Do Structural Transformations in the Energy Sector Help to Achieve Decarbonization? Evidence from the World’s Top Five Green Leaders
Abstract
:1. Introduction
1.1. Research Gap
1.2. Contributions and Significance
1.3. Rationale of the Study
2. Literature Review
2.1. Fossil-Fuel-Based Energy and Decarbonization
2.2. Renewable Energy and Decarbonization
2.3. Theoretical Foundations of the Study
3. Methods and Data
The IPAT and STIRPAT Models
4. Steps Involved in Empirical Estimation of the STIRPAT Model
4.1. Cross-Sectional Dependence
4.2. Second-Generation Unit Root Test
4.3. Panel Co-Integration Tests
Westerlund Co-Integration Test
4.4. Panel Long-Term Parameter Estimates
4.4.1. Augmented Mean Group (AMG) Estimator
4.4.2. Error Correction Model for Short-Term Estimates
4.5. Dumitrescu–Hurlin (D-H) Panel Non-Causality Test
5. Empirical Analysis for Panel Data
Dumitrescu–Hurlin (D-H) Panel Causality
6. Conclusions
6.1. Graphical Presentation of Results and Policy Suggestions
Results for Full Panel
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Null Hypothesis | W-Stat. | Zbar-Stat. | Prob. | Decision |
---|---|---|---|---|
LOGFFEC LOGPBCO2 | 3.61 | 1.13 | 0.26 | No causality |
LOGPBCO2 LOGFFEC | 16.54 | 12.08 | 0.00 | PBCO2 causes FFEC |
LOGREP LOGPBCO2 | 2.71 | 0.36 | 0.72 | No causality |
LOGPBCO2 LOGREP | 4.27 | 1.68 | 0.09 | Bidirectional causality |
LOGGDP LOGPBCO2 | 5.60 | 2.81 | 0.01 | |
LOGPBCO2 LOGGDP | 16.93 | 12.40 | 0.00 | Bidirectional causality |
URB LOGPBCO2 | 5.39 | 2.63 | 0.01 | |
LOGPBCO2 URB | 1.64 | −0.55 | 0.58 | No causality |
LOGREP LOGFFEC | 20.79 | 15.67 | 0.00 | REP causes FFEC |
LOGFFEC LOGREP | 3.27 | 0.83 | 0.41 | No causality |
LOGGDP LOGFFEC | 7.96 | 4.80 | 0.00 | No causality |
LOGFFEC LOGGDP | 2.96 | 0.58 | 0.57 | No causality |
URB LOGFFEC | 6.40 | 3.48 | 0.00 | URB causes FFEC |
LOGFFEC URB | 2.05 | −0.20 | 0.84 | No causality |
LOGGDP LOGREP | 5.03 | 2.32 | 0.02 | GDP causes REP |
LOGREP LOGGDP | 2.53 | 0.21 | 0.83 | No causality |
URB LOGREP | 4.97 | 2.27 | 0.02 | URB causes REP |
Null Hypothesis | W-Stat. | Zbar-Stat. | Prob. | Decision |
---|---|---|---|---|
LOGFFEC LOGCBCO2 | 4.89 | 2.21 | 0.03 | Bidirectional causality |
LOGCBCO2 LOGFFEC | 4.99 | 2.29 | 0.02 | |
LOGREC LOGCBCO2 | 4.97 | 2.28 | 0.02 | REC → CBCO2 |
LOGCBCO2 LOGREC | 10.48 | 6.94 | 0.00 | No causality |
LOGGDP LOGCBCO2 | 8.55 | 5.31 | 0.00 | No causality |
LOGCBCO2 LOGGDP | 17.97 | 13.29 | 0.00 | CBCO2 → GDP |
URB LOGCBCO2 | 8.41 | 5.19 | 0.00 | No causality |
LOGCBCO2 URB | 3.41 | 0.95 | 0.34 | No causality |
LOGREC LOGFFEC | 2.88 | 0.51 | 0.61 | No causality |
LOGFFEC LOGREC | 6.44 | 3.52 | 0.00 | FFEC → REC |
URB LOGFFEC | 6.40 | 3.48 | 0.00 | URB → FFEC |
LOGFFEC URB | 2.05 | −0.20 | 0.84 | No causality |
LOGGDP LOGREC | 8.86 | 5.57 | 0.00 | No causality |
LOGREC LOGGDP | 2.04 | −0.20 | 0.84 | No causality |
URB LOGREC | 8.66 | 5.40 | 0.00 | No causality |
LOGREC URB | 5.40 | 2.64 | 0.01 | REC → URB |
Null Hypothesis | W-Stat. | Zbar-Stat. | Prob. | Decision |
---|---|---|---|---|
LOGFFEC LOGCO2 | 4.37 | 4.20 | 0.00 | No causality |
LOGCO2 ↛ LOGFFEC | 4.57 | 4.46 | 0.00 | No causality |
LOGREC ↛ LOGCO2 | 2.22 | 1.43 | 0.15 | No causality |
LOGCO2 ↛ LOGREC | 4.48 | 4.34 | 0.00 | No causality |
LOGREP ↛ LOGCO2 | 7.86 | 8.70 | 0.00 | Bidirectional causality |
LOGCO2 ↛ LOGREP | 3.22 | 2.71 | 0.01 | |
LOGGDP ↛ LOGCO2 | 7.16 | 7.81 | 0.00 | No causality |
LOGCO2 ↛ LOGGDP | 2.37 | 1.62 | 0.11 | No causality |
URB ↛ LOGCO2 | 5.33 | 5.44 | 0.00 | No causality |
LOGCO2 ↛ URB | 1.21 | 0.11 | 0.91 | No causality |
LOGREC ↛ LOGFFEC | 1.71 | 0.77 | 0.44 | No causality |
LOGFFEC ↛ LOGREC | 3.95 | 3.66 | 0.00 | Bidirectional causality |
LOGREP ↛ LOGFFEC | 10.47 | 12.08 | 0.00 | |
LOGFFEC ↛ LOGREP | 2.43 | 1.69 | 0.09 | Bidirectional causality |
LOGGDP ↛ LOGFFEC | 8.27 | 9.24 | 0.00 | |
LOGFFEC ↛ LOGGDP | 2.73 | 2.08 | 0.04 | FFEC → GDP |
URB ↛ LOGFFEC | 5.60 | 5.79 | 0.00 | No causality |
LOGFFEC ↛ URB | 4.77 | 4.71 | 0.00 | No causality |
LOGREP ↛ LOGREC | 18.83 | 22.87 | 0.00 | Bidirectional causality |
LOGREC ↛ LOGREP | 3.89 | 3.58 | 0.00 | |
LOGGDP ↛ LOGREC | 4.12 | 3.87 | 0.00 | GDP → REC |
URB ↛ LOGREP | 8.08 | 9.00 | 0.00 | Bidirectional causality |
LOGREP ↛ URB | 19.55 | 23.81 | 0.00 | |
URB ↛ LOGGDP | 2.47 | 1.75 | 0.08 | URB → GDP |
LOGGDP ↛ URB | 6.29 | 6.68 | 0.00 | No causality |
Null Hypothesis | W-Stat. | Zbar-Stat. | Prob. | Decision |
