Optimization and Modification of Bacterial Cellulose Membrane from Coconut Juice Residues and Its Application in Carbon Dioxide Removal for Biogas Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. A. xylinum Preparation
2.4. BC and CA Membrane Preparation
2.5. Membrane Characterizations
2.5.1. Fourier Transform Infrared (FTIR) Spectra Analysis
2.5.2. Morphological Properties
2.5.3. Membrane Composition Analysis
2.6. Eco-Efficiency
/Environmental impact of the PPS
2.7. CO2 Separation by CA Membrane
3. Results
3.1. Membrane Preparation
3.2. Membrane Characteristics
3.2.1. FTIR Analysis
3.2.2. Morphology and Structural Analysis
3.2.3. Lignocellulose Compositions
3.3. Statistical Analysis for BC Yield and Eco-Efficiency
3.4. Eco-Efficiency Analysis
3.5. Optimal Condition and Validation of Bio-BC Membrane
3.6. CO2 Removal from CH4/CO2 Gas Mixture
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wis, A.A.; Kodal, M.; Ozturk, S.; Ozkoc, G. Overmolded polylactide/jute-mat eco-composites: A new method to enhance the properties of natural fiber biodegradable composites. J. Appl. Polym. Sci. 2020, 137, 48692. [Google Scholar] [CrossRef]
- Office of Agricultural Economics, Coconut Production. S.E.O., Percentage and Monthly Output Volume. Including Countries, Regions and Provinces in 2022. Available online: https://www.oae.go.th/assets/portals/1/fileups/prcaidata/files/Coconut%20percent%2065.pdf (accessed on 13 June 2024).
- Alfian, R.N.; Choirunnisa, N.I.; Susilo, B.; Sandra. Effect of storage temperatures treatment of coconut flesh (Cocos nucifera L.) based on the quality of coconut milk. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023. [Google Scholar] [CrossRef]
- Srivastava, Y.; Semwal, A.D.; Sharma, G.K. Virgin Coconut Oil as Functional Oil. In Therapeutic, Probiotic, and Unconventional Foods; Elsevier: Amsterdam, The Netherlands, 2018; pp. 291–301. [Google Scholar] [CrossRef]
- Mandey, L.; Kandou, J.E.A.; Tarore, D. Nata De Coco Quality Development Model from Different Inoculum Sources. Int. J. Life Sci. Agric. Res. 2024, 3, 259–266. [Google Scholar] [CrossRef]
- Yardrung, S.; Waritchon, N.; Rungtiwa, S.; Komsan, M. Production of Bacterial Cellulose from Acetobacter xylinum by using Rambutan Juice as a Carbon Source. Int. J. Agric. Technol. 2017, 13, 1361–1369. [Google Scholar]
- Sulastri, A.; Rahmidar, L. Fabrication of Biomembrane from Banana Stem for Lead Removal Fabrication of Biomembrane from Banana Stem for Lead Removal. Indones. J. Sci. Technol. 2016, 1, 115–131. [Google Scholar] [CrossRef]
- Candido, R.G.; Godoy, G.G.; Gonçalves, A. Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydr. Polym. 2017, 167, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Kongruang, S. Bacterial Cellulose Production by Acetobacter xylinum Strains from Agricultural Waste Products. Appl. Biochem. Biotechnol. 2008, 148, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Przygrodzka, K.; Charęza, M.; Banaszek, A.; Zielińska, B.; Ekiert, E.; Drozd, R. Bacterial Cellulose Production by Komagateibacter xylinus with the Use of Enzyme-Degraded Oligo- and Polysaccharides as the Substrates. Appl. Sci. 2022, 12, 12673. [Google Scholar] [CrossRef]
