Development of Methods for Sensitivity Analysis of Electrical Energy Networks and Systems within State Space
Abstract
:1. Introduction
2. Load Flow Simulation Using State Space
= | source current | |
= | source voltage | |
= | inductance current | |
= | capacitor voltage | |
R | = | series resistance |
= | parallel resistance | |
= | = impedance of the inductance | |
= | = impedance of the capacitor |
= | Vector containing all sources | |
= | Resistances matrix | |
= | Reactance matrix | |
= | Vector of the state variables |
3. Sensitivity Analysis of Unregulated Electrical Energy Systems within State Space
3.1. Establishing the System Equations
3.2. Sensitivity Analysis of the Test Network
3.2.1. Sensitivity Analysis through Sequential Variation of Sources
3.2.2. Relationship between State Variables and System Matrix
3.2.3. Calculating the Sensitivity Matrix
3.3. Analysis of the Validity of the Sensitivity Matrix
3.3.1. Variation of the Nominal Power
Constant P/Q Ratio
Changed P/Q Ratio
3.3.2. Variation of the Ratio
3.3.3. Examining the System Using Current Sources
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Federal Network Agency. Festlegungsverfahren zur Integration von Steuerbaren Verbrauchseinrichtungen und Steuerbaren Netzanschlüssen nach § 14a Energiewirtschaftsgesetz (EnWG); Federal Network Agency: Berlin, Germany, 2023; Available online: https://www.bundesnetzagentur.de/DE/Beschlusskammern/BK06/BK6_83_Zug_Mess/841_SteuVE/BK6_SteuVE_node.html (accessed on 2 September 2024).
- Tinney, W.F.; Hart, C.E. Power Flow Solution by Newton’s Method. IEEE Trans. Power Appar. Syst. 1967, 11, 1449–1460. [Google Scholar] [CrossRef]
- Oswald, B.R. Berechnung von Drehstromnetzen: Berechnung Stationärer und Nichtstationärer Vorgänge mit Symmetrischen Komponenten und Raumzeigern; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2021. [Google Scholar] [CrossRef]
- Peschon, J.; Piercy, D.S.; Tinney, W.F.; Tveit, O.J. Sensitivity in Power Systems. IEEE Trans. Power Appar. Syst. 1968, 8, 1687–1696. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, A.K.; Singh, N. Sensitivity Based Capacitor Placement: A Comparative Study. In Proceedings of the 2011 6th International Conference on Industrial and Information Systems, Kandy, Sri Lanka, 16–19 August 2011; pp. 381–385. [Google Scholar] [CrossRef]
- Guddanti, B.; Roychowdhury, R.; Illindala, M.S. Evaluation of Modified Global Sensitivity Analysis Techniques for Power System Dynamic Studies. In Proceedings of the 2022 IEEE Industry Applications Society Annual Meeting (IAS), Detroit, MI, USA, 9–14 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Gao, Y.; Zeng, Y.; Zhang, F.; Guo, W.; Qin, C. An Optimization Method for Active Power Sensitivity Analysis. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–9 November 2018; pp. 137–141. [Google Scholar] [CrossRef]
- Schäfer, K.F. Netzberechnung: Verfahren zur Berechnung Elektrischer Energieversorgungsnetze; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2023. [Google Scholar] [CrossRef]
- Blenk, T.; Weindl, C. Fundamentals of State-Space Based Load Flow Calculation of Modern Energy Systems. Energies 2023, 16, 4872. [Google Scholar] [CrossRef]