---|---|---|---|---|
LOGFFEC ↛ LOGCI | 6.64 | 3.69 | 0.00 | Bidirectional causality |
LOGCI ↛ LOGFFEC | 5.22 | 2.48 | 0.01 | |
LOGREC ↛ LOGCI | 5.40 | 2.64 | 0.01 | REC → CI |
LOGCI ↛ LOGREC | 7.36 | 4.30 | 0.00 | No causality |
LOGREP ↛ LOGCI | 6.86 | 3.88 | 0.00 | Bidirectional causality |
LOGCI ↛ LOGREP | 5.70 | 2.89 | 0.00 | |
LOGGDP ↛ LOGCI | 4.18 | 1.61 | 0.11 | No causality |
LOGCI ↛ LOGGDP | 5.75 | 2.93 | 0.00 | CI → GDP |
URB ↛ LOGCI | 4.11 | 1.55 | 0.12 | No causality |
LOGCI ↛ URB | 6.78 | 3.81 | 0.00 | CI →URB |
LOGFFEC ↛ LOGREC | 6.44 | 3.52 | 0.00 | FFEC → REC |
LOGREP ↛ LOGFFEC | 20.79 | 15.67 | 0.00 | |
LOGFFEC ↛ LOGREP | 3.27 | 0.83 | 0.41 | No causality |
LOGGDP ↛ LOGFFEC | 7.96 | 4.80 | 0.00 | No causality |
LOGFFEC ↛ LOGGDP | 2.96 | 0.58 | 0.57 | No causality |
URB ↛ LOGFFEC | 6.40 | 3.48 | 0.00 | URB → FFEC |
LOGFFEC ↛ URB | 2.05 | −0.20 | 0.84 | No causality |
LOGREP ↛ LOGREC | 56.13 | 45.62 | 0.00 | Bidirectional causality |
LOGREC ↛ LOGREP | 5.91 | 3.07 | 0.00 | |
LOGGDP ↛ LOGREC | 8.86 | 5.57 | 0.00 | No causality |
LOGREC ↛ LOGGDP | 2.04 | −0.20 | 0.84 | No causality |
LOGREC ↛ URB | 5.40 | 2.64 | 0.01 | REC → URB |
LOGGDP ↛ LOGREP | 5.03 | 2.32 | 0.02 | GDP → REP |
DV = CIOE | ||||
---|---|---|---|---|
Null Hypothesis | W-Stat. | Zbar-Stat. | Prob. | Decision |
LOGFFEC ↛ LOGCIOE | 5.64 | 1.30 | 0.19 | No causality |
LOGCIOE ↛ LOGFFEC | 9.17 | 3.48 | 0.00 | CIOE → FFEC |
LOGREC ↛ LOGCIOE | 5.94 | 1.48 | 0.14 | No causality |
LOGCIOE ↛ LOGREC | 8.15 | 2.85 | 0.00 | CIOE → REC |
LOGREP ↛ LOGCIOE | 2.65 | −0.55 | 0.58 | No causality |
LOGCIOE ↛ LOGREP | 6.74 | 1.98 | 0.05 | CIOE → REP |
LOGGDP ↛ LOGCIOE | 3.89 | 0.21 | 0.83 | No causality |
LOGCIOE ↛ LOGGDP | 10.46 | 4.28 | 0.00 | No causality |
URB ↛ LOGCIOE | 4.24 | 0.43 | 0.67 | No causality |
LOGCIOE ↛ URB | 2.73 | −0.51 | 0.61 | No causality |
LOGFFEC ↛ LOGREC | 7.02 | 2.15 | 0.03 | FFEC → REC |
LOGREP ↛ LOGFFEC | 17.00 | 8.34 | 0.00 | REP → FFEC |
LOGFFEC ↛ LOGREP | 2.71 | −0.52 | 0.60 | No causality |
LOGGDP ↛ LOGFFEC | 8.47 | 3.05 | 0.00 | GDP → FFEC |
LOGFFEC ↛ LOGGDP | 4.06 | 0.32 | 0.75 | No causality |
URB ↛ LOGFFEC | 7.37 | 2.37 | 0.02 | URB → FFEC |
LOGFFEC ↛ URB | 4.88 | 0.83 | 0.41 | No causality |
LOGREP ↛ LOGREC | 46.78 | 26.78 | 0.00 | REP → REC |
LOGREC ↛ LOGREP | 4.95 | 0.87 | 0.38 | No causality |
LOGGDP ↛ LOGREC | 8.95 | 3.35 | 0.00 | GDP → REC |
LOGREC ↛ URB | 9.03 | 3.40 | 0.00 | REC → URB |
URB ↛ LOGREP | 6.70 | 1.95 | 0.05 | URB → REP |
Variable | Notation | Tests | Notation |
---|---|---|---|
Carbon Emissions | CO2 | Augmented mean group | AMG |
Consumption-Based Carbon Emissions | CBCO2 | Greenhouse gases | GHGs |
Production Based Carbon Emissions | PBCO2 | Conference of the Parties | COP |
Carbon Intensity | CI | The Organization for Economic Cooperation and Development | OECD |
Carbon Intensity of Electricity | CIOE | Dumitrescu–Hurlin | D-H |
Fossil Fuel Energy Consumption | FFEC | Cross-sectional dependance | CSD |
Renewable Energy Consumption | REC | Cross-sectional augmented Dickey–Fuller | CADF |
Renewable Energy Production | REP | Cross-sectionally augmented Im–Pesaran–Shin | CIPS |
Population | URB | Pesaran cross-sectional dependance | Pesaran CD |
Gross Domestic Product | GDP | Stochastic Regression on Population, Affluence, and Technology | STIRPAT |
References
- Wang, J.; Azam, W. Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geosci. Front. 2024, 15, 101757. [Google Scholar] [CrossRef]
- Dechamps, P. The IEA World Energy Outlook 2022—A brief analysis and implications. Eur. Energy Clim. J. 2023, 11, 100–103. [Google Scholar] [CrossRef]
- Gani, A. Fossil fuel energy and environmental performance in an extended STIRPAT model. J. Clean. Prod. 2021, 297, 126526. [Google Scholar] [CrossRef]
- de Coninck, H.; Revi, A.; Babiker, M.; Bertoldi, P.; Buckeridge, M.; Cartwright, A.; Dong, W.; Ford, J.; Fuss, S.; Hourcade, J.C.; et al. Strengthening and Implementing the Global Response; Energy (ENE) Risk & Resilience (RISK): Santa Ana, CA, USA, 2018. [Google Scholar]
- Bai, J.; Han, Z.; Rizvi, S.K.A.; Naqvi, B. Green trade or green technology? The way forward for G-7 economies to achieve COP 26 targets while making competing policy choices. Technol. Forecast. Soc. Chang. 2023, 191, 122477. [Google Scholar] [CrossRef]
