A Comprehensive Review of Integrated Energy Systems Considering Power-to-Gas Technology
Abstract
:1. Introduction
2. Planning and Economic Analysis
2.1. Planning Models of IES with PtG Technology
2.2. Economic Analysis of IES with PtG Technology
3. System Integration Enhancement
3.1. Optimization of IES with PtG Technology
3.2. Conversion Technologies
3.3. Energy Storage
4. The Role of PtG Technology
4.1. Generation
4.2. Transmission
4.3. Distribution
4.4. Consumption
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emrani, A.; Berrada, A. A comprehensive review on techno-economic assessment of hybrid energy storage systems integrated with renewable energy. J. Energy Storage 2024, 84, 111010. [Google Scholar] [CrossRef]
- Su, W.; Huang, A.Q. Proposing a Electricity Market Framework for the Energy Internet. In Proceedings of the IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; IEEE: Vancour, BC, Canada, 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Gao, R.; Tsoukalas, L.H. Towards an Energy Internet: A Game-Theoretic Approach to Price-Directed Energy Utilization. Energy-Effic. Comput. Netw. 2011, 54, 3–11. [Google Scholar] [CrossRef]
- Lewandowska-Bernat, A.; Desideri, U. Opportunities of Power-to-Gas Technology. Energy Procedia 2017, 105, 4569–4574. [Google Scholar] [CrossRef]
- McKenna, R.C.; Bchini, Q.; Weinand, J.M.; Michaelis, J.; König, S.; Köppel, W.; Fichtner, W. The Future Role of Power-to-Gas in the Energy Transition: Regional and Local Techno-Economic Analyses in Baden-Württemberg. Appl. Energy 2018, 212, 386–400. [Google Scholar] [CrossRef]
- Tsoukalas, L.H.; Gao, R. From Smart Grids to an Energy internet: Assumptions, Architectures and Requirements. In Proceedings of the 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China, 6–9 April 2008; pp. 94–98. [Google Scholar] [CrossRef]
- Bailera, M.; Lisbona, P.; Romeo, L.M.; Espatolero, S. Power to Gas Projects Review: Lab, Pilot and Demo Plants for Storing Renewable Energy and CO2. Renew. Sustain. Energy Rev. 2017, 69, 292–312. [Google Scholar] [CrossRef]
- Schiebahn, S.; Grube, T.; Robinius, M.; Tietze, V.; Kumar, B.; Stolten, D. Power to Gas: Technological Overview, Systems Analysis and Economic Assessment for a Case Study in Germany. Int. J. Hydrogen Energy 2015, 40, 4285–4294. [Google Scholar] [CrossRef]
- Reiter, G. Power-to-Gas, 1st ed.; Wiley-VCH Verlag GmbH & Co.KGaA: Weinheim, Germany, 2016; pp. 357–368. [Google Scholar]
- Varone, A.; Ferrari, M. Power to liquid and power to gas: An option for the German Energiewende. Renew. Sustain. Energy Rev. 2015, 45, 207–218. [Google Scholar] [CrossRef]
- Guandalini, G.; Campanari, S.; Romano, M.C. Power-to-Gas Plants and Gas Turbines for Improved Wind Energy Dispatchability: Energy and Economic Assessment. Appl. Energy 2015, 147, 117–130. [Google Scholar] [CrossRef]
- Chauhan, A.; Saini, R.P. A Review on Integrated Renewable Energy System Based Power Generation for Stand-Alone Applications: Configurations, Storage Options, Sizing Methodologies and Control. Renew. Sustain. Energy Rev. 2014, 38, 99–120. [Google Scholar] [CrossRef]
- Van Beuzekom, I.; Gibescu, M.; Pinson, P.; Slootweg, J.G. Optimal Planning of Integrated Multi-Energy Systems. In Proceedings of the 2017 IEEE Manchester PowerTech, Powertech, Manchester, UK, 18–22 June 2017. [Google Scholar] [CrossRef]
- Zhou, Y.; Ci, S.; Li, H.; Yang, Y. A new framework for peer-to-peer energy sharing and coordination in the energy internet. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, L. The Integrated Operation of Multiple Energy Carrier Used to Enhance the Reliability of the Integrated Energy System. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 8–12. [Google Scholar]
