A Simplified Guide to Control Algorithms for Grid Converters in Renewable Energy Systems
Abstract
:1. Introduction
2. Classification of Voltage Converter Control Methods
3. Overview of Key Features of Selected Control Methods
3.1. Control Methods Suitable Exclusively for L-Type Filter
3.1.1. Voltage-Oriented Control
3.1.2. Direct Power Control with Space Vector Modulation
3.1.3. Δ-Modulation
3.1.4. Direct Power Control with Switching Table
3.2. Control Methods Originally Designed for L-Type Filters Incorporate Additional Active Damping to Adapt These Methods for Use in Systems with LCL Filters
3.3. Predictive Control Methods for Use with L or LCL-Type Filter
3.3.1. Finite Control Set Model Predictive Control
3.3.2. Deadbeat
3.3.3. Continuous Control Set Model Predictive Control
4. Comprehensiveness and Completeness of Scientific Research
5. Applications and Research Directions
6. Discussion
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Kim, M.-H. Review of Recent Offshore Wind Turbine Research and Optimization Methodologies in Their Design. J. Mar. Sci. Eng. 2022, 10, 28. [Google Scholar] [CrossRef]
- Sikorski, A.; Falkowski, P.; Korzeniewski, M. Comparison of Two Power Converter Topologies in Wind Turbine System. Energies 2021, 14, 6574. [Google Scholar] [CrossRef]
- Athari, H.; Niroomand, M.; Ataei, M. Review and Classification of Control Systems in Grid-Tied Inverters. Renew. Sustain. Energy Rev. 2017, 72, 1167–1176. [Google Scholar] [CrossRef]
- Beres, R.N.; Wang, X.; Liserre, M.; Blaabjerg, F.; Bak, C.L. A Review of Passive Power Filters for Three-Phase Grid-Connected Voltage-Source Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 54–69. [Google Scholar] [CrossRef]
- Sosa, J.M.; Escobar, G.; Martínez-Rodríguez, P.R.; Vázquez, G.; Juárez, M.A.; Diosdado, M. Comparative Evaluation of L and LCL Filters in Transformerless Grid Tied Converters for Active Power Injection. In Proceedings of the 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 5–7 November 2014; pp. 1–6. [Google Scholar]
- Malinowski, M.; Kazmierkowski, M.P.; Trzynadlowski, A. Review and Comparative Study of Control Techniques for Three-Phase PWM Rectifiers. Math. Comput. Simul. 2003, 63, 349–361. [Google Scholar] [CrossRef]
- Fekik, A.; Denoun, H.; Azar, A.T.; Hamida, M.L.; Zaouia, M.; Benyahia, N. Comparative Study of Two Level and Three Level PWM-Rectifier with Voltage Oriented Control. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018; Hassanien, A.E., Tolba, M.F., Shaalan, K., Azar, A.T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 40–51. [Google Scholar]
- Al-Ogaili, A.S.; Aris, I.B.; Verayiah, R.; Ramasamy, A.; Marsadek, M.; Rahmat, N.A.; Hoon, Y.; Aljanad, A.; Al-Masri, A.N. A Three-Level Universal Electric Vehicle Charger Based on Voltage-Oriented Control and Pulse-Width Modulation. Energies 2019, 12, 2375. [Google Scholar] [CrossRef]
- Zarif, M.; Monfared, M. Step-by-Step Design and Tuning of VOC Control Loops for Grid Connected Rectifiers. Int. J. Electr. Power Energy Syst. 2015, 64, 708–713. [Google Scholar] [CrossRef]
- Malinowski, M.; Jasinski, M.; Kazmierkowski, M.P. Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation (DPC-SVM). IEEE Trans. Ind. Electron. 2004, 51, 447–454. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Yang, H.; Gao, J. Direct Power Control of Pulsewidth Modulated Rectifiers Without DC Voltage Oscillations Under Unbalanced Grid Conditions. IEEE Trans. Ind. Electron. 2018, 65, 7900–7910. [Google Scholar] [CrossRef]
