Unpacking the Carbon Balance: Biochar Production from Forest Residues and Its Impact on Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope
2.2. Inventory
2.2.1. Harvesting, Chipping, and Transportation
2.2.2. Thermochemical Processes
2.2.3. Transportation, Biochar Spreading, and CO2 Sequestration
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, M.R.; Shine, K.P.; Fuglestvedt, J.S.; Millar, R.J.; Cain, M. A Solution to the Misrepresentations of CO2-Equivalent Emissions of Short-Lived Climate Pollutants under Ambitious Mitigation. npj Clim. Atmos. Sci. 2018, 1, 16. [Google Scholar] [CrossRef]
- Rogelj, J.; Popp, A.; Calvin, K.V.; Luderer, G.; Emmerling, J.; Gernaat, D.; Fujimori, S.; Strefler, J.; Hasegawa, T.; Marangoni, G.; et al. Scenarios towards Limiting Global Mean Temperature Increase below 1.5 °C. Nat. Clim. Chang. 2018, 8, 325–332. [Google Scholar] [CrossRef]
- Mäkipää, R.; Linkosalo, T.; Komarov, A.; Mäkelä, A. Mitigation of Climate Change with Biomass Harvesting in Norway Spruce Stands: Are Harvesting Practices Carbon Neutral? Can. J. For. Res. 2015, 225, 217–225. [Google Scholar] [CrossRef]
- Guest, G.; Bright, R.M.; Cherubini, F.; Strømman, A.H. Consistent Quanti Fi Cation of Climate Impacts Due to Biogenic Carbon Storage across a Range of Bio-Product Systems. Environ. Impact Assess. Rev. 2013, 43, 21–30. [Google Scholar] [CrossRef]
- Kukrety, S.; Wilson, D.C.; Amato, A.W.D.; Becker, D.R. Biomass and Bioenergy Assessing Sustainable Forest Biomass Potential and Bioenergy Implications for the Northern Lake States Region, USA. Biomass Bioenergy 2015, 81, 167–176. [Google Scholar] [CrossRef]
- Tagade, A.; Kirti, N.; Sawarkar, A.N. Bioresource Technology Reports Pyrolysis of Agricultural Crop Residues: An Overview of Researches by Indian Scientific Community Pyrolysis Biochar Bio-Oil Gas Soil Additive Activated Organic Acids Bio Based Chemicals. Bioresour. Technol. Rep. 2021, 15, 100761. [Google Scholar] [CrossRef]
- Zhu, X.; Labianca, C.; He, M.; Luo, Z.; Wu, C.; You, S.; Tsang, C.W. Bioresource Technology Life-Cycle Assessment of Pyrolysis Processes for Sustainable Production of Biochar from Agro-Residues. Bioresour. Technol. 2022, 360, 127601. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Q.; Zheng, H.; Li, M.; Liu, Y.; Wang, X.; Peng, Y.; Luo, X.; Li, F.; Li, X.; et al. Soil & Environmental Health Biochar as a Sustainable Tool for Improving the Health of Salt-Affected Soils. Soil Environ. Health 2023, 1, 100033. [Google Scholar] [CrossRef]
- Chang, Z.; Tian, L.; Wu, M.; Dong, X.; Peng, J.; Pan, B. Molecular Markers of Benzene Polycarboxylic Acids in Describing Biochar Physiochemical Properties and Sorption Characteristics. Environ. Pollut. 2018, 237, 541–548. [Google Scholar] [CrossRef]
- Yang, X.; Ng, W.; Shu, B.; Wong, E.; Hun, G.; Wang, C. Characterization and Ecotoxicological Investigation of Biochar Produced via Slow Pyrolysis: Effect of Feedstock Composition and Pyrolysis Conditions. J. Hazard. Mater. 2019, 365, 178–185. [Google Scholar] [CrossRef]
- Chantanumat, Y.; Phetwarotai, W.; Sangthong, S.; Palamanit, A.; Abu Bakar, M.S.; Cheirsilp, B.; Phusunti, N. Characterization of Bio-Oil and Biochar from Slow Pyrolysis of Oil Palm Plantation and Palm Oil Mill Wastes. Biomass Convers. Biorefinery 2023, 13, 13813–13825. [Google Scholar] [CrossRef]
- Pahnila, M.; Koskela, A.; Sulasalmi, P.; Fabritius, T. A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties. Energies 2023, 16, 6936. [Google Scholar] [CrossRef]
- Yrjälä, K.; Ramakrishnan, M.; Salo, E. ScienceDirect Agricultural Waste Streams as Resource in Circular Economy for Biochar Production towards Carbon Neutrality. Curr. Opin. Environ. Sci. Health 2022, 26, 100339. [Google Scholar] [CrossRef]