- Huang, A.Q.; Baliga, J. FREEDM System: Role of power electronics and power semiconductors in developing an energy internet. In Proceedings of the 2009 21st International Symposium on Power Semiconductor Devices & IC’s, Barcelona, Spain, 14–18 June 2009; pp. 9–12. [Google Scholar] [CrossRef]
- Jain, R.; Nagasawa, K.; Veda, S.; Sprik, S. Grid ancillary services using electrolyzer-Based power-to-Gas systems with increasing renewable penetration. e-Prime-Adv. Electr. Eng. Electron. Energy 2023, 6, 100308. [Google Scholar] [CrossRef]
- Gao, H.; Li, Z.; Wang, C.; Chen, S.; Fan, M.; Sun, H. Rolling dispatch framework of integrated electricity-gas system considering power-to-gas facilities and natural gas network dynamics: Modelling and case studies. Int. J. Electr. Power Energy Syst. 2023, 152, 109259. [Google Scholar] [CrossRef]
- Liu, F.; Duan, J.; Wu, C.; Tian, Q. Risk-averse distributed optimization for integrated electricity-gas systems considering uncertainties of Wind-PV and power-to-gas. Renew. Energy 2024, 227, 120358. [Google Scholar] [CrossRef]
- Kang, L.; Wang, J.; Yuan, X.; Cao, Z.; Yang, Y.; Deng, S.; Zhao, J.; Wang, Y. Research on energy management of integrated energy system coupled with organic Rankine cycle and power to gas. Energy Convers. Manag. 2023, 287, 117117. [Google Scholar] [CrossRef]
- Colelli, L.; Bassano, C.; Verdone, N.; Segneri, V.; Vilardi, G. Power-to-Gas: Process analysis and control strategies for dynamic catalytic methanation system. Energy Convers. Manag. 2024, 305, 118257. [Google Scholar] [CrossRef]
- Unsihuay, C.; Marangon-Lima, J.W.; Zambroni De Souza, A.C. Integrated Power Generation and Natural Gas Expansion Planning. In Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 1404–1409. [Google Scholar] [CrossRef]
- Unsihuay, C.; Marangon-Lima, J.W.; Zambroni De Souza, A.C. Short-Term Operation Planning of Integrated Hydrothermal and Natural Gas Systems. In Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 1410–1416. [Google Scholar] [CrossRef]
- Unsihuay, C.; Lima, J.W.M.; De Souza, A.C.Z. Modeling the Integrated Natural Gas and Electricity Optimal Power Flow. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–7. [Google Scholar] [CrossRef]
- Odetayo, B.; Maccormack, J.; Rosehart, W.D.; Zareipour, H. Integrated Planning of Natural Gas and Electricity Distribution Networks with the Presence of Distributed Natural Gas Fired Generators. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016. [Google Scholar] [CrossRef]
- Frank, E.; Gorre, J.; Ruoss, F.; Friedl, M.J. Calculation and analysis of efficiencies and annual performances of Power-to-Gas systems. Appl. Energy 2018, 218, 217–231. [Google Scholar] [CrossRef]
- Yamamoto, S.; Sayama, S.; Kunitomi, S.; Ogasawara, K.; Baba, N. Demonstration of a high-efficiency carbon dioxide capture and methanation system with heat/material integration for power-to-gas and zero carbon dioxide emissions in flue gasses. Int. J. Greenh. Gas. Control 2022, 114, 103584. [Google Scholar] [CrossRef]
- Kotowicz, J.; Węcel, D.; Kwilinski, A.; Brzęczek, M. Efficiency of the power-to-gas-to-liquid-to-power system based on green methanol. Appl. Energy 2022, 314, 14–16. [Google Scholar] [CrossRef]
- Saldarriaga-Cortes, C.A.; Salazar, H.; Moreno, R.; Jimenez-Estevez, G. Integrated planning of electricity and natural gas systems under uncertain hydro inflows: A multi-objetive approach. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Shao, C.; Shahidehpour, M.; Wang, X.; Wang, X.; Wang, B. Integrated Planning of Electricity and Natural Gas Transportation Systems for Enhancing the Power Grid Resilience. IEEE Trans. Power Syst. 2017, 32, 4418–4429. [Google Scholar] [CrossRef]