- Liany, S.A.; Syafira, W.; Putri, A.; Khasanah, A.U. Effect of Bacterial Cellulose (BC) Formation on Various Substrate Variations and Combinations. Berk. Ilm. Biol. 2022, 13, 13–20. [Google Scholar] [CrossRef]
- Liang, X.; Hu, W.; Zhong, J.-J. Use of bacterial cellulose (BC) from a mutated strain for BC-starch composite film preparation. Process Biochem. 2023, 131, 1–12. [Google Scholar] [CrossRef]
- Huang, H.Y.; Cheng, Y.S. Heterologous overexpression, purification and functional analysis of plant cellulose synthase from green bamboo. Plant Methods 2019, 15, 80. [Google Scholar] [CrossRef]
- Aloni, Y.; Delmer, D.P.; Benzimant, M. Achievement of high rates of in vitro synthesis of 1,4-13-D-glucan: Activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proc. Natl. Acad. Sci. USA 1982, 79, 6448–6452. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Zheng, X. The crystal structure of human UDP-glucose pyrophosphorylase reveals a latch effect that influences en-zymatic activity. Biochem. J. 2012, 442, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Penttilä, P.A.; Imai, T.; Capron, M.; Mizuno, M.; Amano, Y.; Schweins, R.; Sugiyama, J. Multimethod approach to understand the assembly of cellulose fibrils in the biosynthesis of bacterial cellulose. Cellulose 2018, 25, 2771–2783. [Google Scholar] [CrossRef]
- Andrade, F.K.; Morais, J.P.S.; Muniz, C.R.; Nascimento, J.H.O.; Vieira, R.S.; Gama, F.M.P.; Rosa, M.F. Stable microfluidized bacterial cellulose suspension. Cellulose 2019, 26, 5851–5864. [Google Scholar] [CrossRef]
- Zahan, K.A.; Anuar, A.H.I.; Ring, L.C.; Yenn, T.W.; Mustapha, M. Characterization of bacterial cellulose produced via fermentation of Acetobacter xylinum 0416. Int. J. Adv. Appl. Sci. 2017, 4, 19–24. [Google Scholar] [CrossRef]
- Pham, T.T.; Tran, T.T.A. Evaluation of the crystallinity of bacterial cellulose produced from pineapple waste solution by using acetobacter xylinum. ASEAN Eng. J. 2023, 13, 81–91. [Google Scholar] [CrossRef]
- Uğurel, C.; Öğüt, H. Optimization of Bacterial Cellulose Production by Komagataeibacter rhaeticus K23. Fibers 2024, 12, 29. [Google Scholar] [CrossRef]
- Lima, N.F.; Maciel, G.M.; de Andrade Arruda Fernandes, I.; Haminiuk, C.W.I. Optimising the Production Process of Bacterial Nanocellulose: Impact on Growth and Bioactive Compounds. Food Technol. Biotechnol. 2023, 61, 494–504. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, Z.; Wang, H.; Ma, X. Isolation and culture conditions optimization of a new bacterial cellulose producing strain komagataeibacter intermedius 6-5. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021. [Google Scholar] [CrossRef]
- Khami, S.; Khamwichit, W.; Suwannahong, K.; Sanongraj, W. Characteristics of bacterial cellulose production from agricultural wastes. Adv. Mater. Res. 2014, 931, 693–697. [Google Scholar] [CrossRef]
- Khami, S.; Khamwichit, W.; Suwannahong, K. Synthesis of cellulose acetate nanofiber (CANF) from bacterial cellulose (BC) incubated from cannery seafood wastewater (CSW) using acetobacter xylinum. ARPN J. Eng. Appl. Sci. 2019, 14, 3038–3045. Available online: https://www.arpnjournals.com (accessed on 15 September 2024).