- Prabhakar, N.; Mishra, M.K. Dynamic Hysteresis Current Control to Minimize Switching for Three-Phase Four-Leg VSI Topology to Compensate Nonlinear Load. IEEE Trans. Power Electron. 2010, 25, 1935–1942. [Google Scholar] [CrossRef]
- Suhara, E.M.; Nandakumar, M. Analysis of Hysteresis Current Control Techniques for Three Phase PWM Rectifiers. In Proceedings of the 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kozhikode, India, 19–21 February 2015; pp. 1–5. [Google Scholar]
- Holmes, D.G.; Davoodnezhad, R.; McGrath, B.P. An Improved Three-Phase Variable-Band Hysteresis Current Regulator. IEEE Trans. Power Electron. 2013, 28, 441–450. [Google Scholar] [CrossRef]
- Razali, A.M.; Rahman, M.A.; George, G.; Rahim, N.A. Analysis and Design of New Switching Lookup Table for Virtual Flux Direct Power Control of Grid-Connected Three-Phase PWM AC–DC Converter. IEEE Trans. Ind. Appl. 2015, 51, 1189–1200. [Google Scholar] [CrossRef]
- Kulikowski, K.; Sikorski, A. New DPC Look-Up Table Methods for Three-Level AC/DC Converter. IEEE Trans. Ind. Electron. 2016, 63, 7930–7938. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, C.; Gao, J. Performance Improvement of Direct Power Control of PWM Rectifier Under Unbalanced Network. IEEE Trans. Power Electron. 2017, 32, 2319–2328. [Google Scholar] [CrossRef]
- Falkowski, P.; Kulikowski, K.; Grodzki, R. Predictive and Look-up Table Control Methods of a Three-Level AC-DC Converter under Distorted Grid Voltage. Bull. Pol. Acad. Sciences. Tech. Sci. 2017, 65, 609–618. [Google Scholar] [CrossRef]
- Guzman, R.; de Vicuña, L.G.; Morales, J.; Castilla, M.; Miret, J. Model-Based Active Damping Control for Three-Phase Voltage Source Inverters with LCL Filter. IEEE Trans. Power Electron. 2017, 32, 5637–5650. [Google Scholar] [CrossRef]
- Ben Saïd-Romdhane, M.; Naouar, M.W.; Slama-Belkhodja, I.; Monmasson, E. Robust Active Damping Methods for LCL Filter-Based Grid-Connected Converters. IEEE Trans. Power Electron. 2017, 32, 6739–6750. [Google Scholar] [CrossRef]
- Serpa, L.A.; Ponnaluri, S.; Barbosa, P.M.; Kolar, J.W. A Modified Direct Power Control Strategy Allowing the Connection of Three-Phase Inverters to the Grid Through $LCL$ Filters. IEEE Trans. Ind. Appl. 2007, 43, 1388–1400. [Google Scholar] [CrossRef]
- Hanif, M.; Khadkikar, V.; Xiao, W.; Kirtley, J.L. Two Degrees of Freedom Active Damping Technique for $LCL$ Filter-Based Grid Connected PV Systems. IEEE Trans. Ind. Electron. 2014, 61, 2795–2803. [Google Scholar] [CrossRef]
- Guo, L.; Jin, N.; Li, Y.; Luo, K. A Model Predictive Control Method for Grid-Connected Power Converters Without AC Voltage Sensors. IEEE Trans. Ind. Electron. 2021, 68, 1299–1310. [Google Scholar] [CrossRef]
- Karamanakos, P.; Liegmann, E.; Geyer, T.; Kennel, R. Model Predictive Control of Power Electronic Systems: Methods, Results, and Challenges. IEEE Open J. Ind. Applicat. 2020, 1, 95–114. [Google Scholar] [CrossRef]
- Geldenhuys, J.M.C.; du Toit Mouton, H.; Rix, A.; Geyer, T. Model Predictive Current Control of a Grid Connected Converter with LCL-Filter. In Proceedings of the 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, Norway, 27–30 June 2016; pp. 1–6. [Google Scholar]
