Pará | 201.83 |
Rondônia | 229.78 |
Roraima | 181.63 |
Average | 197.98 |
Topic | Subtopic | References |
---|---|---|
Technical–economic analysis | Comparison of hydrogen system technologies | [42,43,44,45,46] |
Hydrogen production in isolated systems | [27,47,48,49,50,51,52,53,54,55,56,57,58,59] | |
Use of renewable sources with hydrogen storage for energy supply in isolated systems | [60,61,62,63] | |
Use of hydrogen as energy storage for hybrid systems (renewable + non-renewable) | [64,65] | |
Use of hydrogen as energy storage and indirect uses of process by-products | [66,67,68,69] | |
Optimization of isolated system with hydrogen | [70,71,72] | |
Cost analysis of hydrogen production | [73,74,75,76,77,78,79] | |
Cost–benefit analysis of generation and storage options for supplying isolated systems | [80,81,82,83] | |
Hydrogen production in weak electrical systems | [84] | |
Energy/power management of renewable generation with hydrogen | Focus on management for system stability | [85,86,87] |
Development of control systems for efficient management | [88,89,90,91,92,93] | |
Optimized techno-economic analysis | [94,95,96,97] | |
Modeling and simulation of hybrid energy systems with hydrogen | Use of fuel cells in isolated regions | [98,99,100,101,102] |
Resource optimization for isolated systems | [103,104,105,106,107,108,109,110,111,112] | |
Review of social, technological, and economic aspects of hydrogen | [21,113,114,115] | |
Analysis of environmental impact in green hydrogen production by solar energy | [116] |
Ref. | Generation Source | Electrolyzer (kW) | Fuel Cell (kW) | Performs Compression? | With H2 Storage? | Electrolyzer Efficiency (kWh/kg) | ||
---|---|---|---|---|---|---|---|---|
Wind (kW) | Solar (kW) | Others (kW) | ||||||
[60] | - | 8.78 | - | 2 | 1 | no | yes | - |
[57] | - | 5000 | - | 2400 | - | yes | yes | - |
[42] | - | - | - | 1000 | - | no | no | - |
[70] | 4 | 3.06 | - | 3 | 3 | yes | yes | - |
[73] | - | - | - | - | - | no | no | - |
[47] | 660 | 300 | - | 200 | 100 | yes | yes | - |
[21] | - | - | - | - | - | yes | yes | - |
[21] | - | - | - | - | - | yes | yes | - |
[27] | 25,800 | 72,300 | - | 60,200 | - | no | yes | - |
[51] | 1500 | 985 | - | 350 | - | no | yes | - |
[51] | 1500 | 674 | - | 350 | 100 | no | yes | - |
[51] | 1500 | 422 | - | 350 | - | no | yes | - |
[51] | 1500 | 445 | - | 650 | 100 | no | yes | - |
[51] | 1500 | 349 | - | 350 | 100 | no | yes | - |
[52] | - | 75 | 15 | 10 | 10 | no | yes | - |
[58] | - | 1000 | - | 1000 | - | no | no | 54 |
[99] | 950 | 150 | 660 | 240 | 200 | no | yes | 62.30 |
[61] | - | - | - | 3 | - | no | yes | - |
[100] | - | 300 | 920 | 55 | 200 | yes | yes | 33.33 |
[113] | - | - | - | 0 | - | no | no | - |
[114] | - | - | - | 1000 | - | no | yes | - |
[74] | - | 250,000 | - | 100,000 | - | no | no | 52 |
[77] | - | 1000 | - | 700 | 75 | no | no | - |
[78] | - | - | - | - | - | no | no | - |
[56] | 4 | 51.80 | - | 20 | 5 | yes | yes | - |
[93] | 2.40 | 3.36 | - | 0.30 | 6 | no | yes | - |
[59] | 916,000 | 1,417,000 | - | 928,000 | - | yes | yes | 52.30 |
[59] | 964,000 | 1,212,000 | - | 840,000 | - | yes | yes | 52.30 |
[59] | 975,000 | 1,059,000 | - | 841,000 | - | yes | yes | 52.30 |
[59] | 1,249,000 | 1,651,000 | - | 1,058,000 | - | yes | yes | 52.30 |
[96] | 600 | - | 300 | 500 | 300 | no | yes | - |
[48] | 25,000 | 19,800 | - | 11,000 | 5500 | no | yes | - |