- COP. United Nations Climate Change Conference. 2021. Available online: https://unfccc.int/conference/glasgow-climate-change-conference-october-november-2021 (accessed on 28 July 2024).
- Arora, P. COP28: Ambitions, realities, and future. Environ. Sustain. 2024, 7, 107–113. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Sadiq, M.; Chien, F. The impact of non-renewable energy production and energy usage on carbon emissions: Evidence from China. Energy Environ. 2023, 35, 2248–2269. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Abbas, S.; Kousar, S.; Pervaiz, A. Effects of energy consumption and ecological footprint on CO2 emissions: An empirical evidence from Pakistan. Environ. Dev. Sustain. 2021, 23, 13364–13381. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, X.; Chen, S.; Wang, J.; Wang, J.; Urpelainen, J.; Fleming, R.M.; Wu, Y.; He, K. Implication of electrification and power decarbonization in low-carbon transition pathways for China, the U.S. and the EU. Renew. Sustain. Energy Rev. 2023, 183, 113493. [Google Scholar] [CrossRef]
- Schmidt, L.; Apergi, M.; Eicke, L.; Weko, S. Who believes in green growth? Strategic framing and technology leadership in the UNFCCC negotiations. Clim. Policy 2023, 24, 177–192. [Google Scholar] [CrossRef]
- Kartal, M.T.; Taşkın, D.; Shahbaz, M.; Kirikkaleli, D.; Kılıç Depren, S. Role of energy transition in easing energy security risk and decreasing CO2 emissions: Disaggregated level evidence from the USA by quantile-based models. J. Environ. Manag. 2024, 359, 120971. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Stringer, L.C.; Lv, T. The spatial spillover effect of fossil fuel energy trade on CO2 emissions. Energy 2021, 223, 120038. [Google Scholar] [CrossRef]
- Li, B.; Haneklaus, N. The role of renewable energy, fossil fuel consumption, urbanization and economic growth on CO2 emissions in China. Energy Rep. 2021, 7, 783–791. [Google Scholar] [CrossRef]
- Abbasi, K.R.; Shahbaz, M.; Zhang, J.; Irfan, M.; Alvarado, R. Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy. Renew. Energy 2022, 187, 390–402. [Google Scholar] [CrossRef]
- Yi, S.; Abbasi, K.R.; Hussain, K.; Albaker, A.; Alvarado, R. Environmental concerns in the United States: Can renewable energy, fossil fuel energy, and natural resources depletion help? Gondwana Res. 2023, 117, 41–55. [Google Scholar] [CrossRef]
- Zimon, G.; Pattak, D.C.; Voumik, L.C.; Akter, S.; Kaya, F.; Walasek, R.; Kochański, K. The impact of fossil fuels, renewable energy, and nuclear energy on South Korea’s environment based on the STIRPAT model: ARDL, FMOLS, and CCR Approaches. Energies 2023, 16, 6198. [Google Scholar] [CrossRef]
- Bukhari, W.A.A.; Pervaiz, A.; Zafar, M.; Sadiq, M.; Bashir, M.F. Role of renewable and non-renewable energy consumption in environmental quality and their sub-sequent effects on average temperature: An assessment of sustainable development goals in South Korea. Environ. Sci. Pollut. Res. 2023, 30, 115360–115372. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Lu, W.; Liu, B.; Hassanein, Z.; Mahmood, H.; Khalid, S. Exploring the role of fossil fuels and renewable energy in determining environmental sustainability: Evidence from OECD countries. Sustainability 2023, 15, 2048. [Google Scholar] [CrossRef]
- Madaleno, M.; Nogueira, M.C. How renewable energy and CO2 emissions contribute to economic growth, and sustaina-bility—An extensive analysis. Sustainability 2023, 15, 4089. [Google Scholar] [CrossRef]
- Ahmed, F.; Kousar, S.; Pervaiz, A.; Trinidad-Segovia, J.E.; Casado-Belmonte, M.d.P.; Ahmed, W. Role of green innovation, trade and energy to promote green economic growth: A case of South Asian Nations. Environ. Sci. Pollut. Res. 2021, 29, 6871–6885. [Google Scholar] [CrossRef]
- Omri, E.; Saadaoui, H. An empirical investigation of the relationships between nuclear energy, economic growth, trade openness, fossil fuels, and carbon emissions in France: Fresh evidence using asymmetric cointegration. Environ. Sci. Pollut. Res. 2022, 30, 13224–13245. [Google Scholar] [CrossRef] [PubMed]
- Dar, J.; Asif, M. Environmental feasibility of a gradual shift from fossil fuels to renewable energy in India: Evidence from multiple structural breaks cointegration. Renew. Energy 2023, 202, 589–601. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Dong, K.; Wang, K. How does renewable energy encourage carbon unlocking? A global case for decarbonization. Resour. Policy 2023, 83, 103622. [Google Scholar] [CrossRef]
