Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage
Abstract
:1. Introduction
2. Perovskite Materials Used in Photovoltaic
2.1. Perovskite Solar Cells
2.2. Other Solar Cells Systems Utilizing Properties of Perovskite Materials
3. Perovskite-Type Hydrogen Storage—Overview
3.1. Perovskite-Type Hydride
3.2. Perovskite-Type Oxides
4. Perovskite-Type Hydrides Structural, Thermodynamic, and Hydrogen Storage Properties
5. Perovskite-Type Oxides Structural, Thermodynamic, and Hydrogen Storage Properties
6. Future Trends
7. Conclusion Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Ipsakis, D.; Voutetakis, S.; Seferlis, P.; Stergiopoulos, F.; Elmasides, C. Power Management Strategies for a Stand-Alone Power System Using Renewable Energy Sources and Hydrogen Storage. Int. J. Hydrogen Energy 2009, 34, 7081–7095. [Google Scholar] [CrossRef]
- Kane, M. Small Hybrid Solar Power System. Energy 2003, 28, 1427–1443. [Google Scholar] [CrossRef]
- Sakintuna, B.; Lamaridarkrim, F.; Hirscher, M. Metal Hydride Materials for Solid Hydrogen Storage: A Review☆. Int. J. Hydrogen Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
- Endo, N.; Goshome, K.; Tetsuhiko, M.; Segawa, Y.; Shimoda, E.; Nozu, T. Thermal Management and Power Saving Operations for Improved Energy Efficiency within a Renewable Hydrogen Energy System Utilizing Metal Hydride Hydrogen Storage. Int. J. Hydrogen Energy 2021, 46, 262–271. [Google Scholar] [CrossRef]
- Muellerlanger, F.; Tzimas, E.; Kaltschmitt, M.; Peteves, S. Techno-Economic Assessment of Hydrogen Production Processes for the Hydrogen Economy for the Short and Medium Term. Int. J. Hydrogen Energy 2007, 32, 3797–3810. [Google Scholar] [CrossRef]
- Darmawi; Sipahutar, R.; Bernas, S.M.; Imanuddin, M.S. Renewable Energy and Hydropower Utilization Tendency Worldwide. Renew. Sustain. Energy Rev. 2013, 17, 213–215. [Google Scholar] [CrossRef]
- Maradin, D. Advantages and Disadvantages of Renewable Energy Sources Utilization. Int. J. Energy Econ. Policy 2021, 11, 176–183. [Google Scholar] [CrossRef]
- Shetty, C.; Priyam, A. A Review on Tidal Energy Technologies. Mater. Today Proc. 2022, 56, 2774–2779. [Google Scholar] [CrossRef]
- Marques Lameirinhas, R.A.; Torres, J.P.N.; De Melo Cunha, J.P. A Photovoltaic Technology Review: History, Fundamentals and Applications. Energies 2022, 15, 1823. [Google Scholar] [CrossRef]
- Ajayan, J.; Nirmal, D.; Mohankumar, P.; Saravanan, M.; Jagadesh, M.; Arivazhagan, L. A Review of Photovoltaic Performance of Organic/Inorganic Solar Cells for Future Renewable and Sustainable Energy Technologies. Superlattices Microstruct. 2020, 143, 106549. [Google Scholar] [CrossRef]
- Mahmood, Q.; Nazir, G.; Bouzgarrou, S.; Aljameel, A.I.; Rehman, A.; Albalawi, H.; Haq, B.U.; Ghrib, T.; Mera, A. Study of New Lead-Free Double Perovskites Halides Tl2TiX6 (X = Cl, Br, I) for Solar Cells and Renewable Energy Devices. J. Solid State Chem. 2022, 308, 122887. [Google Scholar] [CrossRef]
- Chapin, D.M.; Fuller, C.S.; Pearson, G.L. A New Silicon P-n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. 1954, 25, 676–677. [Google Scholar] [CrossRef]
- Dannenberg, T.; Vollmer, J.; Passig, M.; Scheiwe, C.; Brunner, D.; Pediaditakis, A.; Jäger, U.; Wang, I.; Xie, W.; Xu, S.; et al. Past, Present, and Future Outlook for Edge Isolation Processes in Highly Efficient Silicon Solar Cell Manufacturing. Sol. RRL 2023, 7, 2200594. [Google Scholar] [CrossRef]
- Fraas, L.M.; O’Neill, M.J. History of Solar Cell Development. In Low-Cost Solar Electric Power; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–12. ISBN 978-3-031-30811-6. [Google Scholar]
- Saga, T. Advances in Crystalline Silicon Solar Cell Technology for Industrial Mass Production. NPG Asia Mater. 2010, 2, 96–102. [Google Scholar] [CrossRef]
- Mercaldo, L.V.; Delli Veneri, P. Silicon Solar Cells: Materials, Technologies, Architectures. In Solar Cells and Light Management; Elsevier: Amsterdam, The Netherlands, 2020; pp. 35–57. ISBN 978-0-08-102762-2. [Google Scholar]
- Andreani, L.C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon Solar Cells: Toward the Efficiency Limits. Adv. Phys. X 2019, 4, 1548305. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon Heterojunction Solar Cell with Interdigitated Back Contacts for a Photoconversion Efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Kim, S.; Quy, H.V.; Bark, C.W. Photovoltaic Technologies for Flexible Solar Cells: Beyond Silicon. Mater. Today Energy 2021, 19, 100583. [Google Scholar] [CrossRef]
- Kokkonen, M.; Talebi, P.; Zhou, J.; Asgari, S.; Soomro, S.A.; Elsehrawy, F.; Halme, J.; Ahmad, S.; Hagfeldt, A.; Hashmi, S.G. Advanced Research Trends in Dye-Sensitized Solar Cells. J. Mater. Chem. A 2021, 9, 10527–10545. [Google Scholar] [CrossRef]
- Schmidt, J.; Lim, B.; Walter, D.; Bothe, K.; Gatz, S.; Dullweber, T.; Altermatt, P.P. Impurity-Related Limitations of next-Generation Industrial Silicon Solar Cells. In Proceedings of the 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, Austin, TX, USA, 3–8 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–5. [Google Scholar]
- He, D.; Zeng, M.; Zhang, Z.; Bai, Y.; Xing, G.; Cheng, H.; Lin, Y. Exciton Diffusion and Dissociation in Organic and Quantum-dot Solar Cells. SmartMat 2023, 4, e1176. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, G.; Yu, H.; Yan, H. Advantages, Challenges and Molecular Design of Different Material Types Used in Organic Solar Cells. Nat. Rev. Mater. 2023, 9, 46–62. [Google Scholar] [CrossRef]
- Prajapat, K.; Dhonde, M.; Sahu, K.; Bhojane, P.; Murty, V.; Shirage, P.M. The Evolution of Organic Materials for Efficient Dye-Sensitized Solar Cells. J. Photochem. Photobiol. C Photochem. Rev. 2023, 55, 100586. [Google Scholar] [CrossRef]