- Falkowski, P.; Sikorski, A. Finite Control Set Model Predictive Control for Grid-Connected AC–DC Converters with LCL Filter. IEEE Trans. Ind. Electron. 2018, 65, 2844–2852. [Google Scholar] [CrossRef]
- Panten, N.; Hoffmann, N.; Fuchs, F.W. Finite Control Set Model Predictive Current Control for Grid-Connected Voltage-Source Converters with LCL Filters: A Study Based on Different State Feedbacks. IEEE Trans. Power Electron. 2016, 31, 5189–5200. [Google Scholar] [CrossRef]
- Young, H.A.; Perez, M.A.; Rodriguez, J. Analysis of Finite-Control-Set Model Predictive Current Control with Model Parameter Mismatch in a Three-Phase Inverter. IEEE Trans. Ind. Electron. 2016, 63, 3100–3107. [Google Scholar] [CrossRef]
- Guo, L.; Xu, Z.; Jin, N.; Chen, Y.; Li, Y.; Dou, Z. An Inductance Online Identification Method for Model Predictive Control of V2G Inverter with Enhanced Robustness to Grid Frequency Deviation. IEEE Trans. Transp. Electrif. 2022, 8, 1575–1589. [Google Scholar] [CrossRef]
- Guo, L.; Xu, Z.; Li, Y.; Chen, Y.; Jin, N.; Lu, F. An Inductance Online Identification-Based Model Predictive Control Method for Grid-Connected Inverters with an Improved Phase-Locked Loop. IEEE Trans. Transp. Electrif. 2022, 8, 2695–2709. [Google Scholar] [CrossRef]
- Shen, K.; Zhang, J. Modeling Error Compensation in FCS-MPC of a Three-Phase Inverter. In Proceedings of the 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Bengaluru, India, 16–19 December 2012; pp. 1–6. [Google Scholar]
- Mendez, R.; Sbarbaro, D.; Espinoza, J. High Dynamic and Static Performance FCS-MPC Strategy for Static Power Converters. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–7. [Google Scholar]
- Jabbour, N.; Mademlis, C. Online Parameters Estimation and Autotuning of a Discrete-Time Model Predictive Speed Controller for Induction Motor Drives. IEEE Trans. Power Electron. 2019, 34, 1548–1559. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, S.-C.; Hui, S.Y.R. Adaptive Reference Model Predictive Control with Improved Performance for Voltage-Source Inverters. IEEE Trans. Control Syst. Technol. 2018, 26, 724–731. [Google Scholar] [CrossRef]
- Falkowski, P.; Sikorski, A.; Malinowski, M. Finite Control Set Model Predictive Control with Floating Virtual Voltage Vectors for Grid-Connected Voltage Source Converter. IEEE Trans. Power Electron. 2021, 36, 11875–11885. [Google Scholar] [CrossRef]
- Tarisciotti, L.; Zanchetta, P.; Watson, A.; Clare, J.C.; Degano, M.; Bifaretti, S. Modulated Model Predictive Control for a Three-Phase Active Rectifier. IEEE Trans. Ind. Appl. 2015, 51, 1610–1620. [Google Scholar] [CrossRef]
- Scoltock, J.; Geyer, T.; Madawala, U.K. Model Predictive Direct Power Control for Grid-Connected NPC Converters. IEEE Trans. Ind. Electron. 2015, 62, 5319–5328. [Google Scholar] [CrossRef]
- Rodriguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; Abu-Rub, H.; Young, H.A.; Rojas, C.A. State of the Art of Finite Control Set Model Predictive Control in Power Electronics. IEEE Trans. Ind. Inform. 2013, 9, 1003–1016. [Google Scholar] [CrossRef]
- Foster, J.G.L.; Pereira, R.R.; Gonzatti, R.B.; Sant’Ana, W.C.; Mollica, D.; Lambert-Torres, G. A Review of FCS-MPC in Multilevel Converters Applied to Active Power Filters. In Proceedings of the 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), Santos, Brazil, 1–4 December 2019; pp. 1–6. [Google Scholar]
