A Comparison of the Life-Cycle Impacts of the Concentrating Solar Power with the Product Environmental Footprint and ReCiPe Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope
2.2. Technology Description
2.3. Life Cycle Inventory Data
2.4. Life-Cycle Impact Assessment Methods
3. Results and Discussion
3.1. Life Cycle Environmental Impacts
3.2. Single-Score Results
3.3. Contribution of Components to Individual Impacts
3.4. Contribution of Components to Single-Score Results
4. Conclusions and Future Paths for Eco-Design Studies
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | Acidification potential |
CSP | Concentrating solar power |
disease inc. | Disease incidence |
EC | European Commission |
EP | Eutrophication potential |
ET | Ecotoxicity |
GW | Gigawatt |
GWP | Global warming potential |
HS | Hitec salt |
HT | Human toxicity |
HTF | Heat-transfer fluid |
IEA | International Energy Agency |
IPCC | Intergovernmental Panel on Climate Change |
IR | Ionising radiation |
ISO | International Organization for Standardization |
kg CO2 eq | Kilogram carbon dioxide equivalent |
kWh | Kilowatt hour |
LCA | Life-cycle assessment |
LCIA | Life-cycle impact assessment |
LU | Land use |
m3 depriv. | Cubic meter-deprived |
MJ | Megajoule |
MW | Megawatt |
ODP | Ozone depletion potential |
OEF | Organization environmental footprint |
OEFSR | Organization environmental footprint sector rules |
PCOF | Photochemical ozone formation |
PEF | Product environmental footprint |
PEFCR | Product environmental footprint category rules |
PT | Parabolic trough |
Pt | Point |
PV | Photovoltaics |
RU | Resource use |
SS | Solar salt |
ST | Solar tower |
TES | Thermal-energy storage system |
UNEP | United Nation Environment Program |
WU | Water use |
References
- IRENA. Renewable Power Generation Costs in 2019; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Răboacă, M.S.; Badea, G.; Enache, A.; Filote, C.; Răsoi, G.; Rata, M.; Lavric, A.; Felseghi, R.-A. Concentrating Solar Power Technologies. Energies 2019, 12, 1048. [Google Scholar] [CrossRef]
- IEA. Renewables 2020—Analysis and Forecast to 2025; International Energy Agency: Paris, France, 2020. [Google Scholar]
- Ferruzzi, G.; Delcea, C.; Barberi, A.; Di Dio, V.; Di Somma, M.; Catrini, P.; Guarino, S.; Rossi, F.; Parisi, M.L.; Sinicropi, A.; et al. Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives. Energies 2023, 16, 8082. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Senthilkumar, T. Five Decades of Evolution of Solar Photovoltaic Thermal (PVT) Technology—A Critical Insight on Review Articles. J. Clean. Prod. 2021, 322, 128997. [Google Scholar] [CrossRef]
- Kumar, L.; Hasanuzzaman, M.; Rahim, N.A. Global Advancement of Solar Thermal Energy Technologies for Industrial Process Heat and Its Future Prospects: A Review. Energy Convers. Manag. 2019, 195, 885–908. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Xu, Q.; Luo, Q.; Xuan, Y. MXene Reconciles Concurrent Enhancement of Thermal Conductivity and Mechanical Robustness of SiC-Based Thermal Energy Storage Composites. DeCarbon 2023, 1, 100005. [Google Scholar] [CrossRef]
- Lamnatou, C.; Notton, C.; Chemisana, D.; Cristofari, C. Storage Systems for Building-Integrated Photovoltaic (BIPV) and Building-Integrated Photovoltaic/Thermal (BIPVT) Installations: Environmental Profile and Other Aspects. Sci. Total Environ. 2020, 699, 134269. [Google Scholar] [CrossRef] [PubMed]
- Koli, P.; Kumar, R.; Dayma, Y.; Dheerata; Jonwal, M. Graphite Counter Electrode Modified Tropaeolin-O Photo-sensitized Photogalvanic Cells for Solar Power and Storage. EcoEnergy 2024, 2, 278–298. [Google Scholar] [CrossRef]
- Speranza, R.; Zaccagnini, P.; Sacco, A.; Lamberti, A. High-Voltage Energy Harvesting and Storage System for Internet of Things Indoor Application. Sol. RRL 2022, 6, 2200245. [Google Scholar] [CrossRef]