- Koné, K.E.; Bouich, A.; Soucase, B.M.; Soro, D. Manufacture of Different Oxides with High Uniformity for Copper Zinc Tin Sulfide (CZTS) Based Solar Cells. J. Mol. Graph. Model. 2023, 121, 108448. [Google Scholar] [CrossRef] [PubMed]
- Aftab, S.; Hussain, S.; Kabir, F.; Aslam, M.; Rajpar, A.H.; Al-Sehemi, A.G. Advances in Flexible Perovskite Solar Cells: A Comprehensive Review. Nano Energy 2024, 120, 109112. [Google Scholar] [CrossRef]
- Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef] [PubMed]
- Kovalenko, M.V.; Protesescu, L.; Bodnarchuk, M.I. Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. Science 2017, 358, 745–750. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef]
- Shrestha, S.; Li, X.; Tsai, H.; Hou, C.-H.; Huang, H.-H.; Ghosh, D.; Shyue, J.-J.; Wang, L.; Tretiak, S.; Ma, X.; et al. Long Carrier Diffusion Length in Two-Dimensional Lead Halide Perovskite Single Crystals. Chem 2022, 8, 1107–1120. [Google Scholar] [CrossRef]
- Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J.T.-W.; Stranks, S.D.; Snaith, H.J.; Nicholas, R.J. Direct Measurement of the Exciton Binding Energy and Effective Masses for Charge Carriers in Organic–Inorganic Tri-Halide Perovskites. Nat. Phys. 2015, 11, 582–587. [Google Scholar] [CrossRef]
- Hansen, K.R.; McClure, C.E.; Powell, D.; Hsieh, H.; Flannery, L.; Garden, K.; Miller, E.J.; King, D.J.; Sainio, S.; Nordlund, D.; et al. Low Exciton Binding Energies and Localized Exciton–Polaron States in 2D Tin Halide Perovskites. Adv. Opt. Mater. 2022, 10, 2102698. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Huo, X.; Wei, D.; Meng, J.; Dong, J.; Qiao, B.; Zhao, S.; Xu, Z.; Song, D. Bandgap Tuning Strategy by Cations and Halide Ions of Lead Halide Perovskites Learned from Machine Learning. RSC Adv. 2021, 11, 15688–15694. [Google Scholar] [CrossRef]
- Tan, Q.; Li, Z.; Luo, G.; Zhang, X.; Che, B.; Chen, G.; Gao, H.; He, D.; Ma, G.; Wang, J.; et al. Inverted Perovskite Solar Cells Using Dimethylacridine-Based Dopants. Nature 2023, 620, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Bai, Y.; Huang, X.; Li, J.; Wu, Y.; Chen, Y.; Li, K.; Niu, X.; Li, N.; Liu, G.; et al. Anion–π Interactions Suppress Phase Impurities in FAPbI3 Solar Cells. Nature 2023, 623, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Kumar Sinha, N.; Tiwari, S.; Khare, A. A Review on Perovskite Solar Cells: Evolution of Architecture, Fabrication Techniques, Commercialization Issues and Status. Sol. Energy 2020, 198, 665–688. [Google Scholar] [CrossRef]
- Meng, L.; You, J.; Yang, Y. Addressing the Stability Issue of Perovskite Solar Cells for Commercial Applications. Nat. Commun. 2018, 9, 5265. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yang, R.; Priya, S.; Liu, S. (Frank) Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications. Angew. Chem. Int. Ed. 2019, 58, 4466–4483. [Google Scholar] [CrossRef]
- Liang, J.; Wang, C.; Wang, Y.; Xu, Z.; Lu, Z.; Ma, Y.; Zhu, H.; Hu, Y.; Xiao, C.; Yi, X.; et al. All-Inorganic Perovskite Solar Cells. J. Am. Chem. Soc. 2016, 138, 15829–15832. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Guo, W.; Duan, T.; Zhou, Z.; Zhou, Y. All-Inorganic Perovskite Solar Cells Featuring Mixed Group IVA Cations. Nanoscale 2023, 15, 7249–7260. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, S.; Zhu, M.; Li, Z.; Cheng, Z.; Xiang, S.; Zhang, Z. The Role of Grain Boundaries in Organic–Inorganic Hybrid Perovskite Solar Cells and Its Current Enhancement Strategies: A Review. Energy Environ. Mater. 2024, 7, e12696. [Google Scholar] [CrossRef]
- Rao, C.N.R. Perovskites. In Encyclopedia of Physical Science and Technology; Elsevier: Amsterdam, The Netherlands, 2003; pp. 707–714. ISBN 978-0-12-227410-7. [Google Scholar]
- King-Smith, R.D.; Vanderbilt, D. First-Principles Investigation of Ferroelectricity in Perovskite Compounds. Phys. Rev. B 1994, 49, 5828–5844. [Google Scholar] [CrossRef]
- Zhang, H.; Li, N.; Li, K.; Xue, D. Structural Stability and Formability of ABO3-Type Perovskite Compounds. Acta Crystallogr. B 2007, 63, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Bartel, C.J.; Sutton, C.; Goldsmith, B.R.; Ouyang, R.; Musgrave, C.B.; Ghiringhelli, L.M.; Scheffler, M. New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides. Sci. Adv. 2019, 5, eaav0693. [Google Scholar] [CrossRef] [PubMed]
- Surucu, G.; Gencer, A.; Candan, A.; Gullu, H.H.; Isik, M. CaXH3 (X = Mn, Fe, Co) Perovskite-Type Hydrides for Hydrogen Storage Applications. Int. J. Energy Res. 2020, 44, 2345–2354. [Google Scholar] [CrossRef]
- Schouwink, P.; Ley, M.B.; Tissot, A.; Hagemann, H.; Jensen, T.R.; Smrčok, Ľ.; Černý, R. Structure and Properties of Complex Hydride Perovskite Materials. Nat. Commun. 2014, 5, 5706. [Google Scholar] [CrossRef] [PubMed]
- Peña, M.A.; Fierro, J.L.G. Chemical Structures and Performance of Perovskite Oxides. Chem. Rev. 2001, 101, 1981–2018. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef]
- Bannikov, V.V.; Shein, I.R.; Ivanovskii, A.L. Electronic Structure, Chemical Bonding and Elastic Properties of the First Thorium-Containing Nitride Perovskite TaThN3. Phys. Status Solidi RRL Rapid Res. Lett. 2007, 1, 89–91. [Google Scholar] [CrossRef]
- Guo, P.; Ye, Q.; Yang, X.; Zhang, J.; Xu, F.; Shchukin, D.; Wei, B.; Wang, H. Surface & Grain Boundary Co-Passivation by Fluorocarbon Based Bifunctional Molecules for Perovskite Solar Cells with Efficiency over 21%. J. Mater. Chem. A 2019, 7, 2497–2506. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Yoo, J.J.; Seo, G.; Chua, M.R.; Park, T.G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C.S.; Jeon, N.J.; Correa-Baena, J.-P.; et al. Efficient Perovskite Solar Cells via Improved Carrier Management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef]