- Karamanakos, P.; Geyer, T. Guidelines for the Design of Finite Control Set Model Predictive Controllers. IEEE Trans. Power Electron. 2020, 35, 7434–7450. [Google Scholar] [CrossRef]
- Aguirre, M.; Kouro, S.; Rojas, C.A.; Vazquez, S. Enhanced Switching Frequency Control in FCS-MPC for Power Converters. IEEE Trans. Ind. Electron. 2021, 68, 2470–2479. [Google Scholar] [CrossRef]
- Benyoucef, A.; Kara, K.; Chouder, A.; Silvestre, S. Prediction-Based Deadbeat Control for Grid-Connected Inverter with L-Filter and LCL-Filter. Electr. Power Compon. Syst. 2014, 42, 1266–1277. [Google Scholar] [CrossRef]
- He, Y.; Chung, H.S.-H.; Ho, C.N.-M.; Wu, W. Use of Boundary Control with Second-Order Switching Surface to Reduce the System Order for Deadbeat Controller in Grid-Connected Inverter. IEEE Trans. Power Electron. 2016, 31, 2638–2653. [Google Scholar] [CrossRef]
- Cheng, C.; Nian, H.; Wang, X.; Sun, D. Dead-Beat Predictive Direct Power Control of Voltage Source Inverters with Optimised Switching Patterns. IET Power Electron. 2017, 10, 1438–1451. [Google Scholar] [CrossRef]
- Sikorski, A.; Grodzki, R. Predictive Control of the AC/DC Converter. In Proceedings of the 2014 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, 21–24 September 2014; pp. 131–136. [Google Scholar]
- Zarbil, M.S.; Saeidi, M.; Vahedi, A.; Moghaddam, H.A. Continuous Control Set Model Predictive Control (CCS-MPC) of A Three-Phase Rectifier. Zanco J. Pure Appl. Sci. 2019, 31, 342–350. [Google Scholar] [CrossRef]
- Xue, C.; Ding, L.; Li, Y. CCS-MPC with Long Predictive Horizon for Grid-Connected Current Source Converter. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 4988–4993. [Google Scholar]
- Song, Z.; Tian, Y.; Chen, W.; Zou, Z.; Chen, Z. Predictive Duty Cycle Control of Three-Phase Active-Front-End Rectifiers. IEEE Trans. Power Electron. 2016, 31, 698–710. [Google Scholar] [CrossRef]
- Liu, B.; Chen, T.; Song, W. The Essential Relationship between Deadbeat Predictive Control and Continuous-Control-Set Model Predictive Control for PWM Converters. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, 20–24 May 2018; pp. 1872–1876. [Google Scholar]
- Preindl, M.; Bolognani, S. Comparison of Direct and PWM Model Predictive Control for Power Electronic and Drive Systems. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 2526–2533. [Google Scholar]
- Ahmed, A.A.; Kim, J.-S.; Lee, Y.I. Model Predictive Torque Control of PMSM for EV Drives: A Comparative Study of Finite Control Set and Predictive Dead-Beat Control Schemes. In Proceedings of the 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 27–29 December 2016; pp. 156–163. [Google Scholar]
- Koiwa, K.; Kuribayashi, T.; Zanma, T.; Liu, K.-Z.; Wakaiki, M. Optimal Current Control for PMSM Considering Inverter Output Voltage Limit: Model Predictive Control and Pulse-Width Modulation. IET Electr. Power Appl. 2019, 13, 2044–2051. [Google Scholar] [CrossRef]
- Vafaie, M.H. Approach for Classifying Continuous Control Set-Predictive Controllers Applied in AC Motor Drives. IET Power Electron. 2020, 13, 1500–1513. [Google Scholar] [CrossRef]
- Ahmed, A.; Koh, K.; Lee, Y.-I. Continuous Control Set-Model Predictive Control for Torque Control of Induction Motors in a Wide Speed Range. Electr. Power Compon. Syst. 2019, 46, 2142–2158. [Google Scholar] [CrossRef]