[80] | 10,000 | 10,000 | 10,000 | - | 10,000 | no | no | - |
[84] | 12,000 | - | - | 3000 | - | yes | yes | 60 |
[49] | 7.50 | - | - | 7.50 | 3.50 | yes | yes | - |
[79] | 2,665,000 | - | - | 2,053,000 | - | yes | yes | - |
[82] | 200 | - | 280 | 80 | 80 | no | no | - |
[85] | 3 | 8 | - | 6 | 5 | no | yes | - |
[97] | 12 | 17 | - | 4 | 4 | no | yes | - |
[104] | - | 0.89 | - | 0.14 | 1.20 | no | yes | - |
[66] | 12 | 17 | - | 4 | 4 | no | yes | - |
[86] | 750 | - | 350 | 225 | 225 | yes | yes | - |
[105] | 1250 | 870 | - | 450 | 500 | no | yes | 39.44 |
[111] | - | 6.12 | - | 5 | 2.40 | yes | yes | - |
[89] | - | 0.36 | - | 0.15 | 1.20 | no | yes | - |
[112] | 18,000 | 30,000 | 2000 | 12,000 | 5000 | no | yes | - |
[95] | 4.50 | 6 | 0 | 1.55 | 4.80 | no | no | - |
[90] | 150 | 50 | 130 | 10 | 10 | no | yes | - |
[68] | 330 | 150 | - | 175 | 100 | no | yes | - |
[91] | 2360 | 5483 | 750 | 3000 | 500 | no | yes | - |
[75] | 66,000 | - | - | 1000 | 75 | yes | yes | - |
[62] | - | 170 | - | 50 | 50 | no | yes | - |
[62] | - | - | 900 | 25 | 50 | no | yes | - |
[62] | - | 75 | 49 | 18 | 85 | no | yes | - |
[62] | 250 | 675 | - | 50 | 100 | no | yes | - |
[87] | 30,800 | 42,000 | 7500 | 28,000 | 12,000 | no | yes | - |
[64] | - | 6.48 | - | 1.23 | 1.02 | yes | yes | 50.40 |
[107] | 8.90 | - | - | 1000 | 1800 | no | yes | - |
[43] | - | 15 | - | 7 | 7 | no | yes | - |
[108] | - | - | 3800 | 1612 | 840 | no | yes | - |
[53] | 9000 | 10,000 | - | 15,000 | 4000 | no | yes | 39.40 |
[109] | 600 | 46.80 | 3.2 | 48 | 20 | yes | yes | - |
[71] | - | 383.90 | - | 25.85 | 40.23 | no | yes | - |
[101] | 500 | - | - | - | - | no | no | - |
[65] | - | 5200 | 2400 | - | 300 | no | no | - |
[54] | - | - | - | 1000 | - | no | no | - |
[116] | - | 100 | - | - | - | yes | yes | - |
[67] | 20,000 | 20,000 | - | 19,000 | - | no | yes | - |
[83] | 200 | - | 1055 | - | - | no | no | - |
[45] | 3 | 10 | - | - | - | no | yes | - |
[72] | 17,000 | 22,500 | - | 16,000 | 8000 | no | yes | - |
[46] | 20 | 100 | 130 | 120 | 100 | no | yes | 52 |
[76] | 3250 | 7500 | 1000 | - | 250 | yes | yes | - |
[115] | 16 | 40 | 8 | 14 | 10 | no | yes | - |
[55] | 33,000 | 30,000 | - | 15,000 | 4500 | no | yes | 39.40 |
[55] | 21,000 | 20,000 | 1010 | 12,000 | 3600 | no | no | 39.40 |
[55] | 15,000 | 10,000 | 3710 | 8000 | 2500 | no | no | 39.40 |
[110] | 15,000 | - | 3730 | 11,041 | - | no | no | - |
[98] | - | - | - | - | - | no | no | - |
[94] | 1.50 | 2.40 | - | 1.20 | 1.20 | no | yes | - |
[103] | 1000 | 500 | 1200 | - | 500 | no | yes | - |
[81] | 600 | - | 420 | 10 | 10 | no | yes | - |
[106] | - | 147.42 | - | 290 | 140 | no | yes | - |
[69] | 3100 | 222.88 | - | 964 | 261 | no | yes | - |
[50] | - | 200 | 4 | 50 | 4.60 | no | yes | - |
[44] | 896,000 | 1,874,400 | 963.50 | 334,900 | 144,000 | no | yes | 75 |
[63] | 43,000 | 815,000 | 30,000 | - | - | no | no | 52 |
[92] | 12,600 | - | 3500 | 1000 | 1000 | no | no | - |
[88] | 1600 | 100 | - | 600 | 700 | no | no | - |
Ref. | USD/kWh (LCOE) | USD/kg H2 (LCOH) | CAPEX Electrolyzer (USD/kW) | OPEX Electrolyzer (USD/kW/Year) |
---|---|---|---|---|
[60] | 1.35 | - | 17,000 | 20 |
[57] | - | 6.64 | 856.60 | 53.54 |
[42] | - | 7.60 | 340 | 14.88 |
[42] | - | 8.55 | 420 | 15.86 |
[42] | - | 10.16 | 520 | 18.78 |
[42] | - | 7.16 | 520 | 18.69 |
[70] | 0.55 | - | 6666.67 | 10 |
[73] | 0.19 | - | - | - |
[47] | 0.83 | - | 5000 | - |
[21] | 0.41 | 5.84 | 1347 | 28 |
[21] | 0.41 | 7.43 | 3496 | 75 |