- Szabó, G.; Park, N.-G.; De Angelis, F.; Kamat, P.V. Are Perovskite Solar Cells Reaching the Efficiency and Voltage Limits? ACS Energy Lett. 2023, 8, 3829–3831. [Google Scholar] [CrossRef]
- Paik, M.J.; Kim, Y.Y.; Kim, J.; Park, J.; Seok, S.I. Ultrafine SnO2 Colloids with Enhanced Interface Quality for High-Efficiency Perovskite Solar Cells. Joule 2024, 8, 2073–2086. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.; Liu, Z.; Huang, J.; Ma, X.; Liu, Y.; Sun, Q.; Dai, L.; Ahmad, S.; Shen, Y.; et al. Progress and Challenges Toward Effective Flexible Perovskite Solar Cells. Nano-Micro Lett. 2023, 15, 206. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Kim, D.H.; Lee, Y.-Y.; Shin, H.-W.; Han, G.S.; Hong, J.S.; Mahmood, K.; Ahn, T.K.; Joo, Y.-C.; Hong, K.S.; et al. Highly Efficient and Bending Durable Perovskite Solar Cells: Toward a Wearable Power Source. Energy Environ. Sci. 2015, 8, 916–921. [Google Scholar] [CrossRef]
- Chung, J.; Shin, S.S.; Hwang, K.; Kim, G.; Kim, K.W.; Lee, D.S.; Kim, W.; Ma, B.S.; Kim, Y.-K.; Kim, T.-S.; et al. Record-Efficiency Flexible Perovskite Solar Cell and Module Enabled by a Porous-Planar Structure as an Electron Transport Layer. Energy Environ. Sci. 2020, 13, 4854–4861. [Google Scholar] [CrossRef]
- Paik, M.J.; Yoo, J.W.; Park, J.; Noh, E.; Kim, H.; Ji, S.-G.; Kim, Y.Y.; Seok, S.I. SnO2—TiO2 Hybrid Electron Transport Layer for Efficient and Flexible Perovskite Solar Cells. ACS Energy Lett. 2022, 7, 1864–1870. [Google Scholar] [CrossRef]
- Gencer, A.; Surucu, G.; Al, S. MgTiO3Hx and CaTiO3Hx Perovskite Compounds for Hydrogen Storage Applications. Int. J. Hydrogen Energy 2019, 44, 11930–11938. [Google Scholar] [CrossRef]
- Ikeda, K.; Kogure, Y.; Nakamori, Y.; Orimo, S. Formation Region and Hydrogen Storage Abilities of Perovskite-Type Hydrides. Prog. Solid State Chem. 2007, 35, 329–337. [Google Scholar] [CrossRef]
- Schmidt, J.; Pettersson, L.; Verdozzi, C.; Botti, S.; Marques, M.A.L. Crystal Graph Attention Networks for the Prediction of Stable Materials. Sci. Adv. 2021, 7, eabi7948. [Google Scholar] [CrossRef]
- Jain, I.P. Hydrogen the Fuel for 21st Century. Int. J. Hydrogen Energy 2009, 34, 7368–7378. [Google Scholar] [CrossRef]
- Veziroğlu, T.N.; Şahi˙n, S. 21st Century’s Energy: Hydrogen Energy System. Energy Convers. Manag. 2008, 49, 1820–1831. [Google Scholar] [CrossRef]
- Ball, M.; Wietschel, M. The Future of Hydrogen—Opportunities and Challenges. Int. J. Hydrogen Energy 2009, 34, 615–627. [Google Scholar] [CrossRef]
- Subramanian, B.; Ismail, S. Production and Use of HHO Gas in IC Engines. Int. J. Hydrogen Energy 2018, 43, 7140–7154. [Google Scholar] [CrossRef]
- Sopena, C.; Diéguez, P.M.; Sáinz, D.; Urroz, J.C.; Guelbenzu, E.; Gandía, L.M. Conversion of a Commercial Spark Ignition Engine to Run on Hydrogen: Performance Comparison Using Hydrogen and Gasoline. Int. J. Hydrogen Energy 2010, 35, 1420–1429. [Google Scholar] [CrossRef]
- Zhang, Y.; Campana, P.E.; Lundblad, A.; Yan, J. Comparative Study of Hydrogen Storage and Battery Storage in Grid Connected Photovoltaic System: Storage Sizing and Rule-Based Operation. Appl. Energy 2017, 201, 397–411. [Google Scholar] [CrossRef]
- Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D.J. High Capacity Hydrogenstorage Materials: Attributes for Automotive Applications and Techniques for Materials Discovery. Chem. Soc. Rev. 2010, 39, 656–675. [Google Scholar] [CrossRef]
- Murray, L.J.; Dincă, M.; Long, J.R. Hydrogen Storage in Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1294. [Google Scholar] [CrossRef]
- Liu, P.; Liang, J.; Xue, R.; Du, Q.; Jiang, M. Ruthenium Decorated Boron-Doped Carbon Nanotube for Hydrogen Storage: A First-Principle Study. Int. J. Hydrogen Energy 2019, 44, 27853–27861. [Google Scholar] [CrossRef]
- Raza, H.H.; Murtaza, G.; Umm-e-Hani; Muhammad, N.; Ramay, S.M. First-Principle Investigation of XSrH3 (X = K and Rb) Perovskite-Type Hydrides for Hydrogen Storage. Int. J. Quantum Chem. 2020, 120, e26419. [Google Scholar] [CrossRef]
- Bouhadda, Y.; Boudouma, Y.; Fennineche, N.; Bentabet, A. Ab Initio Calculations Study of the Electronic, Optical and Thermodynamic Properties of NaMgH3, for Hydrogen Storage. J. Phys. Chem. Solids 2010, 71, 1264–1268. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Y.; Li, Y.; Ding, Z. Research Progress and Application Prospects of Solid-State Hydrogen Storage Technology. Molecules 2024, 29, 1767. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.Y.; Lim, K.L.; Tseng, Y.S.; Chan, S.L.I. A Review on the Characterization of Hydrogen in Hydrogen Storage Materials. Renew. Sustain. Energy Rev. 2017, 79, 1122–1133. [Google Scholar] [CrossRef]
- Xu, N.; Chen, Y.; Chen, S.; Li, S.; Zhang, W. First-Principles Investigation for the Hydrogen Storage Properties of XTiH3 (X = K, Rb, Cs) Perovskite Type Hydrides. Int. J. Hydrogen Energy 2024, 50, 114–122. [Google Scholar] [CrossRef]
- Kojima, Y. Hydrogen Storage Materials for Hydrogen and Energy Carriers. Int. J. Hydrogen Energy 2019, 44, 18179–18192. [Google Scholar] [CrossRef]
- Züttel, A. Hydrogen Storage Methods. Naturwissenschaften 2004, 91, 157–172. [Google Scholar] [CrossRef]
- Pukazhselvan, D.; Kumar, V.; Singh, S.K. High Capacity Hydrogen Storage: Basic Aspects, New Developments and Milestones. Nano Energy 2012, 1, 566–589. [Google Scholar] [CrossRef]
- Schlapbach, L.; Züttel, A. Hydrogen-Storage Materials for Mobile Applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef]
- Broom, D.P. Hydrogen Storage Materials: The Characterisation of Their Storage Properties; Green Energy and Technology; Springer London: London, UK, 2011; ISBN 978-0-85729-220-9. [Google Scholar]
- Ikeda, K.; Sato, T.; Orimo, S. Perovskite-Type Hydrides—Synthesis, Structures and Properties. Int. J. Mater. Res. 2008, 99, 471–479. [Google Scholar] [CrossRef]