- Dehghanzadeh, A.; Farahani, G.; Vahedi, H.; Al-Haddad, K. Model Predictive Control Design for DC-DC Converters Applied to a Photovoltaic System. Int. J. Electr. Power Energy Syst. 2018, 103, 537–544. [Google Scholar] [CrossRef]
- Cheng, L.; Acuna, P.; Aguilera, R.P.; Ciobotaru, M.; Jiang, J. Model Predictive Control for DC-DC Boost Converters with Constant Switching Frequency. In Proceedings of the 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), Auckland, New Zealand, 5–8 December 2016; pp. 1–6. [Google Scholar]
- Alkasir, A.; Ehsan Abdollahi, S.; Reza Abdollahi, S.; Wheeler, P. A Primary Side CCS-MPC Controller for Constant Current/Voltage Charging Operation of Series-Series Compensated Wireless Power Transfer Systems. In Proceedings of the 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tabriz, Iran, 2–4 February 2021; pp. 1–5. [Google Scholar]
- Garayalde, E.; Aizpuru, I.; Iraola, U.; Sanz, I.; Bernal, C.; Oyarbide, E. Finite Control Set MPC vs Continuous Control Set MPC Performance Comparison for Synchronous Buck Converter Control in Energy Storage Application. In Proceedings of the 2019 International Conference on Clean Electrical Power (ICCEP), Otranto, Italy, 2–4 July 2019; pp. 490–495. [Google Scholar]
- Neya, N.M.; Saberi, S.; Mozafari, B. Direct Predictive Speed Control of Permanent Magnet Synchronous Motor Fed by Matrix Converter. Int. J. Power Electron. Drive Syst. (IJPEDS) 2020, 11, 2183–2193. [Google Scholar] [CrossRef]
- Urrutia, M.; Cárdenas, R.; Clare, J.C.; Watson, A. Circulating Current Control for the Modular Multilevel Matrix Converter Based on Model Predictive Control. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6069–6085. [Google Scholar] [CrossRef]
- Meng, N.N.; Yang, J.F.; Liu, Y.; Qi, R. Harmonic Compensation of APF Based on Unconstrained CCS-MPC. J. Phys. Conf. Ser. 2021, 1748, 022032. [Google Scholar] [CrossRef]
- Perić, A.; Ileš, Š.; Ban, Ž.; Šunde, V. Control Methods for Line-Interactive Uninterruptible Power Supply with Shunt Active Power Filter Function. In Proceedings of the 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Dubrovnik, Croatia, 28 September–1 October2020; pp. 602–609. [Google Scholar]
- Grodzki, R. A new control methods of AC/DC/AC converter cooperating with the grid and Permanent Magnet Synchronous Motor. Ph.D. Thesis, Department of Theoretical Electrotechnics, Power Electronics and Electrical Power Engineering, Białystok, Poland, 2015. [Google Scholar]
- Xue, C.; Zhou, D.; Li, Y. Hybrid Model Predictive Current and Voltage Control for LCL-Filtered Grid-Connected Inverter. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 5747–5760. [Google Scholar] [CrossRef]
- Vazquez, S.; Aguilera, R.P.; Acuna, P.; Pou, J.; Leon, J.I.; Franquelo, L.G.; Agelidis, V.G. Model Predictive Control for Single-Phase NPC Converters Based on Optimal Switching Sequences. IEEE Trans. Ind. Electron. 2016, 63, 7533–7541. [Google Scholar] [CrossRef]
- Ileš, Š.; Bariša, T.; Sumina, D.; Matuško, J. Hybrid CCS/FCS Model Predictive Current Control of a Grid Connected Two-Level Converter. In Proceedings of the 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, Hungary, 26–30 August 2018; pp. 981–986. [Google Scholar]