- Moreira, M.T.; Noya, I.; Feijoo, G. Bioresource Technology The Prospective Use of Biochar as Adsorption Matrix—A Review from a Lifecycle Perspective. Bioresour. Technol. 2017, 246, 135–141. [Google Scholar] [CrossRef]
- Conte, P.; Bertani, R.; Sgarbossa, P.; Bambina, P.; Schmidt, H.-P.; Raga, R.; Lo Papa, G.; Chillura Martino, D.F.; Lo Meo, P. Recent Developments in Understanding Biochar’s Physical–Chemistry. Agronomy 2021, 11, 615. [Google Scholar] [CrossRef]
- Shah, H.H.; Amin, M.; Iqbal, A.; Nadeem, I.; Kalin, M.; Soomar, A.M.; Galal, A.M. A Review on Gasification and Pyrolysis of Waste Plastics. Front. Chem. 2023, 10, 960894. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: London, UK, 2015. [Google Scholar]
- Wei, S.; Tan, Z.; Liu, Z.; Zuo, H.; Xia, Y.; Zhang, Y. Removal of Methyl Orange Dye by High Surface Area Biomass Activated Carbon Prepared from Bamboo Fibers. Ind. Crops Prod. 2024, 218, 118991. [Google Scholar] [CrossRef]
- Turkyilmaz, A.; Isinkaralar, K.; Dogan, M.; Kocer Kizilduman, B.; Bicil, Z. Production, Characterization, and Hydrogen Storage Properties of Activated Carbon from Horse Chestnut Shell. Sustain. Chem. Pharm. 2024, 40, 101634. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, M.; Li, J.; Wang, X.; Zhu, M.; Sun, G. The Optimal Micro- and Meso-Pores Oriented Development of Eucommia Ulmoides Oliver Wood Derived Activated Carbons for Capacitive Performance. Renew. Energy 2024, 225, 120209. [Google Scholar] [CrossRef]
- He, M.; Xu, Z.; Hou, D.; Gao, B.; Cao, X.; Ok, Y.S.; Rinklebe, J.; Bolan, N.S.; Tsang, D.C.W. Waste-Derived Biochar for Water Pollution Control and Sustainable Development. Nat. Rev. Earth Environ. 2022, 3, 444–460. [Google Scholar] [CrossRef]
- Tiegam, T.; Raoul, D.; Tchuifon, T.; Santagata, R.; Alain, P.; Nanssou, K.; Gabche, S.; Ionel, I.; Ulgiati, S. Production of Activated Carbon from Cocoa Pods: Investigating Bene Fi Ts and Environmental Impacts through Analytical Chemistry Techniques and Life Cycle Assessment. J. Clean. Prod. 2021, 288, 125464. [Google Scholar] [CrossRef]
- Maroušek, J.; Minofar, B.; Maroušková, A.; Strunecký, O.; Gavurová, B. Environmental and Economic Advantages of Production and Application of Digestate Biochar. Environ. Technol. Innov. 2023, 30, 103109. [Google Scholar] [CrossRef]
- Li, S.; Tasnady, D. Biochar for Soil Carbon Sequestration: Current Knowledge, Mechanisms, and Future Perspectives. J. Carbon Res. 2023, 9, 67. [Google Scholar] [CrossRef]
- Hosseinian, A.; Brancoli, P.; Vali, N.; Ylä-Mella, J.; Pettersson, A.; Pongrácz, E. Life Cycle Assessment of Sewage Sludge Treatment: Comparison of Pyrolysis with Traditional Methods in Two Swedish Municipalities. J. Clean. Prod. 2024, 455, 142375. [Google Scholar] [CrossRef]
- Zhou, J.; Li, M.; Han, X.; Wang, B.; Zhang, C.; Cheng, Z.; Shen, Z.; Ogugua, P.C.; Zhou, C.; Pan, X.; et al. Environmental Sustainability Practice of Sewage Sludge and Low-Rank Coal Co-Pyrolysis: A Comparative Life Cycle Assessment Study. Sci. Total Environ. 2024, 928, 172255. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, Z.; Zhang, Q.; Huang, H.; Zhao, X. Life Cycle Assessment of Greenhouse Gas Emissions for Various Feedstocks-Based Biochars as Soil Amendment. Sci. Total Environ. 2024, 911, 168734. [Google Scholar] [CrossRef]
- Papageorgiou, A.; Azzi, E.S.; Enell, A.; Sundberg, C. Biochar Produced from Wood Waste for Soil Remediation in Sweden: Carbon Sequestration and Other Environmental Impacts. Sci. Total Environ. 2021, 776, 145953. [Google Scholar] [CrossRef]