- Young, K.; Ng, K.; Bendersky, L. A Technical Report of the Robust Affordable Next Generation Energy Storage System-BASF Program. Batteries 2016, 2, 2. [Google Scholar] [CrossRef]
- Bertuol, D.A.; Bernardes, A.M.; Tenório, J.A.S. Spent NiMH Batteries: Characterization and Metal Recovery through Mechanical Processing. J. Power Sources 2006, 160, 1465–1470. [Google Scholar] [CrossRef]
- Al-Thyabat, S.; Nakamura, T.; Shibata, E.; Iizuka, A. Adaptation of Minerals Processing Operations for Lithium-Ion (LiBs) and Nickel Metal Hydride (NiMH) Batteries Recycling: Critical Review. Miner. Eng. 2013, 45, 4–17. [Google Scholar] [CrossRef]
- Mohtadi, R.; Orimo, S. The Renaissance of Hydrides as Energy Materials. Nat. Rev. Mater. 2016, 2, 16091. [Google Scholar] [CrossRef]
- Nie, T.; Fang, Z.; Ren, X.; Duan, Y.; Liu, S. Recent Advances in Wide-Bandgap Organic–Inorganic Halide Perovskite Solar Cells and Tandem Application. Nano-Micro Lett. 2023, 15, 70. [Google Scholar] [CrossRef] [PubMed]
- Mali, S.S.; Patil, J.V.; Shao, J.-Y.; Zhong, Y.-W.; Rondiya, S.R.; Dzade, N.Y.; Hong, C.K. Phase-Heterojunction All-Inorganic Perovskite Solar Cells Surpassing 21.5% Efficiency. Nat. Energy 2023, 8, 989–1001. [Google Scholar] [CrossRef]
- Tong, J.; Jiang, Q.; Zhang, F.; Kang, S.B.; Kim, D.H.; Zhu, K. Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells. ACS Energy Lett. 2021, 6, 232–248. [Google Scholar] [CrossRef] [PubMed]
- Eperon, G.E.; Hörantner, M.T.; Snaith, H.J. Metal Halide Perovskite Tandem and Multiple-Junction Photovoltaics. Nat. Rev. Chem. 2017, 1, 0095. [Google Scholar] [CrossRef]
- Ou, Q.; Bao, X.; Zhang, Y.; Shao, H.; Xing, G.; Li, X.; Shao, L.; Bao, Q. Band Structure Engineering in Metal Halide Perovskite Nanostructures for Optoelectronic Applications. Nano Mater. Sci. 2019, 1, 268–287. [Google Scholar] [CrossRef]
- Liu, X.; Luo, D.; Lu, Z.-H.; Yun, J.S.; Saliba, M.; Seok, S.I.; Zhang, W. Stabilization of Photoactive Phases for Perovskite Photovoltaics. Nat. Rev. Chem. 2023, 7, 462–479. [Google Scholar] [CrossRef]
- Simenas, M.; Gagor, A.; Banys, J.; Maczka, M. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chem. Rev. 2024, 124, 2281–2326. [Google Scholar] [CrossRef]
- Saski, M.; Sobczak, S.; Ratajczyk, P.; Terlecki, M.; Marynowski, W.; Borkenhagen, A.; Justyniak, I.; Katrusiak, A.; Lewiński, J. Unprecedented Richness of Temperature- and Pressure-Induced Polymorphism in 1D Lead Iodide Perovskite. Small 2024, 2403685. [Google Scholar] [CrossRef]
- Noh, J.H.; Im, S.H.; Heo, J.H.; Mandal, T.N.; Seok, S.I. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-H.; Anaya, M.; Stranks, S.D. Multisource Vacuum Deposition of Methylammonium-Free Perovskite Solar Cells. ACS Energy Lett. 2020, 5, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yousefi Amin, A.A.; Wu, L.; Cao, M.; Zhang, Q.; Ameri, T. Perovskite Nanocrystals: Synthesis, Stability, and Optoelectronic Applications. Small Struct. 2021, 2, 2000124. [Google Scholar] [CrossRef]
- Prochowicz, D.; Saski, M.; Yadav, P.; Grätzel, M.; Lewiński, J. Mechanoperovskites for Photovoltaic Applications: Preparation, Characterization, and Device Fabrication. Acc. Chem. Res. 2019, 52, 3233–3243. [Google Scholar] [CrossRef] [PubMed]
- Diodati, S.; Nodari, L.; Natile, M.M.; Caneschi, A.; De Julián Fernández, C.; Hoffmann, C.; Kaskel, S.; Lieb, A.; Di Noto, V.; Mascotto, S.; et al. Coprecipitation of Oxalates: An Easy and Reproducible Wet-Chemistry Synthesis Route for Transition-Metal Ferrites. Eur. J. Inorg. Chem. 2014, 2014, 875–887. [Google Scholar] [CrossRef]
- Yu, J.; Ran, R.; Zhong, Y.; Zhou, W.; Ni, M.; Shao, Z. Advances in Porous Perovskites: Synthesis and Electrocatalytic Performance in Fuel Cells and Metal–Air Batteries. Energy Environ. Mater. 2020, 3, 121–145. [Google Scholar] [CrossRef]
- Assirey, E.A.R. Perovskite Synthesis, Properties and Their Related Biochemical and Industrial Application. Saudi Pharm. J. 2019, 27, 817–829. [Google Scholar] [CrossRef]
- Prochowicz, D.; Yadav, P.; Saliba, M.; Kubicki, D.J.; Tavakoli, M.M.; Zakeeruddin, S.M.; Lewiński, J.; Emsley, L.; Grätzel, M. One-Step Mechanochemical Incorporation of an Insoluble Cesium Additive for High Performance Planar Heterojunction Solar Cells. Nano Energy 2018, 49, 523–528. [Google Scholar] [CrossRef]
- Al Amin, N.R.; Lee, C.-C.; Huang, Y.-C.; Shih, C.-J.; Estrada, R.; Biring, S.; Kuo, M.-H.; Li, C.-F.; Huang, Y.-C.; Liu, S.-W. Achieving a Highly Stable Perovskite Photodetector with a Long Lifetime Fabricated via an All-Vacuum Deposition Process. ACS Appl. Mater. Interfaces 2023, 15, 21284–21295. [Google Scholar] [CrossRef]
- Yin, W.-J.; Yang, J.-H.; Kang, J.; Yan, Y.; Wei, S.-H. Halide Perovskite Materials for Solar Cells: A Theoretical Review. J. Mater. Chem. A 2015, 3, 8926–8942. [Google Scholar] [CrossRef]
- Afre, R.A.; Pugliese, D. Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies. Micromachines 2024, 15, 192. [Google Scholar] [CrossRef] [PubMed]
- Frost, J.M.; Butler, K.T.; Brivio, F.; Hendon, C.H.; Van Schilfgaarde, M.; Walsh, A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Lett. 2014, 14, 2584–2590. [Google Scholar] [CrossRef] [PubMed]
- Berhe, T.A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A.A.; Hwang, B.-J. Organometal Halide Perovskite Solar Cells: Degradation and Stability. Energy Environ. Sci. 2016, 9, 323–356. [Google Scholar] [CrossRef]
- Marinova, N.; Valero, S.; Delgado, J.L. Organic and Perovskite Solar Cells: Working Principles, Materials and Interfaces. J. Colloid Interface Sci. 2017, 488, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Desoky, M.M.H.; Bonomo, M.; Buscaino, R.; Fin, A.; Viscardi, G.; Barolo, C.; Quagliotto, P. Dopant-Free All-Organic Small-Molecule HTMs for Perovskite Solar Cells: Concepts and Structure–Property Relationships. Energies 2021, 14, 2279. [Google Scholar] [CrossRef]
- Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; Van De Krol, R.; Moehl, T.; Grätzel, M.; Moser, J.-E. Unravelling the Mechanism of Photoinduced Charge Transfer Processes in Lead Iodide Perovskite Solar Cells. Nat. Photonics 2014, 8, 250–255. [Google Scholar] [CrossRef]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Seok, S.I.; McGehee, M.D.; Sargent, E.H.; Han, H. Challenges for Commercializing Perovskite Solar Cells. Science 2018, 361, eaat8235. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Yun, H.-S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S.I. Controlled Growth of Perovskite Layers with Volatile Alkylammonium Chlorides. Nature 2023, 616, 724–730. [Google Scholar] [CrossRef]
- Chavan, R.D.; Wolska-Pietkiewicz, M.; Prochowicz, D.; Jędrzejewska, M.; Tavakoli, M.M.; Yadav, P.; Hong, C.K.; Lewiński, J. Organic Ligand-Free ZnO Quantum Dots for Efficient and Stable Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2205909. [Google Scholar] [CrossRef]
- Sani, S.; Usman, A.; Bhatranand, A.; Jiraraksopakun, Y.; Muhammad, K.S.; Yahaya, U. A Study on Defect, Doping, and Performance of ETLs (ZnO, TiO2, and IGZO) for the Lead-Free CsSnCl3 Perovskite Solar Cell by SCAPS-1D Framework. Mater. Today Commun. 2024, 38, 107575. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Anaraki, E.H.; Kermanpur, A.; Steier, L.; Domanski, K.; Matsui, T.; Tress, W.; Saliba, M.; Abate, A.; Grätzel, M.; Hagfeldt, A.; et al. Highly Efficient and Stable Planar Perovskite Solar Cells by Solution-Processed Tin Oxide. Energy Environ. Sci. 2016, 9, 3128–3134. [Google Scholar] [CrossRef]
- Dong, Q.; Li, J.; Shi, Y.; Chen, M.; Ono, L.K.; Zhou, K.; Zhang, C.; Qi, Y.; Zhou, Y.; Padture, N.P.; et al. Improved SnO2 Electron Transport Layers Solution-Deposited at Near Room Temperature for Rigid or Flexible Perovskite Solar Cells with High Efficiencies. Adv. Energy Mater. 2019, 9, 1900834. [Google Scholar] [CrossRef]
- Rombach, F.M.; Haque, S.A.; Macdonald, T.J. Lessons Learned from Spiro-OMeTAD and PTAA in Perovskite Solar Cells. Energy Environ. Sci. 2021, 14, 5161–5190. [Google Scholar] [CrossRef]
- Yekani, R.; Wang, H.; Ghamari, P.; Bessette, S.; Sharir-Smith, J.; Gauvin, R.; Demopoulos, G.P. Impact of Photo-Induced Doping of Spiro-OMeTAD as HTL on Perovskite Solar Cell Hysteresis Dynamics. J. Phys. Chem. C 2024, 128, 710–722. [Google Scholar] [CrossRef]
- Bi, H.; Fujiwara, Y.; Kapil, G.; Tavgeniene, D.; Zhang, Z.; Wang, L.; Ding, C.; Sahamir, S.R.; Baranwal, A.K.; Sanehira, Y.; et al. Perovskite Solar Cells Consisting of PTAA Modified with Monomolecular Layer and Application to All-Perovskite Tandem Solar Cells with Efficiency over 25%. Adv. Funct. Mater. 2023, 33, 2300089. [Google Scholar] [CrossRef]
- Li, W.; Martínez-Ferrero, E.; Palomares, E. Self-Assembled Molecules as Selective Contacts for Efficient and Stable Perovskite Solar Cells. Mater. Chem. Front. 2024, 8, 681–699. [Google Scholar] [CrossRef]
- Yi, Z.; Li, X.; Xiong, Y.; Shen, G.; Zhang, W.; Huang, Y.; Jiang, Q.; Ng, X.R.; Luo, Y.; Zheng, J.; et al. Self-assembled Monolayers (SAMs) in Inverted Perovskite Solar Cells and Their Tandem Photovoltaics Application. Interdiscip. Mater. 2024, 3, 203–244. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Wu, C.-G. Bulk Heterojunction Perovskite–PCBM Solar Cells with High Fill Factor. Nat. Photonics 2016, 10, 196–200. [Google Scholar] [CrossRef]
- Gong, C.; Li, H.; Wang, H.; Zhang, C.; Zhuang, Q.; Wang, A.; Xu, Z.; Cai, W.; Li, R.; Li, X.; et al. Silver Coordination-Induced n-Doping of PCBM for Stable and Efficient Inverted Perovskite Solar Cells. Nat. Commun. 2024, 15, 4922. [Google Scholar] [CrossRef]
- Wojciechowski, K.; Leijtens, T.; Siprova, S.; Schlueter, C.; Hörantner, M.T.; Wang, J.T.-W.; Li, C.-Z.; Jen, A.K.-Y.; Lee, T.-L.; Snaith, H.J. C60 as an Efficient N-Type Compact Layer in Perovskite Solar Cells. J. Phys. Chem. Lett. 2015, 6, 2399–2405. [Google Scholar] [CrossRef] [PubMed]
- Said, A.A.; Aydin, E.; Ugur, E.; Xu, Z.; Deger, C.; Vishal, B.; Vlk, A.; Dally, P.; Yildirim, B.K.; Azmi, R.; et al. Sublimed C60 for Efficient and Repeatable Perovskite-Based Solar Cells. Nat. Commun. 2024, 15, 708. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Biju, V.P.; Qi, Y.; Chen, W.; Liu, Z. Recent Progress in the Development of High-Efficiency Inverted Perovskite Solar Cells. NPG Asia Mater. 2023, 15, 27. [Google Scholar] [CrossRef]
- Tang, H.; Shen, Z.; Shen, Y.; Yan, G.; Wang, Y.; Han, Q.; Han, L. Reinforcing Self-Assembly of Hole Transport Molecules for Stable Inverted Perovskite Solar Cells. Science 2024, 383, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wei, M.; Carnevali, V.; Zeng, H.; Zeng, M.; Liu, R.; Lempesis, N.; Eickemeyer, F.T.; Luo, L.; Agosta, L.; et al. Buried-Interface Engineering Enables Efficient and 1960-Hour ISOS-L-2I Stable Inverted Perovskite Solar Cells. Adv. Mater. 2024, 36, 2303869. [Google Scholar] [CrossRef]
- Caprioglio, P.; Smith, J.A.; Oliver, R.D.J.; Dasgupta, A.; Choudhary, S.; Farrar, M.D.; Ramadan, A.J.; Lin, Y.-H.; Christoforo, M.G.; Ball, J.M.; et al. Open-Circuit and Short-Circuit Loss Management in Wide-Gap Perovskite p-i-n Solar Cells. Nat. Commun. 2023, 14, 932. [Google Scholar] [CrossRef]
- Imran, T.; Raza, H.; Aziz, L.; Chen, R.; Liu, S.; Jiang, Z.; Gao, Y.; Wang, J.; Younis, M.; Rauf, S.; et al. High Performance Inverted RbCsFAPbI3 Perovskite Solar Cells Based on Interface Engineering and Defects Passivation. Small 2023, 19, 2207950. [Google Scholar] [CrossRef]
- Cao, F.; Bian, L.; Li, L. Perovskite Solar Cells with High-Efficiency Exceeding 25%: A Review. Energy Mater. Devices 2024, 2, 9370018. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H. Detailed Balance Limit of Efficiency of p–n Junction Solar Cells. Renew. Energy 2018, 2, 35–54. [Google Scholar]