- Pimentel, S.P.; Husev, O.; Vinnikov, D.; Roncero-Clemente, C.; Stepenko, S. An Indirect Model Predictive Current Control (CCS-MPC) for Grid-Connected Single-Phase Three-Level NPC Quasi-Z-Source PV Inverter. In Proceedings of the 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 12–13 November 2018; pp. 1–6. [Google Scholar]
- Tasnim, M.N.; Ahmed, T.; Dorothi, M.A.; Ahmad, S.; Shafiullah, G.M.; Ferdous, S.M.; Mekhilef, S. Voltage-Oriented Control-Based Three-Phase, Three-Leg Bidirectional AC–DC Converter with Improved Power Quality for Microgrids. Energies 2023, 16, 6188. [Google Scholar] [CrossRef]
- Youssef, E.; Costa, P.B.C.; Pinto, S.F.; Amin, A.; El Samahy, A.A. Direct Power Control of a Single Stage Current Source Inverter Grid-Tied PV System. Energies 2020, 13, 3165. [Google Scholar] [CrossRef]
- Dmitruk, K. Predictive-SVM Control Method Dedicated to an AC/DC Converter with an LCL Grid Filter. Bull. Pol. Acad. Sciences. Tech. Sci. 2020, 68, 1049–1056. [Google Scholar] [CrossRef]
Whether the Paper Contains? | Paper | ||||||
---|---|---|---|---|---|---|---|
simulation experiments | VOC | [6] | [7] | [8] | [9] | ||
DPC SVM | [10] | [11] | |||||
Δ-modulation | [12] | [13] | |||||
DPC ST | [15] | [16] | [17] | [18] | |||
FCS MPC | [35] | [36] | [37] | [38] | [39] | [41] | |
Deadbeat | [42] | [43] | [44] | ||||
CCS MPC | [45] | [46] | [47] | [48] | [49] | [50] | |
experimental verification in steady state | VOC | [6] | [7] | [8] | [9] | ||
DPC SVM | [10] | [11] | |||||
Δ-modulation | [12] | [13] | [14] | ||||
DPC ST | [15] | [16] | [17] | [18] | |||
FCS MPC | [35] | [36] | [37] | [38] | [39] | [41] | |
Deadbeat | [42] | [43] | [44] | ||||
CCS MPC | [45] | [46] | [47] | [48] | [49] | [50] | |
experimental verification in transient states | VOC | [6] | [7] | [8] | [9] | ||
DPC SVM | [10] | [11] | |||||
Δ-modulation | [12] | [13] | [14] | ||||
DPC ST | [15] | [16] | [17] | [18] | |||
FCS MPC | [35] | [36] | [37] | [38] | [39] | [41] | |
Deadbeat | [42] | [43] | [44] | ||||
CCS MPC | [45] | [46] | [47] | [48] | [49] | [50] | |
experimental verification under distorted supply voltage | VOC | [6] | [7] | [8] | [9] | ||
DPC SVM | [10] | [11] | |||||
Δ-modulation | [12] | [13] | |||||
DPC ST | [15] | [16] | [17] | [18] | |||
FCS MPC | [35] | [36] | [37] | [38] | [39] | [41] | |
Deadbeat | [42] | [43] | [44] | ||||
CCS MPC | [45] | [46] | [47] | [48] | [49] | [50] | |
discussion/experiments on robustness against system parameter changes | VOC | [6] | [7] | [8] | [9] | ||
DPC SVM | [10] | [11] | |||||
Δ-modulation | [12] | [13] | |||||
DPC ST | [15] | [16] | [17] | [18] | |||
FCS MPC | [35] | [36] | [37] | [38] | [39] | [41] | |
Deadbeat | [42] | [43] | [44] | ||||
CCS MPC | [45] | [46] | [47] | [48] | [49] | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitruk, K. A Simplified Guide to Control Algorithms for Grid Converters in Renewable Energy Systems. Energies 2024, 17, 4690. https://doi.org/10.3390/en17184690
Dmitruk K. A Simplified Guide to Control Algorithms for Grid Converters in Renewable Energy Systems. Energies. 2024; 17(18):4690. https://doi.org/10.3390/en17184690
Chicago/Turabian StyleDmitruk, Krzysztof. 2024. "A Simplified Guide to Control Algorithms for Grid Converters in Renewable Energy Systems" Energies 17, no. 18: 4690. https://doi.org/10.3390/en17184690
APA StyleDmitruk, K. (2024). A Simplified Guide to Control Algorithms for Grid Converters in Renewable Energy Systems. Energies, 17(18), 4690. https://doi.org/10.3390/en17184690