- Pa’e, N.; Zahan, K.A.; Muhamad, I.I. Production of Biopolymer from Acetobacter xylinum Using Different Fermentation Methods. Int. J. Eng. Technol. 2011, 15, 90–98. [Google Scholar]
- Tristantini, D.; Sandra, C. Synthesis of cellulose acetate from palm oil bunches and dried jackfruit leaves. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2018. [Google Scholar] [CrossRef]
- Gillis, M.; Kersters, K.; Hoste, B.; Janssens, D.; Kroppenstedt, R.M.; Stephan, M.P.; Teixeira, K.R.S.; Dobereiner, J.; De Ley, J. Acetobactev diazotrophicus sp. nov., a Nitrogen-Fixing Acetic Acid Bacterium Associated with Sugarcane. Int. J. Syst. Evol. Microbiol. 1989, 39, 361–364. [Google Scholar]
- da Silva Meireles, C.; Filho, G.R.; Ferreira, M.F.; Cerqueira, D.A.; Assunção, R.M.N.; Ribeiro, E.A.M.; Poletto, P.; Zeni, M. Characterization of asymmetric membranes of cellulose acetate from biomass: Newspaper and mango seed. Carbohydr. Polym. 2010, 80, 954–961. [Google Scholar] [CrossRef]
- Zakaria, J. Optimization of Bacterial Cellulose Production from Pineapple Waste: Effect of Temperature, pH and Concentration. 2012. Available online: https://www.researchgate.net/publication/326550365 (accessed on 15 September 2024).
- Cheng, K.C.; Catchmark, J.M.; Demirci, A. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J. Biol. Eng. 2009, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Mithra, S.N.; Ahankari, S.S. Biogas purification by CO2 removal using facilitated transport mechanism of cellulose nanocrystals/polyvinyl alcohol layered hollow fiber membranes. J. Appl. Polym. Sci. 2024, 141, e55536. [Google Scholar] [CrossRef]
- Tanvidkar, P.; Jonnalagedda, A.; Kuncharam, B.V.R. Investigation of cellulose acetate and ZIF-8 mixed matrix membrane for CO2 separation from model biogas. Environ. Technol. 2024, 45, 2867–2878. [Google Scholar] [CrossRef]
- Tanvidkar, P.; Jonnalagedda, A.; Kuncharam, B.V.R. Fabrication and testing of mixed matrix membranes of UiO-66-NH2 in cellulose acetate for CO2 separation from model biogas. J. Appl. Polym. Sci. 2023, 140, e53264. [Google Scholar] [CrossRef]
- Kayarogannam, P. Introductory Chapter: Response Surface Methodology, n.d. Available online: https://www.intechopen.com (accessed on 15 September 2024).
- Sopyan, I.; Gozali, D.; Sriwidodo; Guntina, R.K. Design-expert software (DOE): an application tool for optimization in pharmaceutical preparations formulation. Int. J. Appl. Pharm. 2022, 14, 55–63. [Google Scholar] [CrossRef]
- Aliemeke, B.N.G.; Okwudibe, H.A.; Omoakhalen, A.I.; Major, P. Box-behnken optimization of pin-on-disc wear test process parameters. Niger. J. Technol. 2023, 42, 464–471. [Google Scholar] [CrossRef]
- Kiwu, L.C.; Kiwu-Lawrence, F.C.; Boniface, D.C.O.I.; Onyemachi, E. Appropriate Number of Center Points for Response Surface Exploration Using Small Box Behnken Design. Arch. Curr. Res. Int. 2022, 22, 1–6. [Google Scholar] [CrossRef]
- Mwangi, W.P.; Anapapa, A.; Otieno, A. Selection of Second Order Models’ Design Using D-, A-, E-, T-Optimality Criteria. Asian J. Probab. Stat. 2019, 5, 1–15. [Google Scholar] [CrossRef]