- Arfelli, F.; Tosi, C.; Ciacci, L.; Passarini, F. Life Cycle Assessment of a Wood Biomass Gasification Plant and Implications for Syngas and Biochar Utilization. Energies 2024, 17, 2599. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, W.; Wang, X.; Zhao, Q.; Han, M. Biochar Technology Cannot Offset Land Carbon Emissions in Guangdong Province, China. Carbon Res. 2024, 3, 55. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, W.; Wang, J.; Yu, W.; Luo, H.; Liu, W. A Dynamic Monetary Valuation Perspective for Carbon Sequestration: Effect on Biomass Utilization Strategy of Caragana Plantation as an Illustration. Ecol. Indic. 2021, 128, 107854. [Google Scholar] [CrossRef]
- Ita-nagy, D.; Vázquez-rowe, I.; Kahhat, R.; Quispe, I.; Chinga-carrasco, G.; Clauser, N.M.; Cristina, M. Science of the Total Environment Life Cycle Assessment of Bagasse Fi Ber Reinforced Biocomposites. Sci. Total Environ. 2020, 720, 137586. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Lewandowski, I.; Wang, X.; Yi, Z. Assessment of the Production Potentials of Miscanthus on Marginal Land in China. Renew. Sustain. Energy Rev. 2016, 54, 932–943. [Google Scholar] [CrossRef]
- Baul, T.K.; Alam, A.; Ikonen, A.; Strandman, H.; Asikainen, A. Climate Change Mitigation Potential in Boreal Forests: Impacts of Management, Harvest Intensity and Use of Forest Biomass to Substitute Fossil Resources. Forests 2017, 8, 455. [Google Scholar] [CrossRef]
- Galik, C.S.; Benedum, M.E.; Kauffman, M.; Becker, D.R. Biomass and Bioenergy Opportunities and Barriers to Forest Biomass Energy: A Case Study of Four U. Biomass Bioenergy 2021, 148, 106035. [Google Scholar] [CrossRef]
- Cherubini, F.; Strømman, A.H.; Hertwich, E. Effects of Boreal Forest Management Practices on the Climate Impact of CO2 Emissions from Bioenergy. Ecol. Modell. 2011, 223, 59–66. [Google Scholar] [CrossRef]
- Hammar, T.; Ortiz, C.A.; Stendahl, J.; Ahlgren, S.; Hansson, P.-A. Time-Dynamic Effects on the Global Temperature When Harvesting Logging Residues for Bioenergy. BioEnergy Res. 2015, 8, 1912–1924. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Z.; Xie, X.; Yu, Z.; Von Gadow, K.; Xu, J. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments. Nat. Publ. Gr. 2017, 7, 39857. [Google Scholar] [CrossRef]
- Qin, Z.; Zhuang, Q.; Cai, X.; He, Y.; Huang, Y.; Jiang, D.; Lin, E.; Liu, Y.; Tang, Y.; Wang, M.Q. Biomass and Biofuels in China: Toward Bioenergy Resource Potentials and Their Impacts on the Environment. Renew. Sustain. Energy Rev. 2018, 82, 2387–2400. [Google Scholar] [CrossRef]
- Brandão, M.; Hjuler, S.V. Quantifying the Climate Change Effects of Bioenergy Systems: Comparison of 15 Impact Assessment Methods. GCB Bioenergy 2019, 11, 727–743. [Google Scholar] [CrossRef]
- Safarian, S. Climate Impact Comparison of Biomass Combustion and Pyrolysis with Different Applications for Biochar Based on LCA. Energies 2023, 16, 5541. [Google Scholar] [CrossRef]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Sulaiman, H.; Zularisam, A.W.; Nasrullah, M. Biochar Production Techniques Utilising Biomass Waste-Derived Materials and Environmental Applications—A Review. J. Hazard. Mater. Adv. 2022, 7, 100134. [Google Scholar] [CrossRef]
- Broumand, M.; Albert-Green, S.; Yun, S.; Hong, Z.; Thomson, M.J. Spray Combustion of Fast Pyrolysis Bio-Oils: Applications, Challenges, and Potential Solutions. Prog. Energy Combust. Sci. 2020, 79, 100834. [Google Scholar] [CrossRef]
- Bompard, E.; Deandreis, M.; Corgnati, S.; Lo Russo, S.; Masera, M.; Profumo, F.; Scudieri, P. MED & Italian Energy Report—Geopolitics of Energy in the Mediterranean Area between International Crises and New Energy Commodities; Giannini Editore: Napoli, Italy, 2023; ISBN 978-88-6906-320-6. [Google Scholar]