- Jošt, M.; Kegelmann, L.; Korte, L.; Albrecht, S. Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Adv. Energy Mater. 2020, 10, 1904102. [Google Scholar] [CrossRef]
- Bryant, D.; Greenwood, P.; Troughton, J.; Wijdekop, M.; Carnie, M.; Davies, M.; Wojciechowski, K.; Snaith, H.J.; Watson, T.; Worsley, D. A Transparent Conductive Adhesive Laminate Electrode for High-Efficiency Organic-Inorganic Lead Halide Perovskite Solar Cells. Adv. Mater. 2014, 26, 7499–7504. [Google Scholar] [CrossRef] [PubMed]
- Berry, J.; Buonassisi, T.; Egger, D.A.; Hodes, G.; Kronik, L.; Loo, Y.; Lubomirsky, I.; Marder, S.R.; Mastai, Y.; Miller, J.S.; et al. Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges. Adv. Mater. 2015, 27, 5102–5112. [Google Scholar] [CrossRef] [PubMed]
- Tockhorn, P.; Sutter, J.; Cruz, A.; Wagner, P.; Jäger, K.; Yoo, D.; Lang, F.; Grischek, M.; Li, B.; Li, J.; et al. Nano-Optical Designs for High-Efficiency Monolithic Perovskite–Silicon Tandem Solar Cells. Nat. Nanotechnol. 2022, 17, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, H.; Chu, Z.; Xia, R.; Wen, J.; Mo, Y.; Zhu, H.; Luo, H.; Zheng, X.; Huang, Z.; et al. Reducing Perovskite/C60 Interface Losses via Sequential Interface Engineering for Efficient Perovskite/Silicon Tandem Solar Cell. Adv. Mater. 2024, 36, 2308370. [Google Scholar] [CrossRef]
- Zheng, X.; Kong, W.; Wen, J.; Hong, J.; Luo, H.; Xia, R.; Huang, Z.; Luo, X.; Liu, Z.; Li, H.; et al. Solvent Engineering for Scalable Fabrication of Perovskite/Silicon Tandem Solar Cells in Air. Nat. Commun. 2024, 15, 4907. [Google Scholar] [CrossRef]
- Priyanka, E.; Muchahary, D. Performance Improvement of Perovskite/CIGS Tandem Solar Cell Using Barium Stannate Charge Transport Layer and Achieving PCE of 39% Numerically. Sol. Energy 2024, 267, 112218. [Google Scholar] [CrossRef]
- Yu, D.; Pan, M.; Liu, G.; Jiang, X.; Wen, X.; Li, W.; Chen, S.; Zhou, W.; Wang, H.; Lu, Y.; et al. Electron-Withdrawing Organic Ligand for High-Efficiency All-Perovskite Tandem Solar Cells. Nat. Energy 2024, 9, 298–307. [Google Scholar] [CrossRef]
- Sun, H.; Xiao, K.; Gao, H.; Duan, C.; Zhao, S.; Wen, J.; Wang, Y.; Lin, R.; Zheng, X.; Luo, H.; et al. Scalable Solution-Processed Hybrid Electron Transport Layers for Efficient All-Perovskite Tandem Solar Modules. Adv. Mater. 2024, 36, 2308706. [Google Scholar] [CrossRef]
- Wei, R.; Breite, D.; Song, C.; Gräsing, D.; Ploss, T.; Hille, P.; Schwerdtfeger, R.; Matysik, J.; Schulze, A.; Zimmermann, W. Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging Determined by Their Polymer Microstructures. Adv. Sci. 2019, 6, 1900491. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Qian, J.; Liang, Z.; Wu, C.; Wang, K.; Liu, S.; Yang, D. Thermal Radiation Annealing for Overcoming Processing Temperature Limitation of Flexible Perovskite Solar Cells. Adv. Mater. 2024, 2401236. [Google Scholar] [CrossRef]
- Yang, D.; Yang, R.; Zhang, C.; Ye, T.; Wang, K.; Hou, Y.; Zheng, L.; Priya, S.; Liu, S. Highest-Efficiency Flexible Perovskite Solar Module by Interface Engineering for Efficient Charge-Transfer. Adv. Mater. 2023, 35, 2302484. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.; Choi, S.J.; Sung, H.; Kim, M.; Song, J.W.; Choi, I.W.; Kim, H.-B.; Jo, Y.; Lee, S.; Yoon, S.-Y.; et al. High-Performance and Selective Semi-Transparent Perovskite Solar Cells Using 3D-Structured FTO. Renew. Energy 2024, 222, 119817. [Google Scholar] [CrossRef]
- Jin, Y.; Feng, H.; Fang, Z.; Yang, L.; Liu, K.; Deng, B.; Chen, J.; Chen, X.; Zhong, Y.; Yang, J.; et al. Stabilizing Semi-Transparent Perovskite Solar Cells with a Polymer Composite Hole Transport Layer. Nano Res. 2023, 17, 1500–1507. [Google Scholar] [CrossRef]
- Yoo, J.J.; Lee, J.-W.; Ju, Y.; Kang, B.J.; Kim, Y.; Kim, B.-S.; Kim, Y.Y.; Shin, S.S.; Shin, T.J.; Jeon, N.J. Pyrophosphate Interlayer Improves Performance of Semi-Transparent Perovskite Solar Cells. J. Mater. Chem. A 2024, 12, 12126–12133. [Google Scholar] [CrossRef]
- Tu, Y.; Wu, J.; Xu, G.; Yang, X.; Cai, R.; Gong, Q.; Zhu, R.; Huang, W. Perovskite Solar Cells for Space Applications: Progress and Challenges. Adv. Mater. 2021, 33, 2006545. [Google Scholar] [CrossRef]
- Ho-Baillie, A.W.Y.; Sullivan, H.G.J.; Bannerman, T.A.; Talathi, H.P.; Bing, J.; Tang, S.; Xu, A.; Bhattacharyya, D.; Cairns, I.H.; McKenzie, D.R. Deployment Opportunities for Space Photovoltaics and the Prospects for Perovskite Solar Cells. Adv. Mater. Technol. 2022, 7, 2101059. [Google Scholar] [CrossRef]
- Huan, Z.; Zheng, Y.; Wang, K.; Shen, Z.; Ni, W.; Zu, J.; Shao, Y. Advancements in Radiation Resistance and Reinforcement Strategies of Perovskite Solar Cells in Space Applications. J. Mater. Chem. A 2024, 12, 1910–1922. [Google Scholar] [CrossRef]
- Pérez-del-Rey, D.; Dreessen, C.; Igual-Muñoz, A.M.; Van Den Hengel, L.; Gélvez-Rueda, M.C.; Savenije, T.J.; Grozema, F.C.; Zimmermann, C.; Bolink, H.J. Perovskite Solar Cells: Stable under Space Conditions. Sol. RRL 2020, 4, 2000447. [Google Scholar] [CrossRef]
- Kong, L.; Liu, G. Synchrotron-Based Infrared Microspectroscopy under High Pressure: An Introduction. Matter Radiat. Extrem. 2021, 6, 068202. [Google Scholar] [CrossRef]
- Contreras, L.; Mayacela, M.; Bustillos, A.; Rentería, L.; Book, D. Hydrogen Sorption and Rehydrogenation Properties of NaMgH3. Metals 2022, 12, 205. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, W.; Udovic, T.J.; Rush, J.J.; Yildirim, T. Crystal Chemistry of Perovskite-Type Hydride NaMgH3: Implications for Hydrogen Storage. Chem. Mater. 2008, 20, 2335–2342. [Google Scholar] [CrossRef]