- Abban, O.J.; Xing, Y.H.; Nuta, A.C.; Rajaguru, G.; Acheampong, A.O.; Nuta, F.M. The road to decarbonization in Australia. A Morlet wavelet approach. J. Environ. Manag. 2024, 365, 121570. [Google Scholar] [CrossRef]
- Usman, O. Renewable energy and CO2 emissions in G7 countries: Does the level of expenditure on green energy technologies matter? Environ. Sci. Pollut. Res. 2023, 30, 26050–26062. [Google Scholar] [CrossRef]
- Osei Opoku, E.E.; Acheampong, A.O.; Dogah, K.E.; Koomson, I. Energy innovation investment and renewable energy in OECD countries. Energy Strategy Rev. 2024, 54, 101462. [Google Scholar] [CrossRef]
- Mirziyoyeva, Z.; Salahodjaev, R. Renewable energy, GDP and CO2 emissions in high-globalized countries. Front. Energy Res. 2023, 11, 1123269. [Google Scholar] [CrossRef]
- Apergis, N.; Kuziboev, B.; Abdullaev, I.; Rajabov, A. Investigating the association among CO2 emissions, renewable and non-renewable energy consumption in Uzbekistan: An ARDL approach. Environ. Sci. Pollut. Res. 2023, 30, 39666–39679. [Google Scholar] [CrossRef]
- Kuldasheva, Z.; Salahodjaev, R. Renewable energy and CO2 emissions: Evidence from rapidly urbanizing countries. J. Knowl. Econ. 2022, 14, 1077–1090. [Google Scholar] [CrossRef]
- Wang, H.; Wen, C.; Duan, L.; Li, X.; Liu, D.; Guo, W. Sustainable energy transition in cities: A deep statistical prediction model for renewable energy sources management for low-carbon urban development. Sustain. Cities Soc. 2024, 107, 105434. [Google Scholar] [CrossRef]
- Awosusi, A.A.; Ozdeser, H.; Seraj, M.; Abbas, S. Can green resource productivity, renewable energy, and economic globalization drive the pursuit of carbon neutrality in the top energy transition economies? Int. J. Sustain. Dev. World Ecol. 2023, 30, 745–759. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Dong, K.; Wang, K. Is renewable energy technology innovation an excellent strategy for reducing climate risk? The case of China. Renew. Energy 2024, 223, 120042. [Google Scholar] [CrossRef]
- Malcher, X.; Gonzalez-Salazar, M. Strategies for decarbonizing European district heating: Evaluation of their effectiveness in Sweden, France, Germany, and Poland. Energy 2024, 306, 132457. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Awosusi, A.A.; Adebayo, T.S.; Otrakçı, C. Enhancing environmental quality in Portugal: Can CO2 intensity of GDP and renewable energy con-sumption be the solution? Environ. Sci. Pollut. Res. 2023, 30, 53796–53806. [Google Scholar] [CrossRef] [PubMed]
- Raihan, A.; Bari, A.M. Energy-economy-environment nexus in China: The role of renewable energies toward carbon neutrality. Innov. Green Dev. 2024, 3, 100139. [Google Scholar] [CrossRef]
- Ding, Q.; Khattak, S.I.; Ahmad, M. Towards sustainable production and consumption: Assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations. Sustain. Prod. Consum. 2020, 27, 254–268. [Google Scholar] [CrossRef]
- Smil, V. World history and energy. Encycl. Energy 2004, 6, 549. [Google Scholar]
- Vinayak, A.K.; Gurumoorthy, A.V. Vaclav Smil’s Perspective on Fossil Fuels and Renewable Energy: A Review. Pet. Coal 2020, 62, 1231–1239. [Google Scholar]
- Smil, V. Energy Transitions: History, Requirements, Prospects; Praeger: Santa Barbara, CA, USA, 2010. [Google Scholar]
- Holdren, J. A brief history of IPAT. J. Popul. Sustain. 2018, 2, 66–74. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Du, Q.; Li, Z.; Du, M.; Yang, T. Government venture capital and innovation performance in alternative energy production: The moderating role of environmental regulation and capital market activity. Energy Econ. 2024, 129, 107196. [Google Scholar] [CrossRef]
- Shahbaz, M.; Papavassiliou, V.G.; Lahiani, A.; Roubaud, D. Are we moving towards decarbonisation of the global economy? Lessons from the distant past to the present. Int. J. Finance Econ. 2021, 28, 2620–2634. [Google Scholar] [CrossRef]
- Naveed, A.; Ahmad, N.; Aghdam, R.F.; Menegaki, A.N. What have we learned from Environmental Kuznets Curve hypothesis? A citation-based systematic literature review and content analysis. Energy Strat. Rev. 2022, 44, 100946. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Chudik, A.; Pesaran, M.H. Large Panel Data Models with Cross-Sectional Dependence: A Survey. CAFE Research Paper No. 13.15. 2013. Available online: https://ssrn.com/abstract=2316333 (accessed on 28 July 2024).