- Perez-Arriaga, I.J.; de Souza, A.C.Z.; Unsihuay-Vila, C.; Balestrassi, P.P.; Marangon-Lima, J.W. A Model to Long-Term, Multiarea, Multistage and Integrated Expansion Planning of Electricity and Natural Gas Systems. IEEE Trans. Power Syst. 2010, 25, 1154–1168. [Google Scholar] [CrossRef]
- Odetayo, B.; Kazemi, M.; MacCormack, J.; Rosehart, W.D.; Zareipour, H.; Seifi, A.R. A Chance Constrained Programming Approach to the Integrated Planning of Electric Power Generation, Natural Gas Network and Storage. IEEE Trans. Power Syst. 2018, 33, 6883–6893. [Google Scholar] [CrossRef]
- Barati, F.; Seifi, H.; Nateghi, A.; Sepasian, M.S.; Shafie-Khah, M.; Catalão, J.P.S. An Integrated Generation, Transmission and Natural Gas Grid Expansion Planning Approach for Large Scale Systems. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Zhao, B.; Conejo, A.J.; Sioshansi, R. Coordinated Expansion Planning of Natural Gas and Electric Power Systems. IEEE Trans. Power Syst. 2018, 33, 3064–3075. [Google Scholar] [CrossRef]
- Odetayo, B.; MacCormack, J.; Rosehart, W.D.; Zareipour, H. A Chance Constrained Programming Approach to Integrated Planning of Distributed Power Generation and Natural Gas Network. Electr. Power Syst. Res. 2017, 151, 197–207. [Google Scholar] [CrossRef]
- Saldarriaga, C.A.; Hincapie, R.A.; Salazar, H. An Integrated Expansion Planning Model of Electric and Natural Gas Distribution Systems Considering Demand Uncertainty. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015. [Google Scholar] [CrossRef]
- Borraz-Sánchez, C.; Bent, R.; Backhaus, S.; Blumsack, S.; Hijazi, H.; Van Hentenryck, P. Convex optimization for joint expansion planning of natural gas and power systems. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 2536–2545. [Google Scholar] [CrossRef]
- Van Bracht, N.; Moser, A. Generation expansion planning under uncertainty considering power-to-gas technology. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 6–9 June 2017. [Google Scholar] [CrossRef]
- Barati, F.; Sepasian, M.S.; Shafie-khah, M.; Catalao, J.P.S.; Nateghi, A.; Seifi, H.; Member, S.; Sepasian, M.S.; Nateghi, A.; Shafie-khah, M.; et al. Multi-Period Integrated Framework of Generation, Transmission and Natural Gas Grid Expansion Planning for Large-Scale Systems. IEEE Trans. Power Syst. 2014, 30, 2527–2537. [Google Scholar] [CrossRef]
- Huang, J.H.; Zhou, H.S.; Wu, Q.H.; Tang, S.W.; Hua, B.; Zhou, X.X. Assessment of an integrated energy system embedded with power-to-gas plant. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Melbourne, VIC, Australia, 28 November–1 December 2016; pp. 196–201. [Google Scholar] [CrossRef]
- Qiu, J.; Dong, Z.Y.; Zhao, J.H.; Xu, Y.; Zheng, Y.; Li, C.; Wong, K.P. Multi-Stage Flexible Expansion Co-Planning Under Uncertainties in a Combined Electricity and Gas Market. IEEE Trans. Power Syst. 2015, 30, 2119–2129. [Google Scholar] [CrossRef]
- de Boer, H.S.; Grond, L.; Moll, H.; Benders, R. The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels. Energy 2014, 72, 360–370. [Google Scholar] [CrossRef]
- Feijoo, F.; Pfeifer, A.; Herc, L.; Groppi, D. A long-term capacity investment and operational energy planning model with power-to-X and flexibility technologies. Renew. Sustain. Energy Rev. 2022; 167, 112781. [Google Scholar] [CrossRef]
- Al-zakwani, S.S.; Maroufmashat, A.; Mazouz, A.; Fowler, M.; Elkamel, A. Allocation of Ontario’s Surplus Electricity to Different Power to Gas Applications. Energies 2019, 12, 2675. [Google Scholar] [CrossRef]