- Reshak, A.H.; Shalaginov, M.Y.; Saeed, Y.; Kityk, I.V.; Auluck, S. First-Principles Calculations of Structural, Elastic, Electronic, and Optical Properties of Perovskite-Type KMgH3 Crystals: Novel Hydrogen Storage Material. J. Phys. Chem. B 2011, 115, 2836–2841. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Noréus, D.; Takeshita, H.; Häussermann, U. Hydrides with the Perovskite Structure: General Bonding and Stability Considerations and the New Representative CaNiH3. J. Solid State Chem. 2005, 178, 3381–3388. [Google Scholar] [CrossRef]
- Naskar, A.; Khanal, R.; Choudhury, S. Role of Chemistry and Crystal Structure on the Electronic Defect States in Cs-Based Halide Perovskites. Materials 2021, 14, 1032. [Google Scholar] [CrossRef] [PubMed]
- Mbonu, I.J.; Louis, H.; Chukwu, U.G.; Agwamba, E.C.; Ghotekar, S.; Adeyinka, A.S. Effects of Metals (X = Be, Mg, Ca) Encapsulation on the Structural, Electronic, Phonon, and Hydrogen Storage Properties of KXCl3 Halide Perovskites: Perspective from Density Functional Theory. Int. J. Hydrogen Energy 2024, 50, 337–351. [Google Scholar] [CrossRef]
- Song, F.; Bai, L.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759. [Google Scholar] [CrossRef]
- Deng, G.; Chen, Y.; Tao, M.; Wu, C.; Shen, X.; Yang, H.; Liu, M. Electrochemical Properties and Hydrogen Storage Mechanism of Perovskite-Type Oxide LaFeO3 as a Negative Electrode for Ni/MH Batteries. Electrochim. Acta 2010, 55, 1120–1124. [Google Scholar] [CrossRef]
- Ostadebrahim, M.; Moradlou, O. Electrochemical Hydrogen Storage in LaMO3 (M = Cr, Mn, Fe, Co, Ni) Nano-Perovskites. J. Energy Storage 2023, 72, 108284. [Google Scholar] [CrossRef]
- Mohassel, R.; Soofivand, F.; Dawi, E.A.; Shabani-Nooshabadi, M.; Salavati-Niasari, M. ErMnO3/Er2Mn2O7/ZnO/GO Multi-Component Nanocomposite as a Promising Material for Hydrogen Storage: Facile Synthesis and Comprehensive Investigation of Component Roles. J. Energy Storage 2023, 65, 107285. [Google Scholar] [CrossRef]
- Esaka, T.; Sakaguchi, H.; Kobayashi, S. Hydrogen Storage in Proton-Conductive Perovskite-Type Oxides and Their Application to Nickel–Hydrogen Batteries. Solid State Ion. 2004, 166, 351–357. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Hatakeyama, K.; Kobayashi, S.; Esaka, T. Hydrogenation Characteristics of the Proton Conducting Oxide–Hydrogen Storage Alloy Composite. Mater. Res. Bull. 2002, 37, 1547–1556. [Google Scholar] [CrossRef]
- Henao, J.; Sotelo, O.; Casales-Diaz, M.; Martinez-Gomez, L. Hydrogen Storage in a Rare-Earth Perovskite-Type Oxide La0.6Sr0.4Co0.2Fe0.8O3 for Battery Applications. Rare Met. 2018, 37, 1003–1013. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Rehman, M.A.; Rehman, B.; Sikiru, S.; Qureshi, S.; Ali, E.M.; Awais, M.; Amjad, M.; Iqbal, I.; Rafique, A.; et al. Ab Initio Insight into the Physical Properties of MgXH3 (X = Co, Cu, Ni) Lead-Free Perovskite for Hydrogen Storage Application. Environ. Sci. Pollut. Res. 2023, 30, 113889–113902. [Google Scholar] [CrossRef] [PubMed]
- Mera, A.; Rehman, M.A. First-Principles Investigation for the Hydrogen Storage Properties of AeSiH3 (Ae = Li, K, Na, Mg) Perovskite-Type Hydrides. Int. J. Hydrogen Energy 2024, 50, 1435–1447. [Google Scholar] [CrossRef]
- Siddique, A.; Khalil, A.; Almutairi, B.S.; Tahir, M.B.; Sagir, M.; Ullah, Z.; Hannan, A.; Ali, H.E.; Alrobei, H.; Alzaid, M. Structures and Hydrogen Storage Properties of AeVH3 (Ae = Be, Mg, Ca, Sr) Perovskite Hydrides by DFT Calculations. Int. J. Hydrogen Energy 2023, 48, 24401–24411. [Google Scholar] [CrossRef]
- Hayat, S.; Khalil, R.M.A.; Hussain, M.I.; Rana, A.M.; Hussain, F. First-Principles Investigations of the Structural, Optoelectronic, Magnetic and Thermodynamic Properties of Hydride Perovskites XCuH3 (X = Co, Ni, Zn) for Hydrogen Storage Applications. Optik 2021, 228, 166187. [Google Scholar] [CrossRef]
- Rafique, A.; Usman, M.; Rehman, J.U.; Nazeer, A.; Ullah, H.; Hussain, A. Investigation of Structural, Electronic, Mechanical, Optical and Hydrogen Storage Properties of Cobalt-Based Hydride-Perovskites XCoH3 (X = In, Mn, Sr, Sn, Cd) for Hydrogen Storage Application. J. Phys. Chem. Solids 2023, 181, 111559. [Google Scholar] [CrossRef]
- Song, R.; Chen, Y.; Chen, S.; Xu, N.; Zhang, W. First-Principles to Explore the Hydrogen Storage Properties of XPtH3 (X = Li, Na, K, Rb) Perovskite Type Hydrides. Int. J. Hydrogen Energy 2024, 57, 949–957. [Google Scholar] [CrossRef]
- Xu, N.; Song, R.; Zhang, J.; Chen, Y.; Chen, S.; Li, S.; Jiang, Z.; Zhang, W. First-Principles Study on Hydrogen Storage Properties of the New Hydride Perovskite XAlH3 (X = Na, K). Int. J. Hydrogen Energy 2024, 60, 434–440. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, M.; Liu, Q.; Lin, Y.; Yu, A.; Tang, Y. Organic-Inorganic Conformal Extending High-Purity Metal Nanosheets for Robust Electrochemical Lithium-Ion Storage. Adv. Funct. Mater. 2023, 33, 2306291. [Google Scholar] [CrossRef]
- Shah, S.F.A.; Murtaza, G.; Ismail, K.; Raza, H.H.; Khan, I.J. First Principles Investigation of Transition Metal Hydrides LiXH3 (X = Ti, Mn, and Cu) for Hydrogen Storage. J. Comput. Electron. 2023, 22, 921–929. [Google Scholar] [CrossRef]
- Surucu, G.; Candan, A.; Gencer, A.; Isik, M. First-Principle Investigation for the Hydrogen Storage Properties of NaXH3 (X = Mn, Fe, Co) Perovskite Type Hydrides. Int. J. Hydrogen Energy 2019, 44, 30218–30225. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Bae, H.; Kim, I.-H.; Mathur, L.; Park, J.-Y.; Song, S.-J. High Capacity, Rate-Capability, and Power Delivery at High-Temperature by an Oxygen-Deficient Perovskite Oxide as Proton Insertion Anodes for Energy Storage Devices. J. Electrochem. Soc. 2021, 168, 070540. [Google Scholar] [CrossRef]
- Lahlou Nabil, M.A.; Fenineche, N.; Popa, I.; Sunyol, J.J. Morphological, Structural and Hydrogen Storage Properties of LaCrO3 Perovskite-Type Oxides. Energies 2022, 15, 1463. [Google Scholar] [CrossRef]