- Roberts, K.G.; Gloy, B.A.; Joseph, S.; Scott, N.R.; Lehmann, J. Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. Environ. Sci. Technol. 2010, 44, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.; Nascimento, L.; Soares, M.; Valério, N.; Ribeiro, A.; Faria, L.; Silva, A.; Pacheco, N.; Araújo, J.; Vilarinho, C. Life Cycle Assessment (LCA) of Biochar Production from a Circular Economy Perspective. Processes 2022, 10, 2684. [Google Scholar] [CrossRef]
- Giuliano, A.; Catizzone, E.; Freda, C.; Cornacchia, G. Valorization of OFMSW Digestate-Derived Syngas toward Methanol, Hydrogen, or Electricity: Process Simulation and Carbon Footprint Calculation. Processes 2020, 8, 526. [Google Scholar] [CrossRef]
- Koroneos, C.; Dompros, A.; Roumbas, G. Hydrogen Production via Biomass Gasification—A Life Cycle Assessment Approach. Chem. Eng. Process. Process Intensif. 2008, 47, 1261–1268. [Google Scholar] [CrossRef]
- Li, G.; Ma, S.; Liu, F.; Zhou, X.; Wang, K.; Zhang, Y. Life Cycle Water Footprint Assessment of Syngas Production from Biomass Chemical Looping Gasification. Bioresour. Technol. 2021, 342, 125940. [Google Scholar] [CrossRef]
- Marzeddu, S.; Cappelli, A.; Ambrosio, A.; Décima, M.A.; Viotti, P.; Boni, M.R. A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy. Land 2021, 10, 1256. [Google Scholar] [CrossRef]
- ISO14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Daminani, M.; Ferrara, N.; Ardente, F. Understanding Product Environmental Footprint and Organisation Environmental Footprint Methods; Publications Office of the European Union: Luxembourg, 2022; ISBN 9789276572145. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 3, 1218–1230. [Google Scholar] [CrossRef]
- Paraschiv, G.; Moiceanu, G.; Voicu, G.; Chitoiu, M.; Cardei, P.; Dinca, M.N.; Tudor, P. Optimization Issues of a Hammer Mill Working Process Using Statistical Modelling. Sustainability 2021, 13, 973. [Google Scholar] [CrossRef]
- Altıkat, A.; Alma, M.H.; Altıkat, A.; Bilgili, M.E.; Altıkat, S. A Comprehensive Study of Biochar Yield and Quality Concerning Pyrolysis Conditions: A Multifaceted Approach. Sustainability 2024, 16, 937. [Google Scholar] [CrossRef]
- Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and Characterization of Slow Pyrolysis Biochar: Influence of Feedstock Type and Pyrolysis Conditions. GCB Bioenergy 2013, 5, 104–115. [Google Scholar] [CrossRef]
- Singh Yadav, S.P.; Bhandari, S.; Bhatta, D.; Poudel, A.; Bhattarai, S.; Yadav, P.; Ghimire, N.; Paudel, P.; Paudel, P.; Shrestha, J.; et al. Biochar Application: A Sustainable Approach to Improve Soil Health. J. Agric. Food Res. 2023, 11, 100498. [Google Scholar] [CrossRef]
- Schaffer, S.; Pröll, T.; Al Afif, R.; Pfeifer, C. A Mass- and Energy Balance-Based Process Modelling Study for the Pyrolysis of Cotton Stalks with Char Utilization for Sustainable Soil Enhancement and Carbon Storage. Biomass Bioenergy 2019, 120, 281–290. [Google Scholar] [CrossRef]
- Ramachandran, S.; Yao, Z.; You, S.; Massier, T.; Stimming, U.; Wang, C.-H. Life Cycle Assessment of a Sewage Sludge and Woody Biomass Co-Gasification System. Energy 2017, 137, 369–376. [Google Scholar] [CrossRef]
- Homagain, K.; Shahi, C.; Luckai, N.; Sharma, M. Life Cycle Environmental Impact Assessment of Biochar-Based Bioenergy Production and Utilization in Northwestern Ontario, Canada. J. For. Res. 2015, 26, 799–809. [Google Scholar] [CrossRef]
- Hudiburg, T.W.; Law, B.E.; Wirth, C.; Luyssaert, S. Regional Carbon Dioxide Implications of Forest Bioenergy Production. Nat. Clim. Chang. 2011, 1, 419–423. [Google Scholar] [CrossRef]