- Mazza, A.; Bompard, E.; Chicco, G. Applications of Power to Gas Technologies in Emerging Electrical Systems. Renew. Sustain. Energy Rev. 2018, 92, 794–806. [Google Scholar] [CrossRef]
- Abusorrah, A.; Alabdulwahab, A.; Che, L.; Shahidehpour, M.; Zhang, X. Electricity-Natural Gas Operation Planning With Hourly Demand Response for Deployment of Flexible Ramp. IEEE Trans. Sustain. Energy 2016, 7, 996–1004. [Google Scholar] [CrossRef]
- Li, Y.; Wen, F.; Tian, F.; Xue, Y.; Dong, Z.Y.; Zheng, Y.; Zhang, R. Day-ahead schedule of a multi-energy system with power-to-gas technology. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Huang, A.Q.; Dale, S.J.; Zheng, J.P.; Heydt, G.T.; Crow, M.L. The Future Renewable Electric Energy Delivery and Management (FREEDM) System: The Energy Internet. Proc. IEEE 2010, 99, 133–148. [Google Scholar] [CrossRef]
- Khani, H.; Farag, H.E.Z. Optimal Day-Ahead Scheduling of Power-to-Gas Energy Storage and Gas Load Management in Wholesale Electricity and Gas Markets. IEEE Trans. Sustain. Energy 2018, 9, 940–951. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Y.; Li, Z.; Jiang, T.; Li, X. Two-stage robust operation of electricity-gas-heat integrated multi-energy microgrids considering heterogeneous uncertainties. Appl. Energy 2024, 371, 123690. [Google Scholar] [CrossRef]
- Marjanovic, I.; Bongers, T.; Lichtinghagen, J.; Moser, A. Influence of Power-to-Gas-Technology on Unit Commitment and Power System Operation. In Proceedings of the 2017 6th International Conference on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, 27–29 June 2017; pp. 536–540. [Google Scholar] [CrossRef]
- Ojeda-Esteybar, D.M.; Rubio-Barros, R.G.; Ano, O.; Vargas, A. Integration of Electricity and Natural Gas Systems-Identification of Coordinating Parameters. In Proceedings of the 2014 IEEE PES Transmission & Distribution Conference and Exposition—Latin America (PES T&D-LA), Medellin, Colombia, 10–13 September 2014. [Google Scholar] [CrossRef]
- Park, C.; Bigler, F.; Knazkins, V.; Kienzle, F. Feasibility Analysis of the Power-to-Gas Concept in the Future Swiss Distribution Grid. In Proceedings of the 24th International Conference & Exhibition on Electricity Distribution (CIRED), Glasgow, UK, 12–15 June 2017; Volume 2017, pp. 1768–1772. [Google Scholar]
- Zheng, X.; Xu, Y.; Li, Z.; Chen, H. Co-optimisation and settlement of power-gas coupled system in day-ahead market under multiple uncertainties. IET Renew. Power Gener. 2021, 15, 1632–1647. [Google Scholar] [CrossRef]
- Huang, G.; Wen, F.; Salam, M.A.; Dong, Z.; Zheng, Y.; Zhang, R. Optimal Collaborative Expansion Planning of Integrated Electrical and Natural Gas Energy Systems. In Proceedings of the 2016 IEEE Innovative Smart Grid Technologies—Asia (ISGT-Asia), Melbourne, VIC, Australia, 28 November–1 December 2016; pp. 378–383. [Google Scholar] [CrossRef]
- Meena, R.S.; Ieee, M. Performance and Feasibility Analysis of Integrated Hybrid System for Remote Isolated Communities. In Proceedings of the International Conference on Electrical Power and Energy Systems, Bhopal, India, 14–16 December 2016; pp. 305–309. [Google Scholar]
- Pursiheimo, E.; Holttinen, H.; Koljonen, T. Path Toward 100% Renewable Energy Future and Feasibility of Power-to-Gas Technology in Nordic Countries. IET Renew. Power Gener. 2017, 11, 1695–1706. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Ma, J.; Bie, Z. A Mixed-Integer Linear Programming Approach to Security-Constrained Co-Optimization Expansion Planning of Natural Gas and Electricity Transmission Systems. IEEE Trans. Power Syst. 2018, 33, 6368–6378. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, H.; Zeng, K.; Fan, H.; Chen, Q. Optimal scheduling of multiple energy system considering power to gas unit. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Simonis, B.; Newborough, M. Sizing and Operating Power-to-Gas Systems to Absorb Excess Renewable Electricity. Int. J. Hydrogen Energy 2017, 42, 21635–21647. [Google Scholar] [CrossRef]