- Schneider, M.E. Stationäre Optimierung Elektrischer Energieversorgungsnetze im Zustandsraum. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 1999. [Google Scholar]
- Schwarz, R. Analyse Nichtlinearer Netzwerke Im Erweiterten Zustandsraum. Habilitation Thesis, Technische Universität Chemnitz, Chemnitz, Germany, 1992. [Google Scholar]
- Weindl, C.; Herold, G. Description of a State-Space Oriented Transient Network Simulation Methodology for Power Systems with Semiconductor Based Devices. In Proceedings of the 11th International Power Electronics and Motion Control Conference EPE-PEMC 2004, Riga, Latvia, 2–4 September 2004. [Google Scholar]
State Variable | ||||
---|---|---|---|---|
3.5122 | 4.4411 | 2.9769 | 3.4699 | |
230.0000 | 250.7080 | 232.1241 | 230.1679 | |
229.2219 | 249.7235 | 231.4651 | 229.3992 | |
3.5131 | 4.4420 | 2.9777 | 3.4707 | |
229.8701 | 250.3030 | 232.2476 | 230.0469 | |
2.9156 | 2.6066 | 3.5188 | 2.9129 | |
6.4304 | 7.0505 | 6.4982 | 6.3854 | |
2.9147 | 2.6056 | 3.5178 | 2.9120 |
State Variable | |||
---|---|---|---|
0.3144 | 0.1830 | 0.0315 | |
0.0892 | 0.0092 | 0.0017 | |
0.0885 | 0.0098 | 0.0017 | |
0.3144 | 0.1829 | 0.0315 | |
0.0880 | 0.0103 | 0.0017 | |
0.1050 | 0.2070 | 0.0020 | |
0.1051 | 0.0116 | 0.0168 | |
0.1051 | 0.2071 | 0.0020 |
0.366 | 0.183 | 0 | 0.183 | 0.366 | 0.183 | |
0.0185 | 0.0092 | 0 | 0.0092 | 0.0185 | 0.0092 | |
0.0196 | 0.0098 | 0 | 0.0098 | 0.0196 | 0.0098 | |
0.3659 | 0.1829 | 0 | 0.1829 | 0.3659 | 0.1829 | |
0.0207 | 0.0103 | 0 | 0.0103 | 0.0207 | 0.0103 | |
0.414 | 0.207 | 0 | 0.207 | 0.414 | 0.207 | |
0.0232 | 0.0116 | 0 | 0.0116 | 0.0232 | 0.0116 | |
0.4142 | 0.2071 | 0 | 0.2071 | 0.4142 | 0.2071 |
0.2014 | 0.2014 | 0.1007 | 0.1007 | 0 | 0 | 0.1007 | 0.1007 | 0.2014 | 0.2014 | |
0.0112 | 0.0112 | 0.0056 | 0.0056 | 0 | 0 | 0.0056 | 0.0056 | 0.0112 | 0.0112 | |
0.0118 | 0.0118 | 0.0059 | 0.0059 | 0 | 0 | 0.0059 | 0.0059 | 0.0118 | 0.0118 | |
0.2013 | 0.2013 | 0.1006 | 0.1006 | 0 | 0 | 0.1006 | 0.1006 | 0.2013 | 0.2013 | |
0.0124 | 0.0124 | 0.0062 | 0.0062 | 0 | 0 | 0.0062 | 0.0062 | 0.0124 | 0.0124 | |
0.1999 | 0.1999 | 0.1 | 0.1 | 0 | 0 | 0.1 | 0.1 | 0.1999 | 0.1999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blenk, T.; Weindl, C. Development of Methods for Sensitivity Analysis of Electrical Energy Networks and Systems within State Space. Energies 2024, 17, 4489. https://doi.org/10.3390/en17174489
Blenk T, Weindl C. Development of Methods for Sensitivity Analysis of Electrical Energy Networks and Systems within State Space. Energies. 2024; 17(17):4489. https://doi.org/10.3390/en17174489
Chicago/Turabian StyleBlenk, Tobias, and Christian Weindl. 2024. "Development of Methods for Sensitivity Analysis of Electrical Energy Networks and Systems within State Space" Energies 17, no. 17: 4489. https://doi.org/10.3390/en17174489
APA StyleBlenk, T., & Weindl, C. (2024). Development of Methods for Sensitivity Analysis of Electrical Energy Networks and Systems within State Space. Energies, 17(17), 4489. https://doi.org/10.3390/en17174489