- Vignarooban, K.; Xu, X.; Arvay, A.; Hsu, K.; Kannan, A.M. Heat Transfer Fluids for Concentrating Solar Power Systems—A Review. Appl. Energy 2015, 146, 383–396. [Google Scholar] [CrossRef]
- Horne, R. Life Cycle Assessment: Origins, Principles and Context. In Life Cycle Assessment—Principles, Practice and Prospects; CSIRO Publishing: Collingwood, VIC, Australia, 2009; pp. 1–8. [Google Scholar]
- Fava, J.A. Life Cycle Initiative: A Joint UNEP/SETAC Partnership to Advance the Life-Cycle Economy. Int. J. Life Cycle Assess. 2002, 7, 196–198. [Google Scholar] [CrossRef]
- Frischknecht, R.; Heath, G.; Raugei, M.; Sinha, P.; de Wild-Scholten, M. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity; International Energy Agency: Paris, France, 2016. [Google Scholar]
- European Commission. Understanding Product Environmental Footprint and Organisation Environmental Footprint Methods; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- ISO 14040:2006; ISO Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- Bjørn, A.; Owsianiak, M.; Molin, C.; Hauschild, M.Z. LCA History. In Life Cycle Assessment; Hauschild, M.Z., Rosenbaum, R.K., Hauschild, S.I.O., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Luu, Q.L.; Van Doan, B.; Nguyen, N.Q.; Nguyen, N.H. Life Cycle Assessment (LCA) of an Integrated Solar PV and Wind Power System in Vietnam. J. Asian Energy Stud. 2020, 4, 36–47. [Google Scholar] [CrossRef]
- Leontief, W. Chapter 11: Environmental Repercussions and the Economic Structure: An Input-Output Approach. In Input-Output Economics; Oxford University Press: New York, NY, USA, 1986. [Google Scholar]
- Gibon, T.; Wood, R.; Arvesen, A.; Bergesen, J.D.; Suh, S.; Hertwich, E.G. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change. Environ. Sci. Technol. 2015, 49, 11218–11226. [Google Scholar] [CrossRef] [PubMed]
- Luu, L.Q.; Gibon, T.; Cellura, M.; Sanseverino, E.R.; Longo, S. Integrated Hybrid Multi-Regional Input-Output for Assessing Life Cycle Air Emissions of the Italian Power System. Energy 2024, 290, 130109. [Google Scholar] [CrossRef]
- ISO 14044:2006; ISO Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Cellura, M.; Luu, L.Q.; Guarino, F.; Minestra, M. Life Cycle Greenhouse Gas Emissions and Relevant Impacts of Concentrating Solar Technologies. In Proceedings of the Networks, Markets and People Symposium 2024 (NMP2024), Reggio Calabria, Italy, 22–24 May 2024. [Google Scholar]
- Gobio-Thomas, L.B.; Darwish, M.; Stojceska, V. Environmental Impacts of Solar Thermal Power Plants Used in Industrial Supply Chains. Therm. Sci. Eng. Prog. 2023, 38, 101670. [Google Scholar] [CrossRef]
- NREL. SolarPACES—Concentrating Solar Power (CSP) Projects; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2022. [Google Scholar]
- EPLCA. Environmental Footprint (EF) Impact Assessment; European Platform on Life Cycle Assessment: Brussels, Belgium; Available online: https://eplca.jrc.ec.europa.eu/EFVersioning.html (accessed on 14 August 2024).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.D.M.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe 2016 v1.1 A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization; RIVM: Bilthoven, The Netherlands, 2016; p. 201. [Google Scholar]
- Sala, S.; Cerutti, A.; Pant, R. Development of a Weighting Approach for Environmental Footprint; Publication Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-68041-0. [Google Scholar]
- Vieira, M. The End of the PEF Pilot Phase and the Start of a Beautiful Friendship; Pre Sustainability 2018. Available online: https://pre-sustainability.com/articles/the-end-of-the-pef-pilot-phase-review-transition-phase/ (accessed on 14 August 2024).