- Xia, W.; Ren, Z.; Qin, H.; Dong, Z.Y. A coordinated operation method for networked hydrogen-power-transportation system. Energy 2024, 296, 131026. [Google Scholar] [CrossRef]
- Fang, J.; Wen, J.; Zeng, Q.; Ai, X.; Chen, Z. Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems. IEEE Trans. Sustain. Energy 2017, 9, 188–198. [Google Scholar] [CrossRef]
- Clegg, S. Mancarella, P. Integrated Modelling and Assessment of the Operational Impact of Power-to-Gas (P2G) on Electrical and Gas Transmission Networks. IEEE Trans. Sustain. Energy 2015, 6, 1234–1244. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Shahidehpour, M.; Wen, F.; Wang, K.; Huang, Y. Optimal Operation Strategy for Integrated Natural Gas Generating Unit and Power-to-Gas Conversion Facilities. IEEE Trans. Sustain. Energy 2018, 9, 1870–1879. [Google Scholar] [CrossRef]
- Leonzio, G. Design and feasibility analysis of a Power-to-Gas plant in Germany. J. Clean. Prod. 2017, 162, 609–623. [Google Scholar] [CrossRef]
- IEA Energy Storage. Available online: https://www.iea.org/energy-system/electricity/grid-scale-storage (accessed on 11 July 2023).
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Kotowicz, J.; Węcel, D.; Jurczyk, M. Analysis of component operation in power-to-gas-to-power installations. Appl. Energy 2018, 216, 45–59. [Google Scholar] [CrossRef]
- Vandewalle, J.; Bruninx, K.; William, D.; D’Haeseleer, W. Effects of large-scale power to gas conversion on the power, gas and carbon sectors and their interactions. Energy Convers. Manag. 2015, 94, 28–39. [Google Scholar] [CrossRef]
- Jentsch, M.; Trost, T.; Sterner, M. Optimal Use of Power-to-Gas Energy Storage Systems in an 85% Renewable Energy Scenario. Energy Procedia 2014, 46, 254–261. [Google Scholar] [CrossRef]
- Schrotenboer, A.H.; Veenstra, A.A.T.; Michiel, A.J.; Ursavas, E. A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy. Renew. Sustain. Energy Rev. 2022, 168, 112744. [Google Scholar] [CrossRef]
- Zakeri, B.; Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
- Lazard 2023. Available online: https://www.lazard.com/research-insights/2023-levelized-cost-of-energyplus/ (accessed on 12 April 2023).
- Energy System. Available online: https://www.iea.org/energy-system/renewables (accessed on 11 July 2023).
- Glenk, G.; Reichelstein, S. Reversible Power-to-Gas systems for energy conversion and storage. Nat. Commun. 2022, 13, 2010. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Feng, S. Power to gas: An option for 2060 high penetration rate of renewable energy scenario of China. Environ. Sci. Pollut. Res. 2022, 29, 6857–6870. [Google Scholar] [CrossRef]
- Litheko, A.; Oboirien, B.; Patel, B. Life cycle assessment of Power-to-Gas (PtG) technology—Evaluation of system configurations of renewable hydrogen and methane production. Sustain. Energy Technol. Assess. 2023, 60, 103527. [Google Scholar] [CrossRef]
- Clean Energy. Ruling Coalition has Agreed to Speedily Set a Capacity Mechanism to Be Operational by 2028. Available online: https://www.cleanenergywire.org/news/germany-hold-tenders-new-gas-power-plants-soon-promises-capacity-mechanism#:~:text=Germany%27s (accessed on 6 February 2024).
- NREL Power to Gas. Available online: https://www.nrel.gov/workingwithus/partners/partnerships-southern-california-gas.html (accessed on 1 March 2022).