- Khamwichit, A.; Wattanasit, S.; Dechapanya, W. Synthesis of Bio-Cellulose Acetate Membrane From Coconut Juice Residues for Carbon Dioxide Removal from Biogas in Membrane Unit. Front. Energy Res. 2021, 9, 670904. [Google Scholar] [CrossRef]
- Barud, H.S.; de Araújo Júnior, A.M.; Santos, D.B.; de Assunção, R.M.N.; Meireles, C.S.; Cerqueira, D.A.; Filho, G.R.; Ribeiro, C.A.; Messaddeq, Y.; Ribeiro, S.J.L. Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim. Acta 2008, 471, 61–69. [Google Scholar] [CrossRef]
- Dechapanya, W.; Khamwichit, A. Biosorption of aqueous Pb(II) by H3PO4-activated biochar prepared from palm kernel shells (PKS). Heliyon 2023, 9, e17250. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber. Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists; Latimer, G.W.; Horwitz, W. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2006. [Google Scholar]
- Liu, K.; Catchmark, J.M. Bacterial cellulose/hyaluronic acid nanocomposites production through co-culturing Gluconacetobacter hansenii and Lactococcus lactis under different initial pH values of fermentation media. Cellulose 2020, 27, 2529–2540. [Google Scholar] [CrossRef]
- Changwichan, K.; Silalertruksa, T.; Gheewala, S.H. Eco-efficiency assessment of bioplastics production systems and end-of-life options. Sustainability 2018, 10, 952. [Google Scholar] [CrossRef]
- Heilala, J.; Ruusu, R.; Montonen, J.; Vatanen, S.; Kavka, C.; Asnicar, F.; Scholze, S.; Armiojo, A.; Insunza, M. Eco-Process Engineering System for Collaborative Product Process System Optimisation; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Basu, S.; Khan, A.L.; Cano-Odena, A.; Liu, C.; Vankelecom, I.F.J. Membrane-based technologies for biogas separations. Chem. Soc. Rev. 2010, 39, 750–768. [Google Scholar] [CrossRef]
- Lestari, P.; Elfrida, N.; Suryani, A.; Suryadi, Y. Study on the Production of Bacterial Cellulose from Acetobacter xylinum using Agro-Waste. Jordan J. Biol. Sci. 2014, 7, 75–85. [Google Scholar] [CrossRef]
- Hungund, B.; Prabhu, S.; Shetty, C.; Acharya, S.; Prabhu, V.; Gupta, S.G. Production of bacterial cellulose from gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J. Microb. Biochem. Technol. 2013, 5, 31–33. [Google Scholar] [CrossRef]
- Tabaii, M.J.; Emtiazi, G. Comparison of Bacterial Cellulose Production among Different Strains and Fermented Media. Appl. Food Biotechnol. 2016, 3, 35–41. Available online: www.journals.sbmu.ac.ir/afb (accessed on 15 September 2024).
- Zhao, H.; Xia, J.; Wang, J.; Yan, X.; Wang, C.; Lei, T.; Xian, M.; Zhang, H. Production of bacterial cellulose using polysaccharide fermentation wastewater as inexpensive nutrient sources. Biotechnol. Biotechnol. Equip. 2018, 32, 350–356. [Google Scholar] [CrossRef]
- Auta, R.; Adamus, G.; Kwiecien, M.; Radecka, I.; Hooley, P. Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. Afr. J. Biotechnol. 2017, 16, 470–482. [Google Scholar] [CrossRef]
- Akintunde, M.O.; Adebayo-Tayo, B.C.; Ishola, M.M.; Zamani, A.; Horváth, I.S. Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains. Bioeng. 2022, 13, 10010–10025. [Google Scholar] [CrossRef] [PubMed]