- Ullah, M.A.; Riaz, K.N.; Rizwan, M. Computational Evaluation of KMgO3-xHx as an Efficient Hydrogen Storage Material. J. Energy Storage 2023, 70, 108030. [Google Scholar] [CrossRef]
- Parvazian, E.; Watson, T. The Roll-to-Roll Revolution to Tackle the Industrial Leap for Perovskite Solar Cells. Nat. Commun. 2024, 15, 3983. [Google Scholar] [CrossRef]
- Chen, C.; Ran, C.; Yao, Q.; Wang, J.; Guo, C.; Gu, L.; Han, H.; Wang, X.; Chao, L.; Xia, Y.; et al. Screen-Printing Technology for Scale Manufacturing of Perovskite Solar Cells. Adv. Sci. 2023, 10, 2303992. [Google Scholar] [CrossRef]
- Khatoon, S.; Kumar Yadav, S.; Chakravorty, V.; Singh, J.; Bahadur Singh, R.; Hasnain, M.S.; Hasnain, S.M.M. Perovskite Solar Cell’s Efficiency, Stability and Scalability: A Review. Mater. Sci. Energy Technol. 2023, 6, 437–459. [Google Scholar] [CrossRef]
- Noman, M.; Khan, Z.; Jan, S.T. A Comprehensive Review on the Advancements and Challenges in Perovskite Solar Cell Technology. RSC Adv. 2024, 14, 5085–5131. [Google Scholar] [CrossRef]
- Ur Rehman, Z.; Rehman, M.A.; Alomar, S.Y.; Rehman, B.; Awais, M.; Amjad, M.; Sikiru, S.; Ali, E.M.; Hamad, A. Hydrogen Storage Capacity of Lead-Free Perovskite NaMTH3 (MT = Sc, Ti, V): A DFT Study. Int. J. Energy Res. 2024, 2024, 4009198. [Google Scholar] [CrossRef]
Compounds | % | · (Å) | · (Å3) | · (g/cm3) | · (eV/Atom) | · (K) |
---|---|---|---|---|---|---|
MgCoH3 | 3.64 | 3.32 | 36.44 | 3.93 | −70.93 | 542.69 |
MgCuH3 | 3.32 | 3.49 | 42.42 | 3.56 | −63.27 | 484.08 |
MgNiH3 | 3.49 | 3.36 | 37.97 | 3.76 | −68.54 | 524.40 |
Compounds | % | · (Å) | · (Å3) | · (g/cm3) | · (eV/Atom) |
---|---|---|---|---|---|
CaMnH3 | 3.09 | 3.60 | 46.58 | 3.50 | −0.25 |
CaFeH3 | 3.06 | 3.50 | 42.99 | 3.82 | −0.42 |
CaCoH3 | 2.97 | 3.48 | 42.16 | 4.03 | −0.44 |
Compounds | % | · (Å) | · (Å3) | · (g/cm3) | · (eV/Atom) |
---|---|---|---|---|---|
LiSiH3 | 7.946 | 4.001 | 64.079 | 1.046 | −17.372 |
KSiH3 | 4.306 | 3.917 | 60.122 | 1.952 | −15.760 |
NaSiH3 | 5.588 | 3.986 | 63.363 | 1.429 | −16.134 |
MgSiH3 | 5.456 | 3.977 | 62.933 | 1.476 | −15.063 |
Compounds | % | · (Å) | · (Å3) | · (eV/Atom) |
---|---|---|---|---|
KSrH3 | 2.33 | 4.77 | 108.50 | −6.60 |
RbSrH3 | 1.71 | 4.99 | 124.77 | −5.67 |
Compounds | % | · (Å) | · (Å3) | |
---|---|---|---|---|
CoCuH3 | 2.8 | 3.3287 | 36.882 | −1895.3 |
NiCuH3 | 3.0 | 3.3245 | 36.742 | −5499.0 |
ZnCuH3 | 2.7 | 3.6129 | 47.160 | −2512.5 |
Compounds | % | · (Å) | · (Å3) | · (eV/Atom) |
---|---|---|---|---|
CdCoH3 | 1.74 | 3.42 | 20.00 | −0.93 |
InCoH3 | 1.71 | 3.52 | 43.61 | −1.09 |
MnCoH3 | 2.59 | 3.60 | 46.66 | −0.87 |
SnCoH3 | 1.68 | 3.59 | 46.27 | −1.31 |
SrCoH3 | 2.03 | 3.66 | 49.03 | −0.78 |
Compounds | % | · (Å) | · (Å3) | · (eV/Atom) | · (K) |
---|---|---|---|---|---|
LiPtH3 | 1.45 | 3.54 | 44.35 | −0.32 | 237.77 |
NaPtH3 | 1.35 | 3.63 | 47.96 | −0.31 | 225.39 |
KPtH3 | 1.26 | 3.80 | 54.83 | −0.22 | 162.43 |
RbPtH3 | 1.06 | 3.90 | 59.25 | −0.11 | 80.11 |
Compounds | % | · (Å) | · (Å3) | · (eV/Atom) |
---|---|---|---|---|
NaAlH3 | 5.40 | 3.792 | 54.526 | −0.903 |
KAlH3 | 4.19 | 3.938 | 61.070 | −1.250 |
Compounds | % | · (Å) | · (GPa) | · (GPa) | · (eV/Atom) |
---|---|---|---|---|---|
KTiH3 | 3.36 | 3.999 | 44.938 | 1.767 | −0.285 |
RbTiH3 | 2.22 | 4.103 | 42.083 | 1.887 | −0.220 |
CsTuH3 | 1.65 | 4.233 | 37.176 | 1.704 | −0.146 |
Compounds | % | · (Å) | · (Å3) | · (GPa) | · (eV/Atom) |
---|---|---|---|---|---|
KBeH3 | 5.866 | 4.41 | 158.385 | 2.650 | −1.226 |
KMgH3 | 4.516 | 4.74 | 297.538 | 0.916 | −2.523 |
KCaH3 | 3.649 | 5.10 | 89.719 | 27.902 | −1.845 |
Samples | · (nm) | |||
---|---|---|---|---|
LaCrO3 | 1.4838 | 0.0044 | 12.060 | 5.8201 |
LaMnO3 | 8.8778 | 0.0302 | 13.616 | 6.7078 |
LaFeO3 | 20.997 | 0.1201 | 10.721 | 20.698 |
LaCoO3 | 8.2064 | 0.0693 | 33.807 | 10.929 |
LaNiO3 | 4.8519 | 0.0562 | 98.998 | 16.537 |
Active Material | Substrate | Electrolyte Solution | Reference Electrode | Counter Electrode | Discharge Capacity |
---|---|---|---|---|---|
LaCrO3 | - | - | - | - | 6790 mAh/g |
LaMnO3 | - | - | - | - | 10,500 mAh/g |
LaFeO3 | Cu electrode | 6M KOH | Ag/AGCl | Pt | 13,500 mAh/g |
LaCoO3 | - | - | - | - | 8800 mAh/g |
LaNiO3 | - | - | - | - | 7000 mAh/g |
Compounds | Calculated Cell Parameters (A) | · (GPa) | · (GPa) |
---|---|---|---|
LaCrO3 | 3.85 | 128.07 | 3.2 |
LaCrO3H6 | 4.43 | 62.26 | 23.48 |
Compounds | % | a | · (Å) b | c | · (Å3) | · (eV/Atom) | · (K) |
---|---|---|---|---|---|---|---|
KMgO3 | - | 4.109 | - | - | 69.37 | −0.023 | - |
KMg2.7O0.3 | 0.28 | 4.102 | 4.102 | 4.112 | 69.19 | −11.122 | 825 |
KMg2.4O0.6 | 0.59 | 4.092 | 4.067 | 4.140 | 68.90 | −10.826 | 803 |
KMg2.1O0.9 | 0.92 | 4.059 | 4.057 | 4.162 | 68.54 | −10.529 | 781 |
KMg1.8O1.2 | 1.28 | 4.034 | 4.038 | 4.196 | 68.35 | −10.223 | 759 |
KMg1.5O1.5 | 1.67 | 4.107 | 3.989 | 4.182 | 68.51 | −9.937 | 737 |
KMg1.2O1.8 | 2.10 | 4.510 | 4.653 | 4.437 | 92.90 | −9.648 | 716 |
KMg0.9O2.1 | 2.58 | 4.450 | 3.975 | 4.108 | 72.60 | −9.347 | 694 |
KMg0.6O2.4 | 3.10 | 4.156 | 3.966 | 4.091 | 67.43 | −8.624 | 640 |
KMg0.3O2.7 | 3.69 | 4.058 | 4.084 | 4.004 | 66.35 | −7.904 | 587 |
KMgH3 | 4.35 | 4.069 | - | - | 67.36 | −7.606 | 564 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, M.-H.; Neykova, N.; Stachiv, I. Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage. Energies 2024, 17, 4755. https://doi.org/10.3390/en17184755
Kuo M-H, Neykova N, Stachiv I. Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage. Energies. 2024; 17(18):4755. https://doi.org/10.3390/en17184755
Chicago/Turabian StyleKuo, Meng-Hsueh, Neda Neykova, and Ivo Stachiv. 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage" Energies 17, no. 18: 4755. https://doi.org/10.3390/en17184755
APA StyleKuo, M. -H., Neykova, N., & Stachiv, I. (2024). Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage. Energies, 17(18), 4755. https://doi.org/10.3390/en17184755