- Wang, P.; Shi, B.; Li, N.; Kang, R.; Li, Y.; Wang, G.; Yang, L. CCUS development in China and forecast its contribution to emission reduction. Sci. Rep. 2023, 13, 17811. [Google Scholar] [CrossRef]
- Power to Gas. Available online: https://climate.mit.edu/posts/advances-power-gas-technologies-cost-and-conversion-efficiency (accessed on 25 April 2023).
- Li, N.; Aksoy, M.; Uday Kumar Nutakki, T.; Kumar Singh, P.; El-Shorbagy, M.A.; Dahari, M.; Alkhalaf, S.; Omair Alotaibi, K.; Elhosiny Ali, H. Development of a modified gas turbine-based sustainable power generation and water treatment system; Economical/environmental considerations and data-driven optimization. J. Clean. Prod. 2024, 450, 141904. [Google Scholar] [CrossRef]
- Rahimipetroudi, I.; Omer, A.; Hwan Park, S.; Haeng Hur, J.; Won Lee, D.; Rashid, K.; Bok Yang, J.; Keun Dong, S. Efficient 5 kW-class solid oxide fuel cell (SOFC) hotbox design with off gas integration for power generation. Appl. Therm. Eng. 2024, 249, 123459. [Google Scholar] [CrossRef]
- Son, Y.G.; Kwak, J.; Park, S.J.; Kim, S.Y. Enhancing target benefits of power system stakeholders: A columns and constraint generation-based power-to-gas linked economic dispatch. Electr. Power Syst. Res. 2024, 229, 110124. [Google Scholar] [CrossRef]
- Orjuela-Abril, S.; Torregroza-Espinosa, A.; Garrido-Yserte, R.; Hernández-Comas, B.; Duarte-Forero, J. Evaluation of an integrated electric power generation system with natural gas engines operating in dual mode through heat recovery with thermoelectric devices for hydrogen production. Therm. Sci. Eng. Prog. 2024, 47, 102284. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Liu, Y.; Chen, H.; Zhao, C.; Liu, L.; Jiang, H.; Zhu, L.; Ai, T. Power generation characteristics of pulsed anaerobic fluidized bed microbial fuel cell. Powder Technol. 2023, 416, 120020. [Google Scholar] [CrossRef]
- Zare, A.A.D.; Yari, M.; Mohammadkhani, F.; Nami, H.; Desideri, U. Thermodynamic and exergoeconomic analysis of a multi-generation gas-to-X system based on fuel-rich combustion to produce power, hydrogen, steam and heat. Sustain. Cities Soc. 2022, 86, 104139. [Google Scholar] [CrossRef]
- IEA IEA-Renewable. Available online: https://www.iea.org/energy-system/renewables (accessed on 15 November 2022).
- Lehner, M.; Tichler, R.; Koppe, M. Power-to-Gas: Technology and Business Models; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783319039947. [Google Scholar]
- Keller, J.T.; Kuper, G.H.; Mulder, M. Challenging natural monopolies: Assessing market power of gas transmission system operators for cross-border capacity. Energy Policy 2022, 170, 113228. [Google Scholar] [CrossRef]
- Kheirkhah Ravandi, Z.; Bozorgmehry Boozarjomehry, R.; Babaei, F.; Pishvaie, S.M.R. A unified benchmark for security and reliability assessment of the integrated chemical plant, natural gas and power transmission networks. J. Nat. Gas. Sci. Eng. 2021, 96, 104293. [Google Scholar] [CrossRef]
- Liang, K.; Wang, H.; Lin, Z.; Wen, F. Distributed load restoration for interdependent transmission-distribution-gas systems considering pipeline gas storage capacity. Int. J. Electr. Power Energy Syst. 2023, 153, 109254. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, L.; Liu, J.; Zhang, H.; Zhang, W.; Bian, Y.; Yan, J. Unpacking the effects of natural gas price transmission on electricity prices in Nordic countries. iScience 2024, 27, 109924. [Google Scholar] [CrossRef]
- Silvestre, I.; Pastor, R.; Neto, R.C. Power losses in natural gas and hydrogen transmission in the Portuguese high-pressure network. Energy 2023, 272, 127136. [Google Scholar] [CrossRef]
- Energiwende Energiewende. Available online: https://www.energiewende.de/start (accessed on 24 December 2023).