- Kuzminova, A.; Dmitrenko, M.; Dubovenko, R.; Puzikova, M.; Mikulan, A.; Korovina, A.; Koroleva, A.; Selyutin, A.; Semenov, K.; Su, R.; et al. Development and Study of Novel Ultrafiltration Membranes Based on Cellulose Acetate. Polymers 2024, 16, 1236. [Google Scholar] [CrossRef]
- Afzal, A.; Liaqat, W.; Ahsan, F. Synthesis and anti-microbial investigations of CZ6 composite reinforced CA mixed matrix membranes. Phys. B Condens. Matter 2023, 652, 414642. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Khan, T.; Park, J.K. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 2012, 88, 596–603. [Google Scholar] [CrossRef]
- Feng, X.; Ge, Z.; Wang, Y.; Xia, X.; Zhao, B.; Dong, M. Production and characterization of bacterial cellulose from kombucha-fermented soy whey. Food Production. Process. Nutr. 2024, 6, 20. [Google Scholar] [CrossRef]
- Kuhad, R.C.; Singh, A.; Eriksson, K.E. Microorganisms and Enzymes Involved in the Degradation of Plant Fiber Cell Walls. Biotechnol. Pulp Pap. Ind. 2006, 57, 45–125. [Google Scholar]
- Bi, S.; Peng, L.; Chen, K.; Zhu, Z. Enhanced enzymatic saccharification of sugarcane bagasse pretreated by combining O2 and NaOH. Bioresour. Technol. 2016, 214, 692–699. [Google Scholar] [CrossRef]
- Laluce, C.; Roldan, I.U.; Pecoraro, E.; Igbojionu, L.I.; Ribeiro, C.A. Effects of pretreatment applied to sugarcane bagasse on composition and morphology of cellulosic fractions. Biomass Bioenergy 2019, 126, 231–238. [Google Scholar] [CrossRef]
- Nu, D.T.T.; Hung, N.P.; Van Hoang, C.; Van der Bruggen, B. Preparation of an asymmetric membrane from sugarcane bagasse using DMSO as green solvent. Appl. Sci. 2019, 9, 3347. [Google Scholar] [CrossRef]
- Bae, S.; Shoda, M. Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnol. Bioeng. 2005, 90, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Indrianingsih, A.W.; Rosyida, V.T.; Jatmiko, T.H.; Prasetyo, D.J.; Poeloengasih, C.D.; Apriyana, W.; Nisa, K.; Nurhayati, S.; Darsih, C.; Pratiwi, D.; et al. Preliminary study on biosynthesis and characterization of bacteria cellulose films from coconut water. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2017. [Google Scholar] [CrossRef]
- Aswini, K.; Gopal, N.O.; Uthandi, S. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnol. 2020, 20, 46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chung, J.; Jiang, Q.; Sun, R.; Zhang, J.; Zhong, Y.; Ren, N. Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values. RSC Adv. 2017, 7, 40303–40310. [Google Scholar] [CrossRef]
- Lye, L.M.; Popescu, R. Application of response surface methodology in numerical geotechnical analysis. In Proceedings of the 55th Canadian Society for Geotechnical Conference, Hamilton, Ontario, 2 October 2002. [Google Scholar] [CrossRef]
- Hishammuddin, N.; Radzun, K.A.; Syafiq, M.H.; Rahman, S.A.; Bahari, S.A.; Osman, S.; Abu, F.; Zakaria, M.N. Green environment: Effects of acetate buffer on cellulose production by Acetobacter xylinum 0416 in fermented static cultivation. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 951, p. 012025. [Google Scholar] [CrossRef]