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econ. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Hadri, K. Testing for stationarity in heterogeneous panel data. Econ. J. 2000, 3, 148–161. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A comparative study of unit root tests with panel data and a new simple test. Oxf. Bull. Econ. Stat. 1999, 61, 631–652. [Google Scholar] [CrossRef]
- Pesaran, M.H. Estimation and Inference in Large Heterogenous Panels with Cross Section Dependence. Available at SSRN 385123. 2003. Available online: https://ssrn.com/abstract=385123 (accessed on 28 July 2024).
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econ. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Westerlund, J. New simple tests for panel cointegration. Econ. Rev. 2005, 24, 297–316. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K. What drives environmental degradation? Evidence from 14 Sub-Saharan African countries. Sci. Total Environ. 2018, 656, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, M.; Bond, S. Cross-section dependence in nonstationary panel models: A novel estimator. MPRA Pap. 2009. Available online: https://mpra.ub.uni-muenchen.de/17692/1/MPRA_paper_17692.pdf (accessed on 28 July 2024).
- Eberhardt, M.; Teal, F. Productivity Analysis in Global Manufacturing Production. 2010. Available online: https://ora.ox.ac.uk/objects/uuid:ea831625-9014-40ec-abc5-516ecfbd2118 (accessed on 28 July 2024).
- Mimi, M.B. Investigating the STIRPAT with fossil fuel, renewable energy, nuclear energy, research and development for 30 European countries: Fresh panel evidence. Environ. Sci. Pollut. Res. 2023. [Google Scholar] [CrossRef]
- Dumitrescu, E.-I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Pitz-Paal, R.; Krüger, J.; Hinsch, J.; Lokurlu, A.; Scheuerer, M.; Schlecht, M.; Schmitz, M.; Schreiber, G. Decarbonizing the German industrial thermal energy use with solar, hydrogen, and other options–Recommendations for the world. Sol. Compass 2022, 3–4, 100029. [Google Scholar] [CrossRef]
- Gatto, A.; Mattera, R.; Panarello, D. For whom the bell tolls. A spatial analysis of the renewable energy transition determinants in Europe in light of the Russia-Ukraine war. J. Environ. Manag. 2024, 352, 119833. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Patel, N.; Du, A.M.; Ahmad, S. From black to green: Quantifying the impact of economic growth, resource management, and green technologies on CO2 emissions. J. Environ. Manag. 2024, 360, 121091. [Google Scholar] [CrossRef]
- Onifade, S.T.; Alola, A.A. Energy transition and environmental quality prospects in leading emerging economies: The role of environmental-related technological innovation. Sustain. Dev. 2022, 30, 1766–1778. [Google Scholar] [CrossRef]
- Obobisa, E.S.; Chen, H.; Mensah, I.A. The impact of green technological innovation and institutional quality on CO2 emissions in African countries. Technol. Forecast. Soc. Chang. 2022, 180, 121670. [Google Scholar] [CrossRef]
- Ali, M.; Seraj, M. Nexus between energy consumption and carbon dioxide emission: Evidence from 10 highest fossil fuel and 10 highest renewable energy-using economies. Environ. Sci. Pollut. Res. 2022, 29, 87901–87922. [Google Scholar] [CrossRef]
- Dong, F.; Li, Y.; Gao, Y.; Zhu, J.; Qin, C.; Zhang, X. Energy transition and carbon neutrality: Exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries. Resour. Conserv. Recycl. 2021, 177, 106002. [Google Scholar] [CrossRef]
- Ghorbani, Y.; Zhang, S.E.; Nwaila, G.T.; Bourdeau, J.E.; Rose, D.H. Embracing a diverse approach to a globally inclusive green energy transition: Moving beyond decarboni-sation and recognising realistic carbon reduction strategies. J. Clean. Prod. 2023, 434, 140414. [Google Scholar] [CrossRef]
- Cheng, X.; Ye, K.; Du, A.M.; Bao, Z.; Chlomou, G. Dual carbon goals and renewable energy innovations. Res. Int. Bus. Finance 2024, 70, 102406. [Google Scholar] [CrossRef]