[27] | - | 2.33 | 600 | 12 |
[51] | 0.66 | 22.70 | 2000 | - |
[51] | 0.61 | 20 | 2000 | - |
[51] | 0.50 | 17.60 | 2000 | - |
[51] | 0.63 | 20.10 | 2000 | - |
[51] | 0.53 | 16.70 | 2000 | - |
[52] | 0.24 | - | 1500 | 43 |
[58] | - | 3.75 | 784 | 17 |
[99] | - | - | - | - |
[61] | 0.34 | - | - | - |
[100] | - | - | - | - |
[113] | 0.55 | 16.01 | 200 | - |
[114] | - | 3.48 | 1070.75 | 42.83 |
[74] | - | 6.83 | 700 | 14 |
[77] | 1.02 | 14.46 | - | - |
[78] | - | 11.70 | - | - |
[56] | 0.42 | - | 1400 | 28 |
[93] | - | - | - | - |
[59] | - | 3.30 | 1163 | 23.26 |
[59] | - | 3.20 | 1163 | 23.26 |
[59] | - | 4 | 1163 | 23.26 |
[96] | 0.07 | - | 151 | 8 |
[48] | - | - | - | - |
[80] | 0.81 | 3.21 | 10,701.50 | - |
[84] | - | - | - | - |
[49] | - | - | - | - |
[79] | - | 30 | 300 | 39 |
[82] | 0.19 | - | 4280 | 89.18 |
[85] | - | - | 13,376.90 | 30 |
[97] | 2.80 | 21.51 | 8561.18 | 171.20 |
[104] | - | - | - | - |
[66] | 2.80 | 21.51 | 8561.18 | 171.20 |
[86] | - | - | - | - |
[105] | - | - | 1500 | - |
[111] | - | - | - | - |
[89] | - | - | 8000 | 230.10 |
[112] | 0.29 | - | 600 | 15 |
[95] | - | - | - | - |
[90] | - | - | - | - |
[68] | 0.11 | 9.75 | 1093.43 | 13.98 |
[91] | 0.70 | - | 250 | - |
[75] | 1.97 | 17.37 | - | 167.48 |
[62] | 1.93 | - | 2140 | 64.2 |
[62] | 3.00 | - | 2140 | 64.2 |
[62] | 0.83 | - | 2140 | 64.2 |
[62] | 1.28 | - | 4922 | 147.66 |
[87] | 0.13 | - | 729.57 | 14.59 |
[64] | 0.30 | - | 8778.13 | 526.75 |
[107] | - | - | - | - |
[43] | - | - | - | - |
[108] | - | - | 303.65 | - |
[53] | 0.49 | 6.69 | 2717.32 | 0.42 |
[109] | 0.51 | - | 1070 | - |
[71] | 0.44 | - | 800 | 16 |
[101] | 0.79 | - | - | - |
[65] | 0.20 | - | 434 | 14.10 |
[54] | - | - | - | - |
[116] | - | - | - | - |
[67] | 2.5 | 83 | 1300 | 26 |
[83] | 0.002 | - | - | - |
[45] | 0.66 | - | 100 | 8 |
[72] | 0.18 | - | - | - |
[46] | - | - | 1498 | 44.94 |
[76] | - | - | - | - |
[115] | 0.36 | - | 1500 | - |
[55] | 0.68 | 12.88 | 2668.89 | 0.41 |
[55] | 0.49 | 6.88 | 2668.89 | 0.41 |
[55] | 0.37 | 7.26 | 2668.89 | 0.41 |
[110] | - | - | - | - |
[98] | 1.10 | - | - | - |
[94] | - | - | 3000 | - |
[103] | - | - | - | - |
[81] | 0.22 | - | - | - |
[106] | 0.33 | - | 1960 | 4 |
[69] | 0.16 | 4.18 | 599.50 | 11.99 |
[50] | 4.82 | - | 5350 | 160.50 |
[44] | - | - | 267.50 | - |
[63] | - | 5.70 | - | - |
[92] | - | - | - | - |
[88] | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, L.T.; Vasconcelos, S.D.; Rosas, P.A.C.; Castro, J.F.C.; Barbosa, D.C.P. Assessment of Green Hydrogen as Energy Supply Alternative for Isolated Power Systems and Microgrids. Energies 2024, 17, 4774. https://doi.org/10.3390/en17194774
Barbosa LT, Vasconcelos SD, Rosas PAC, Castro JFC, Barbosa DCP. Assessment of Green Hydrogen as Energy Supply Alternative for Isolated Power Systems and Microgrids. Energies. 2024; 17(19):4774. https://doi.org/10.3390/en17194774
Chicago/Turabian StyleBarbosa, Luciano T., Samuel D. Vasconcelos, Pedro A. C. Rosas, José F. C. Castro, and Douglas C. P. Barbosa. 2024. "Assessment of Green Hydrogen as Energy Supply Alternative for Isolated Power Systems and Microgrids" Energies 17, no. 19: 4774. https://doi.org/10.3390/en17194774
APA StyleBarbosa, L. T., Vasconcelos, S. D., Rosas, P. A. C., Castro, J. F. C., & Barbosa, D. C. P. (2024). Assessment of Green Hydrogen as Energy Supply Alternative for Isolated Power Systems and Microgrids. Energies, 17(19), 4774. https://doi.org/10.3390/en17194774