- Suwannahong, K.; Wongcharee, S.; Kreanuarte, J.; Kreetachat, T. Pre-treatment of acetic acid from food processing wastewater using response surface methodology via fenton oxidation process for sustainable water reuse. J. Sustain. Dev. Energy. Water Environ. Syst. 2021, 9, 1080363. [Google Scholar] [CrossRef]
- Ismail, A.F.; Lorna, W. Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane. Sep. Purif. Technol. 2002, 27, 173–194. [Google Scholar] [CrossRef]
- Selvaraj, G.; Wilfred, C.D. CO2/CH4 Separation in Amino Acid Ionic Liquids, Polymerized Ionic Liquids, and Mixed Matrix Membranes. Molecules 2024, 29, 1357. [Google Scholar] [CrossRef]
- Li, C.; Ding, Y.; Xu, W.; Li, M.; Li, W. Cellulose acetate mixed-matrix membranes doped with high CO2 affinity zeolitic tetrazolate-imidazolate framework additives. React. Funct. Polym. 2023, 182, 105463. [Google Scholar] [CrossRef]
- Sunder, N.; Fong, Y.-Y.; Bustam, M.A.; Lau, W.-J. Study on the Performance of Cellulose Triacetate Hollow Fiber Mixed Matrix Membrane Incorporated with Amine-Functionalized NH2-MIL-125(Ti) for CO2 and CH4 Separation. Separations 2023, 10, 41. [Google Scholar] [CrossRef]
- Puleo, A.C.; Paul, D.R.; Kelley, S.S. The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate. J. Memb. Sci. 1989, 47, 301–332. [Google Scholar] [CrossRef]
- Chen, G.-J.; Lee, D.-J. Synthesis of asymmetrical cellulose acetate/cellulose triacetate forward osmosis membrane: Optimization. J. Taiwan Inst. Chem. Eng. 2019, 96, 299–304. [Google Scholar] [CrossRef]
- Zhang, Y.; Sunarso, J.; Liu, S.; Wang, R. Current status and development of membranes for CO2/CH4 separation: A review. Int. J. Greenh. Gas. Control 2013, 12, 84–107. [Google Scholar] [CrossRef]
Run No. | Condition | Dry Yield (%g/g) | Eco-Efficiency | |||
---|---|---|---|---|---|---|
pH | Time (d) | Temp (°C) | Experimental | Predicted | (%g/g)/THB | |
1 | 5 | 8 | 25 | 7.31 | 7.77 | 17.05 |
2 | 4 | 8 | 20 | 6.95 | 6.83 | 10.86 |
3 | 6 | 8 | 30 | 9.31 | 9.36 | 18.9 |
4 | 6 | 10 | 25 | 8.37 | 8.25 | 17.05 |
5 | 5 | 6 | 30 | 7.97 | 8.00 | 21.36 |
6 | 4 | 10 | 25 | 7.67 | 7.72 | 21.71 |
7 | 4 | 6 | 25 | 7.05 | 7.10 | 16.53 |
8 | 4 | 8 | 30 | 8.55 | 8.43 | 13.69 |
9 | 5 | 8 | 25 | 8.23 | 7.77 | 17.05 |
10 | 5 | 6 | 20 | 4.05 | 4.08 | 17.93 |
11 | 5 | 10 | 20 | 8.73 | 8.76 | 15.14 |
12 | 6 | 8 | 20 | 5.87 | 5.92 | 16.25 |
13 | 6 | 6 | 25 | 6.69 | 6.57 | 19.94 |
14 | 5 | 10 | 30 | 8.23 | 8.26 | 16.21 |
15 | 5 | 8 | 25 | 7.62 | 7.77 | 17.24 |
Carbon Source | Factor 1 | Factor 2 | Factor 3 | Yield (g/L) | Ref. |
---|---|---|---|---|---|
A: pH | B: Time (days) | C: Temp (°C) | |||
CJRs | 6 | 8 | 30 | 94.96 | This work |
Fructose/sucrose | 6 | 14 | 30 | 8.79 | [49] |
Molasses | 6 | 14 | 30 | 5.75 | [49] |
Watermelon | 6 | 14 | 30 | 5.98 | [49] |
Orange juice | 6 | 14 | 30 | 6.18 | [49] |
Muskmelon | 6 | 14 | 30 | 8.08 | [49] |
Glycerol | 6 | 3 | 28 | 1.26 | [50] |
Banana peel | 6 | 15 | 30 | 0.65 | [25] |
Wastewater | 7 | 10 | 30 | 1.18 | [51] |