- Intisar, R.A.; Yaseen, M.R.; Kousar, R.; Usman, M.; Makhdum, M.S.A. Impact of trade openness and human capital on economic growth: A comparative investigation of Asian countries. Sustainability 2020, 12, 2930. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Murshed, M.; Nuta, F.M. Environmental impact of globalization: The case of central and Eastern European emerging economies. J. Environ. Manag. 2023, 341, 118018. [Google Scholar] [CrossRef]
Variable | Measurement | Notation | Data Source |
---|---|---|---|
Carbon Emissions | CO2 emissions (kt) | CO2 | WDI |
Consumption-Based Carbon Emissions | Metric tons of CO2 emission | CBCO2 | Our World in Data |
Production-Based Carbon Emissions | Metric tons of CO2 emission | PBCO2 | Our World in Data |
Carbon Intensity | Energy intensity or energy consumption per unit of GDP—kilowatt-hours per international unit | CI | Our World in Data |
Carbon Intensity of Electricity | Carbon intensity of electricity production—grams of carbon emitted per kilowatt-hour | CIOE | Our World in Data |
Fossil Fuel Energy Consumption | Fossil fuel energy consumption (% of total) | FFEC | WDI |
Renewable Energy Consumption | Renewable energy consumption (% of total final energy consumption) | REC | WDI |
Renewable Energy Production | Share of electricity generated by renewable power plants in total electricity generated by all types of plants | REP | WDI |
Population | Urban population (% of total population) | URB | WDI |
Gross Domestic Product | Constant, in 2015 USD | GDP | WDI |
PBCO2 | CBCO2 | CO2 | CI | CIOE | FFEC | REC | REP | GDP | URB | |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 19.10 | 19.28 | 12.10 | −1.27 | 5.63 | 4.20 | 2.89 | 3.31 | 27.34 | 78.17 |
Maximum | 20.63 | 20.80 | 13.65 | −0.03 | 6.86 | 4.57 | 4.07 | 4.41 | 28.91 | 88.49 |
Minimum | 17.16 | 17.57 | 7.62 | −2.40 | 3.66 | 3.22 | 1.18 | 0.41 | 26.26 | 60.04 |
Std. Dev. | 1.25 | 1.11 | 1.31 | 0.52 | 1.04 | 0.40 | 0.67 | 1.01 | 0.91 | 9.50 |
Jarque–Bera | 1.99 | 2.22 | 5.45 | 1.97 | 2.96 | 3.42 | 2.73 | 2.42 | 3.03 | 1.77 |
Correlation Analysis | ||||||||||
PBCO2 | 1 | |||||||||
CBCO2 | 0.99 | 1 | ||||||||
CO2 | 0.93 | 0.929 | 1 | |||||||
CI | 0.66 | 0.584 | 0.62 | 1 | ||||||
CIOE | 0.48 | 0.409 | 0.43 | 0.67 | 1 | |||||
FFEC | 0.71 | 0.535 | 0.57 | 0.77 | 0.94 | 1 | ||||
REC | −0.64 | −0.600 | −0.60 | −0.53 | −0.45 | −0.51 | 1 | |||
REP | −0.34 | −0.292 | −0.30 | −0.62 | −0.20 | −0.55 | 0.44 | 1 | ||
GDP | 0.80 | 0.851 | 0.76 | 0.12 | 0.08 | 0.21 | −0.27 | 0.12 | 1 | |
URB | 0.59 | 0.540 | 0.53 | 0.55 | 0.94 | 0.13 | −0.37 | −0.52 | 0.31 | 1 |
Pesaran (2004) Cross-Sectional Dependence Test | CIPS Unit Root Test | CADF Unit Root Test | ||||
---|---|---|---|---|---|---|
Ho: Cross-Sectional Independence | H0: Homogeneous Non-Stationary | |||||
With constant | With constant and trend | |||||
Variable | CD-test | p-value | Level | Difference | Level | Difference |
PBCO2 | 7.48 | 0.000 | −1.404 | −4.898 *** | −1.655 | −4.034 *** |
CBCO2 | 7.30 | 0.000 | −1.680 | −5.735 *** | −1.470 | −3.476 *** |
CO2 | 3.21 | 0.001 | −0.032 | −3.646 *** | 0.231 | −2.768 *** |
CI | 14.88 | 0.000 | −2.765 *** | −2.360 | −4.022 *** | |
CIOE | 12.00 | 0.000 | −2.378 | −4.952 *** | −2.176 | −3.434 *** |
FFEC | 7.44 | 0.000 | −0.045 | −3.952 *** | −1.146 | −5.312 *** |
REC | 12.00 | 0.000 | −1.862 | −4.763 *** | −2.192 | −3.109 *** |
REP | 13.88 | 0.000 | −2.534 | −4.662 *** | −2.306 | −2.549 *** |
GDP | 14.78 | 0.000 | −1.308 | −3.163 *** | −2.142 | −2.320 *** |
URB | 2.75 | 0.06 | 0.881 | −4.106 * | 0.346 | 4.529 * |
Models | Slope Homogeneity Test | Westerlund Co-Integration | ||
---|---|---|---|---|
Variance Ratio | ||||
Statistics | p Value | |||
Model 1 | 6.04 * | 7.02 * | −1.5263 ** | 0.0635 |
Model 2 | 7.069 * | 8.223 * | −1.3110 ** | 0.0949 |
Model 3 | 7.405 * | 8.613 * | −1.4921 ** | 0.0678 |
Model 4 | 4.533 * | 5.272 * | 1.3514 ** | 0.0883 |
Model 5 | 10.119 * | 11.770 * | −1.5254 | 0.0636 |
IV | DV = PBCO2 | |||||
---|---|---|---|---|---|---|
Panel | Germany | Canada | Denmark | Poland | Sweden | |