- Pereira, E.I.P.; Suddick, E.C.; Six, J. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production. PLoS ONE 2016, 11, e0150837. [Google Scholar] [CrossRef]
- Muñoz, E.; Curaqueo, G.; Cea, M.; Vera, L.; Navia, R. Environmental Hotspots in the Life Cycle of a Biochar-Soil System. J. Clean. Prod. 2017, 158, 1–7. [Google Scholar] [CrossRef]
- Peters, J.F.; Iribarren, D.; Dufour, J. Biomass Pyrolysis for Biochar or Energy Applications? A Life Cycle Assessment. Environ. Sci. Technol. 2015, 49, 5195–5202. [Google Scholar] [CrossRef]
- Rosas, J.G.; Gómez, N.; Cara, J.; Ubalde, J.; Sort, X.; Sánchez, M.E. Assessment of Sustainable Biochar Production for Carbon Abatement from Vineyard Residues. J. Anal. Appl. Pyrolysis 2015, 113, 239–247. [Google Scholar] [CrossRef]
- Wang, Z.; Dunn, J.B.; Han, J.; Wang, M.Q. Effects of Co-Produced Biochar on Life Cycle Greenhouse Gas Emissions of Pyrolysis-Derived Renewable Fuels. Biofuels Bioprod. Biorefining 2014, 8, 189–204. [Google Scholar] [CrossRef]
- Kieush, L.; Schenk, J.; Koveria, A.; Hrubiak, A.; Hopfinger, H.; Zheng, H. Evaluation of Slag Foaming Behavior Using Renewable Carbon Sources in Electric Arc Furnace-Based Steel Production. Energies 2023, 16, 4673. [Google Scholar] [CrossRef]
- Puettmann, M.; Sahoo, K.; Wilson, K.; Oneil, E. Life Cycle Assessment of Biochar Produced from Forest Residues Using Portable Systems. J. Clean. Prod. 2020, 250, 119564. [Google Scholar] [CrossRef]
- Sifford, C.N.; Pierobon, F.; Gauguly, I.; Eastin, I.; Alvarado, E.; Rogers, L. Developing an Impact Assessment of Local Air Quality as a Result of Biomass Burns. Master’s Thesis, University of Washington, Seattle, WA, USA, 2017. [Google Scholar]
- Gnansounou, E.; Dauriat, A.; Villegas, J.; Panichelli, L. Bioresource Technology Life Cycle Assessment of Biofuels: Energy and Greenhouse Gas Balances. Bioresour. Technol. 2009, 100, 4919–4930. [Google Scholar] [CrossRef]
- Schmidt, H.-P.; Abiven, S.; Hagemann, N.; Meyer zu Drewer, J. Permanence of Soil Applied Biochar. An Executive Summary for Global Biochar Carbon Sink Certification. Biochar J. 2022, 109, 69–74. [Google Scholar]
GAS | SLOW | Unit | |
---|---|---|---|
Biomass input (FM) | 1.00 | ton | |
Biomass dry matter | 0.7 | ton | |
Chipping consumption | 212.1 | MJ/ton | |
Biochar | 3 | 16 | % |
Syngas + bio-oil | 67 | 54 | % |
Thermal energy | 7589 | 2700 | MJ/ton |
Electricity | 0.88 | 0.15 | MWh/ton |
Transport in diesel agricultural machinery | 4 | km | |
10 | km/h | ||
20 | L/h | ||
Biochar loading and spreading | 0.03 | 0.16 | ton |
Road transport input | 35.00 | tkm | |
Road transport output | 1.05 | 5.60 | tkm |
C content biochar | 63.9 | 64.1 | % |
C stock (100 years) (biochar) | 75.00 | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voccia, D.; Lamastra, L. Unpacking the Carbon Balance: Biochar Production from Forest Residues and Its Impact on Sustainability. Energies 2024, 17, 4582. https://doi.org/10.3390/en17184582
Voccia D, Lamastra L. Unpacking the Carbon Balance: Biochar Production from Forest Residues and Its Impact on Sustainability. Energies. 2024; 17(18):4582. https://doi.org/10.3390/en17184582
Chicago/Turabian StyleVoccia, Diego, and Lucrezia Lamastra. 2024. "Unpacking the Carbon Balance: Biochar Production from Forest Residues and Its Impact on Sustainability" Energies 17, no. 18: 4582. https://doi.org/10.3390/en17184582
APA StyleVoccia, D., & Lamastra, L. (2024). Unpacking the Carbon Balance: Biochar Production from Forest Residues and Its Impact on Sustainability. Energies, 17(18), 4582. https://doi.org/10.3390/en17184582