Type | BC Membrane (This Work) | BC Membrane (Other Work) | Ref. | CA Membrane (This Work) | CA Membrane (Other Work) | Ref. | ||
---|---|---|---|---|---|---|---|---|
Membrane Composition | High-yield sample | Low-yield sample | Sugarcane bagasse | [58,59,60] | High-yield sample | Low-yield sample | Sugarcane bagasse | [61] |
Cellulose (%) | 46.20 | 25.54 | 32–48 | 48.08 | 37.45 | 48.58 | ||
Hemicellulose (%) | 22.13 | 44.29 | 19–35 | 28.59 | 29.22 | 23.69 | ||
Lignin (%) | 31.67 | 30.17 | 19–32 | 23.33 | 33.33 | 24.12 |
Respond | % Yield (g/g) | Eco-Efficiency (%g/g-THB) |
---|---|---|
Source | 2FI | 2FI |
Std. Dev. | 0.4562 | 1.13 |
R2 | 0.9282 | 0.9047 |
Adjusted R2 | 0.8743 | 0.8333 |
Predicted R2 | 0.6246 | 0.4934 |
PRESS | 8.70 | 54.54 |
Suggested | Suggested |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 21.51 | 6 | 3.59 | 17.23 | 0.0004 | significant |
A-pH | 0.0000 | 1 | 0.0000 | 0.0002 | 0.9880 | |
B-Days | 6.55 | 1 | 6.55 | 31.49 | 0.0005 | |
C-Temp | 8.95 | 1 | 8.95 | 42.99 | 0.0002 | |
AB | 0.2809 | 1 | 0.2809 | 1.35 | 0.2788 | |
AC | 0.8464 | 1 | 0.8464 | 4.07 | 0.0784 | |
BC | 4.88 | 1 | 4.88 | 23.47 | 0.0013 | |
Residual | 1.66 | 8 | 0.2081 | |||
Lack of Fit | 1.66 | 6 | 0.2774 | |||
Pure Error | 0.0000 | 2 | 0.0000 | |||
Cor Total | 23.17 | 14 |
pH | 6 | 5 | 4 | 4 |
---|---|---|---|---|
Cultivation time (days) | 8 | 10 | 6 | 8 |
Temperature (°C) | 30 | 20 | 25 | 30 |
Actual Yield (%) | 9.03 | 8.32 | 7.08 | 8.50 |
Predicted Yield (%) | 9.36 | 8.77 | 7.10 | 8.43 |
Ratio | 1.04 | 1.05 | 1.00 | 0.99 |
Remark | Suggested |
Membrane Type | Testing Condition | CH4 Permeability | CO2 Permeability | CO2 Selectivity | |
---|---|---|---|---|---|
Thickness | Feed Pressure | PCH4 (Barrer) | PCO2 (Barrer) | SCO2 | |
BC | 0.04 mm | 0.3 Mpa | 484.45 | 483.06 | 0.997 |
CA | 0.04 mm | 0.3 Mpa | 98.05 | 108.46 | 1.116 |
CA | 0.05 mm | 0.3 Mpa | 121.55 | 159.82 | 1.315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dechapanya, W.; Wongsuwan, K.; Lewis, J.H.; Khamwichit, A. Optimization and Modification of Bacterial Cellulose Membrane from Coconut Juice Residues and Its Application in Carbon Dioxide Removal for Biogas Separation. Energies 2024, 17, 4750. https://doi.org/10.3390/en17184750
Dechapanya W, Wongsuwan K, Lewis JH, Khamwichit A. Optimization and Modification of Bacterial Cellulose Membrane from Coconut Juice Residues and Its Application in Carbon Dioxide Removal for Biogas Separation. Energies. 2024; 17(18):4750. https://doi.org/10.3390/en17184750
Chicago/Turabian StyleDechapanya, Wipawee, Kamontip Wongsuwan, Jonathon Huw Lewis, and Attaso Khamwichit. 2024. "Optimization and Modification of Bacterial Cellulose Membrane from Coconut Juice Residues and Its Application in Carbon Dioxide Removal for Biogas Separation" Energies 17, no. 18: 4750. https://doi.org/10.3390/en17184750
APA StyleDechapanya, W., Wongsuwan, K., Lewis, J. H., & Khamwichit, A. (2024). Optimization and Modification of Bacterial Cellulose Membrane from Coconut Juice Residues and Its Application in Carbon Dioxide Removal for Biogas Separation. Energies, 17(18), 4750. https://doi.org/10.3390/en17184750