LOGFFEC | 0.37 (0.50) | 0.1 (0.22) | 1.65 * (0.58) | 0.03 (0.60) | −0.03 (0.09) | 1.17 (−0.86) |
LOGREP | −0.15 * (0.06) | −0.29 * (0.05) | −0.15 * (0.08) | 0.18 (0.29) | −0.13 ** (0.06) | −0.07 * (0.03) |
LOGGDP | 0.74 * (0.17) | 1.09 * (0.25) | 0.89 * (0.24) | 0.66 * (0.18) | 0.2 (0.15) | 0.73 * (0.13) |
URB | 0.07 * (0.03) | 0.11 * (0.04) | 0.12 * (0.05) | −0.04 * (0.02) | 0.08 * (0.03) | 0.05 * (0.02) |
C | −6.88 (7.27) | −19.4 * (6.53) | −22.12 * (9.53) | 8.54 (5.91) | 8.1 (5.16) | −9.14 (5.29) |
ARDL-based Error Correction Model (short-term estimates) | ||||||
ECM | −0.28 * (0.14) | −0.33 * (0.10) | −0.21 * (0.07) | −0.66 * (0.19) | −0.54 * (0.24) | −0.18 * (0.05) |
LOGFFEC | 0.42 (0.26) | 0.66 * (0.24) | −0.23 * (0.11) | −0.79 (0.55) | −0.07 (0.13) | 1.28 (1.56) |
LOGREP | −0.36 * (0.10) | −0.37 * (0.06) | −0.21 (0.31) | −0.12 (0.27) | −0.13 (0.11) | −0.10 ** (0.05) |
LOGGDP | −0.45 * (0.10) | −0.32 (0.23) | 0.03 (0.12) | 0.27 (0.26) | −0.37 (0.32) | −0.68 ** (0.34) |
URB | −0.06 (0.06) | −0.15 (0.08) | 1.72 (0.92) | −0.07 (0.09) | 0.02 (0.12) | −0.22 (0.20) |
C | −0.63 (0.61) | 1.08 (2.21) | −0.21 (1.07) | 16.53 (4.66) | 2.46 (5.36) | −0.98 (1.11) |
IV | DV = CBCO2 | |||||
---|---|---|---|---|---|---|
Panel | Germany | Canada | Denmark | Poland | Sweden | |
LOGFFEC | −0.49 (0.59 | 0.46 ** (0.24) | 0.06 (0.54) | 1.34 ** (0.69) | −0.07 (0.08) | 1.80 ** (0.98) |
LOGREC | −0.32 * (0.14) | 0.13 (0.10) | −0.06 (0.05) | −0.64 * (0.21) | −0.24 * (0.09) | −0.24 * (0.08) |
LOGGDP | 0.36 (0.28) | 0.82 * (0.16) | 0.16 (0.19) | −0.64 * (0.19) | 0.63 * (0.10) | 0.46 * (0.07) |
URB | 0.02 (0.03) | −0.09 ** (0.05) | 0.03 (0.04) | 0.08 * (0.02) | 0.01 (0.03) | 0.01 (0.02) |
C | 3.55 (7.28) | 1.34 (5.59) | 13.67 (7.78) | 39.48 * (6.72) | 3.04 (4.04) | 15.13 * (6.28) |
ARDL-based Error Correction Model (short-term estimates) | ||||||
ECM | −0.24 * (0.13) | −0.27 * (0.11) | −0.25 * (0.06) | −0.33 * (0.10) | −0.26 * (0.11) | −0.69 * (0.37) |
LOGFFEC | 0.01 (0.86) | 1.46 * (0.71) | −1.43 (0.98) | −2.3 * (0.69) | 0.02 (0.23) | 2.29 (2.07) |
LOGREC | −0.04 (0.26) | 0.62 ** (0.33) | 0.31 * (0.12) | −0.92 * (0.33) | −0.1 (0.27) | −0.1 (0.14) |
LOGGDP | −0.93 (0.13) | −0.76 * (0.13) | −0.92 * (0.24) | −1.40 * (0.38) | −0.86 (0.53) | −0.68 (0.48) |
URB | −0.07 (0.06) | −0.15 (0.16) | −0.23 (0.14) | 0.12 (0.11) | 0.05 (0.21) | −0.12 (0.17) |
C | −0.06 (0.09) | −0.4 (2.06) | 0.04 (0.42) | 0.01 (0.28) | 0.09 (0.49) | −0.05 (4.55) |
IV | DV = CO2 | |||||
---|---|---|---|---|---|---|
Panel | Germany | Canada | Denmark | Poland | Sweden | |
LOGFFEC | −1.21 (0.69) | 2.43 * (0.17) | 2.2 (1.39) | −0.04 (0.58) | 0.245 ** (0.13) | −19.69 (15.59) |
LOGREC | −0.33 * (−0.04) | 0.07 (0.05) | 0.2 (0.22) | −0.39 * (0.19) | −0.06 (0.10) | −1.47 * (0.43) |
LOGREP | −0.23 * (−0.11) | 0.03 (0.11) | 0.13 (0.09) | −0.81 * (0.17) | −0.458 * (0.17) | 0.97 (0.91) |
LOGGDP | 0.06 (−0.44) | 0.64 * (0.16) | 0.19 (0.50) | 0.75 * (0.13) | −0.291 (0.20) | −1.32 (1.61) |
URB | −0.04 (−0.08) | 0.04 (0.04) | −0.22 (0.12) | −0.04 * (0.01) | 0.06 (0.07) | −0.72 * (0.28) |
C | 3.32 (−9.79) | −0.69 (5.29) | 16.53 (20.09) | −0.04 (4.95) | 15.979 (8.73) | 19.93 (81.11) |
ARDL-based Error Correction Model (short-term estimates) | ||||||
ECM | 0.16 * (0.07) | −0.15 * (0.05) | −0.34 * (0.13) | −0.32 * (0.02) | 0.451 * (0.015) | −0.13 * (0.022) |
LOGFFEC | −0.19 (0.76) | 2.32 * (0.52) | −0.88 (0.70) | −2.39 * (0.67) | 0.046 (0.205) | −0.055 (1.946) |
LOGREC | −0.17 * (0.06) | −0.31 * (0.06) | −0.14 (0.11) | −0.07 (0.29) | −0.301 (0.169) | −0.014 (0.074) |
LOGREP | −0.06 (0.29) | 0.67 * (0.22) | 0.42 * (0.09) | −1.00 * (0.31) | −0.158 (0.252) | −0.266 * (0.114) |
LOGGDP | −0.81 * (0.20) | −0.85 * (0.34) | −0.54 * (0.25) | −1.53 * (0.36) | −0.721 (0.492) | −0.396 (0.458) |
URB | −0.05 (0.04) | −0.07 (0.12) | −0.18 ** (0.10) | 0.07 (0.10) | −0.026 (0.193) | −0.027 (0.088) |
C | −2.69 (3.47) | 2.31 (2.08) | −16.44 (14.50) | 0.70 (0.80) | −0.115 (0.379) | 0.122 (1.102) |
IV | DV = CI | |||||