- Ingrid. Available online: https://mcphy.com/en/achievements/energy-storage/ingrid/?cn-reloaded=1 (accessed on 24 December 2023).
- Advanced Clean Energy Storage. Available online: https://www.energy.gov/lpo/advanced-clean-energy-storage (accessed on 1 June 2022).
- Fambri, G.; Diaz-Londono, C.; Mazza, A.; Badami, M.; Weiss, R. Power-to-Gas in gas and electricity distribution systems: A comparison of different modeling approaches. J. Energy Storage 2022, 55, 105454. [Google Scholar] [CrossRef]
- Fan, J.; He, P.; Li, C.; Zhao, C.; Ji, Y. A post-disaster restoration model for power-gas-transportation distribution networks considering spatial interdependency and energy hubs. Electr. Power Syst. Res. 2024, 233, 110505. [Google Scholar] [CrossRef]
- Duma, D.; Pollitt, M.G.; Covatariu, A.; Giulietti, M. Defining and measuring active distribution system operators for the electricity and natural gas sectors. Util. Policy 2024, 87, 101708. [Google Scholar] [CrossRef]
- Fambri, G.; Diaz-Londono, C.; Mazza, A.; Badami, M.; Sihvonen, T.; Weiss, R. Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration. Appl. Energy 2022, 312, 118743. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Liu, J.; He, S.; Zeng, X.; Yang, D.; Yang, G.; Li, L. Tracing the carbon capture energy distribution in a natural gas combined cycle power plant under variable operating conditions. Appl. Therm. Eng. 2024, 246, 123000. [Google Scholar] [CrossRef]
- Diaz-Londono, C.; Fambri, G.; Mazza, A.; Badami, M.; Bompard, E. A Real-Time Based Platform for Integrating Power-to-Gas in Electrical Distribution Grids. In Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC), Turin, Italy, 1–4 September 2020. [Google Scholar] [CrossRef]
- Shams, M.H.; Mansourlakouraj, M.; Liu, J.J.; Javadi, M.S.; Catalao, J.P.S. Bi-level two-stage stochastic operation of hydrogen-based microgrids in a distribution system. In Proceedings of the 2021 International Conference on Smart Energy Systems and Technologies (SEST), Vaasa, Finland, 6–8 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Mazza, A.; Cavana, M.; Mercado Medina, E.L.; Chicco, G.; Leone, P. Creation of Representative Gas Distribution Networks for Multi-vector Energy System Studies. In Proceedings of the 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Genova, Italy, 11–14 June 2019. [Google Scholar] [CrossRef]
- Cavana, M.; Mazza, A.; Chicco, G.; Leone, P. Electrical and gas networks coupling through hydrogen blending under increasing distributed photovoltaic generation. Appl. Energy 2021, 290, 116764. [Google Scholar] [CrossRef]
- Khani, H.; El-Taweel, N.; Farag, H.E.Z. Real-time optimal management of reverse power flow in integrated power and gas distribution grids under large renewable power penetration. IET Gener. Transm. Distrib. 2018, 12, 2325–2331. [Google Scholar] [CrossRef]
- Mazza, A.; Salomone, F.; Arrigo, F.; Bensaid, S.; Bompard, E.; Chicco, G. Impact of Power-to-Gas on distribution systems with large renewable energy penetration. Energy Convers. Manag. X 2020, 7, 100053. [Google Scholar] [CrossRef]
- El-Taweel, N.A.; Khani, H.; Farag, H.E.Z. Voltage regulation in active power distribution systems integrated with natural gas grids using distributed electric and gas energy resources. Int. J. Electr. Power Energy Syst. 2019, 106, 561–571. [Google Scholar] [CrossRef]
- Power to Hydrogen. Available online: https://power-h2.com/ (accessed on 1 July 2023).
- HyBalance. Available online: https://hybalance.eu/ (accessed on 1 July 2023).
- Pastore, L.M.; Lo Basso, G.; Quarta, M.N.; de Santoli, L. Power-to-gas as an option for improving energy self-consumption in renewable energy communities. Int. J. Hydrogen Energy 2022, 47, 29604–29621. [Google Scholar] [CrossRef]
- Energy for Growth. Available online: https://energyforgrowth.org/article/power-to-gas-for-long-term-energy-storage/ (accessed on 1 June 2022).
- Pastore, L.M.; Lo Basso, G.; Ricciardi, G.; de Santoli, L. Smart energy systems for renewable energy communities: A comparative analysis of power-to-X strategies for improving energy self-consumption. Energy 2023, 280, 128205. [Google Scholar] [CrossRef]
- Pramuanjaroenkij, A.; Kakaç, S. The fuel cell electric vehicles: The highlight review. Int. J. Hydrogen Energy 2023, 48, 9401–9425. [Google Scholar] [CrossRef]
- Energynews. Available online: https://energynews.biz/rwe-and-badenova-invest-e100m-to-build-largest-green-hydrogen-plant-in-germany/ (accessed on 1 March 2023).
- Hystock. Available online: https://www.hystock.nl/en (accessed on 1 December 2023).
Year | 2016 | 2030 | 2050 | Reference |
---|---|---|---|---|
Definite investment in €/kWel | 1500 | 900 | 500 | [5,44] |
Efficiency (LHV) | 70% | 75% | 80% | [4,5,7,8,45] |
Electricity cost in €/MWhel | 0 or 70 | 0 or 70 | 0 or 70 | [5,10] |
Rate for natural gas in €/MWhth | 15 | 34 | 50 | [5,44] |
Rate for CO2 budgets in €/t | 5 | 50 | 130 | [5,44] |
Technical Data | AEC | PEMEC | SOEC | Reference | |||
---|---|---|---|---|---|---|---|
Mid-Term | Long-Term | Mid-Term | Long-Term | Mid-Term | Long-Term | ||
Chemical reaction at anode | 2OH− → 0.5O2 + H2O + 2e− | H2O → 2H+ +0.5O2 + 2e− | O2− → 0.5O2 + 2e− | [8,9] | |||
Chemical reaction at cathode | 2H2O + 2e− → H2 + 2OH− | 2H+ +2e− → H2 | H2O + 2e− → H2+ O2− | [8,9] | |||
Production rate (m3 h−1) | <760 <1000 | <40 <500 | <5 >5 | [9] | |||
Min. part load (%) | 30–40 10–20 | 0–10 0–5 | N/a N/a | [4,8,9] | |||
Max. part overload (%) | <150 <150 | <200 <200 | N/a N/a | [9] | |||
Pressure (bar) | <30 <60 | <200 <200 | <25 <40 | [4,7,8,9,45] | |||
Temperature (C) | 60–80 60–90 | 60–80 60–100 | 700–1000 500–700 | [4,7,8,9,45] | |||
Electricity demand (system) (kWh m−3) | >4.6 >4.4 | >4.8 >4.4 | >3.2 >3.2 | [9] | |||
Current density (A cm−2) | <0.5 <0.8 | <1.0 <2.0 | <0.3 <1 | [9] | |||
Cell voltage (V) | >1.9 >1.8 | >1.8 >1.6 | >1.0 >1.0 | [9] | |||
Lifetime system (a) | 20 30 | 6–15 30 | N/a N/a | [9] | |||
Lifetime stack (h) | <100,000 <100,000 | <50,000 <100,000 | <5000 >5000 | [9] | |||
Development status | Commercial | Commercial | Under development | [9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faisal, S.; Gao, C. A Comprehensive Review of Integrated Energy Systems Considering Power-to-Gas Technology. Energies 2024, 17, 4551. https://doi.org/10.3390/en17184551
Faisal S, Gao C. A Comprehensive Review of Integrated Energy Systems Considering Power-to-Gas Technology. Energies. 2024; 17(18):4551. https://doi.org/10.3390/en17184551
Chicago/Turabian StyleFaisal, Shah, and Ciwei Gao. 2024. "A Comprehensive Review of Integrated Energy Systems Considering Power-to-Gas Technology" Energies 17, no. 18: 4551. https://doi.org/10.3390/en17184551
APA StyleFaisal, S., & Gao, C. (2024). A Comprehensive Review of Integrated Energy Systems Considering Power-to-Gas Technology. Energies, 17(18), 4551. https://doi.org/10.3390/en17184551