---|---|---|---|---|---|---|
Panel | Germany | Canada | Denmark | Poland | Sweden | |
LOGFFEC | −0.13 (0.26) | 0.17 (0.20) | −0.73 (0.64) | 0.23 (0.55) | 0.21 * (0.08) | 3.09 * (1.54) |
LOGREC | −0.1 (0.08) | 0.05 (0.06) | −0.02 (0.09) | −0.37 * (0.16) | −0.11 ** (0.06) | −0.12 * (0.04) |
LOGREP | −0.03 (0.12) | 0.06 (0.15) | 0.04 (0.04) | −0.53 * (0.17) | −0.29 * (0.09) | −0.02 (0.10) |
LOGGDP | 0.07 (0.14) | −0.24 (0.24) | 0.40 ** (0.23) | −0.17 (0.18) | 0.1 (0.16) | 0.29 (0.24) |
URB | −0.05 ** (0.02) | 0.19 * (0.06) | −0.11 * (0.05) | −0.05 * (0.01) | −0.02 (0.03) | −0.01 (0.03) |
C | 1.57 (3.83) | −10.23 (8.13) | −0.06 (8.91) | 10.22 (7.22) | −0.43 (4.77) | 7.86 (9.42) |
ARDL-based Error Correction Model (short-term estimates) | ||||||
ECM | −0.25 * (0.10) | −0.62 * (0.16) | −0.27 * (0.07) | −0.28 * (0.11) | −0.19 * (0.08) | −0.30 * (0.07) |
LOGFFEC | 0.34 (0.35) | 0.14 (0.79) | 1.24 (0.86) | −0.51 (0.32) | −0.26 * (0.11) | 1.10 (1.33) |
LOGREC | −0.04 (0.06) | −0.13 (0.11) | 0.05 (0.09) | −0.25 (0.14) | 0.08 (0.09) | 0.04 (0.05) |
LOGREP | −0.16 * (0.08) | −0.24 (0.36) | −0.07 (0.10) | −0.39 (0.17) | −0.15 (0.13) | 0.07 (0.07) |
LOGGDP | −0.10 * (0.05) | −0.05 (0.48) | −0.15 (0.25) | −0.02 (0.20) | 0.02 (0.25) | −0.28 (0.26) |
URB | 0.03 (0.09) | 0.21 (0.18) | 0.18 (0.11) | 0.05 (0.05) | −0.02 (0.10) | −0.28 (0.17) |
C | 1.24 (0.83) | 5.18 (4.01) | 0.68 (0.86) | 1.72 (1.73) | 0.76 (0.99) | 2.83 (2.08) |
Dep. Var. = CIOE | ||||||
---|---|---|---|---|---|---|
Panel | Germany | Canada | Denmark | Poland | Sweden | |
LOGFFEC | 0.12 (0.18) | 1.75 * (0.46) | 4.05 * (1.28) | −0.6 (0.85) | 0.43 (0.50) | 0.82 (0.68) |
LOGREC | −0.41 ** (0.22) | −0.47 * (0.14) | 0.03 (0.19) | −1.10 * (0.30) | −0.53 * (0.13) | 0.01 (0.01) |
LOGREP | −0.04 ** (0.02) | −1.13 * (0.24) | −0.07 (0.10) | −0.01 (0.29) | −1.13 * (0.54) | −0.04 (0.04) |
LOGGDP | 0.07 (0.15) | 0.02 (0.59) | 0.19 (0.49) | −0.3 (0.33) | 0.52 (0.73) | −0.02 (0.07) |
URB | 0.04 (0.07) | −0.11 (0.11) | 0.17 (0.11) | −0.04 (0.03) | 0.2 (0.15) | −0.01 (0.02) |
C | −4.51 (11.70) | 6.16 (13.88) | −31.57 (19.04) | 3.73 (10.85) | −25.92 (25.43) | 4.49 (4.49) |
ARDL-based Error Correction Model (short-term estimates) | ||||||
ECM | −0.32 * (0.12) | −0.13 * (0.06) | −0.47 * (0.11) | −0.48 * (0.14) | −0.57 * (0.16) | −0.22 * (0.02) |
LOGFFEC | 0.63 (0.71) | 2.91 * (1.18) | 1.24 (1.32) | −1.05 ** (0.55) | 0.66 * (0.34) | −0.63 (0.57) |
LOGREC | −0.44 * (0.16) | −0.79 * (0.16) | −0.13 (0.14) | −0.82 * (0.29) | −0.43 (0.25) | −0.03 (0.02) |
LOGREP | 0.12 (0.27) | 1.19 * (0.51) | −0.24 (0.17) | −0.21 (0.22) | −0.08 (0.39) | −0.07 * (0.03) |
LOGGDP | −0.44 (0.43) | −1.15 (0.73) | 0.82 * (0.41) | 0.03 (0.30) | −1.63 * (0.69) | −0.28 * (0.12) |
URB | −0.02 (0.05) | −0.01 (0.26) | −0.05 (0.21) | 0.13 ** (0.07) | −0.19 (0.33) | 0.01 (0.07) |
C | 3.47 (5.07) | 1.42 (2.49) | 1.35 (5.83) | 2.93 (7.75) | 2.94 (6.04) | 0.74 (0.66) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kousar, S.; Pervaiz, A.; Ahmed, F.; Nuţă, F.M. Do Structural Transformations in the Energy Sector Help to Achieve Decarbonization? Evidence from the World’s Top Five Green Leaders. Energies 2024, 17, 4600. https://doi.org/10.3390/en17184600
Kousar S, Pervaiz A, Ahmed F, Nuţă FM. Do Structural Transformations in the Energy Sector Help to Achieve Decarbonization? Evidence from the World’s Top Five Green Leaders. Energies. 2024; 17(18):4600. https://doi.org/10.3390/en17184600
Chicago/Turabian StyleKousar, Shazia, Amber Pervaiz, Farhan Ahmed, and Florian Marcel Nuţă. 2024. "Do Structural Transformations in the Energy Sector Help to Achieve Decarbonization? Evidence from the World’s Top Five Green Leaders" Energies 17, no. 18: 4600. https://doi.org/10.3390/en17184600
APA StyleKousar, S., Pervaiz, A., Ahmed, F., & Nuţă, F. M. (2024). Do Structural Transformations in the Energy Sector Help to Achieve Decarbonization? Evidence from the World’s Top Five Green Leaders. Energies, 17(18), 4600. https://doi.org/10.3390/en17184600