- European Commission. Commission Recommendation of 16.12.2021 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Cordella; Sala, S. The Environmental Footprint Methods: What, Why, How, Where; TAIEX-EIR Multi-country Flagship Workshop on best practices of use of Environmental Footprint methods on the EU market. Brussels, Belgium, 30 May 2024. Available online: https://webgate.ec.europa.eu/TMSWebRestrict/resources/js/app/#/library/detail/85542 (accessed on 14 August 2024).
- Polverini, D.; Espinosa, N.; Eynard, U.; Leccisi, E.; Ardente, F.; Mathieux, F. Assessing the Carbon Footprint of Photovoltaic Modules through the EU Ecodesign Directive. Sol. Energy 2023, 257, 1–9. [Google Scholar] [CrossRef]
- PEFCR PV Technical Secretariat Product Environmental Footprint Category Rules (PEFCR). Photovoltaic Modules Used in Photovoltaic Power Systems for Electricity Generation. 2019. Available online: https://ec.europa.eu/environment/eussd/smgp/pdf/PEFCR_PV_electricity_feb2020_2.pdf (accessed on 14 August 2024).
- Beccali, M.; Cellura, M.; Longo, S. LCA and Techno-Eco Comparison between Reference and New Systems; IEA Task 53 SHC; International Energy Agency: Paris, France, 2018. [Google Scholar]
PEF | ReCiPe | ||
---|---|---|---|
Impact Category | Unit of Measure | Impact Category | Unit of Measure |
Climate change | kg CO2 eq | Climate change | kg CO2 eq |
Ozone depletion | kg CFC-11 eq | Ozone depletion | kg CFC-11 eq |
Human toxicity, cancer | CTUh | Human toxicity, cancer | kg 1,4 DCB |
Human toxicity, non-cancer | CTUh | Human toxicity, non-cancer | kg 1,4 DCB |
Particulate matter | disease incidence | Fine-particulate matter formation | kg PM2.5 eq |
Ionizing radiation, human health | kBq U-235 eq | Ionizing radiation | kBq Co-60 eq |
Photochemical ozone formation, human health | kg NMVOC eq | Photochemical oxidant formation: human health | kg NOx eq |
Photochemical oxidant formation, terrestrial ecosystems | kg NOx eq | ||
Acidification | mol H+ eq | Terrestrial acidification | kg SO2 eq |
Eutrophication, terrestrial | mol N eq | ||
Eutrophication, freshwater | kg P eq | Freshwater eutrophication | kg P eq |
Eutrophication, marine | kg N eq | ||
Terrestrial ecotoxicity | kg 1,4 DCB eq | ||
Ecotoxicity, freshwater | CTUe | Freshwater ecotoxicity | kg 1,4 DCB eq |
Marine ecotoxicity | kg 1,4 DCB eq | ||
Land use | pt | Land use | m2 × yr annual cropland eq |
Water use | m3 world eq | Water use | m3 water eq consumed |
Resource use, minerals and metals | kg Sb eq | Mineral resource scarcity | kg Cu eq |
Resource use, fossils | MJ | Fossil resource scarcity | kg oil eq |
Impact Category | Normalization Factor (Unit of Measure per Person) | Weighting Factor (%) |
---|---|---|
Climate change | 8.10 × 103 | 21.06 |
Ozone depletion | 5.36 × 10−2 | 6.31 |
Human toxicity, cancer | 1.69 × 10−5 | 2.13 |
Human toxicity, non-cancer | 2.30 × 10−4 | 1.84 |
Particulate matter | 5.95 × 10−4 | 8.96 |
Ionizing radiation, human health | 4.22 × 103 | 5.01 |
Photochemical ozone formation, human health | 4.06 × 101 | 4.78 |
Acidification | 5.56 × 101 | 6.2 |
Eutrophication, terrestrial | 1.77 × 102 | 3.71 |
Eutrophication, freshwater | 1.61 × 100 | 2.8 |
Eutrophication, marine | 1.95 × 101 | 2.96 |
Ecotoxicity, freshwater | 4.27 × 104 | 1.92 |
Land use | 8.19 × 105 | 7.94 |
Water use | 1.15 × 104 | 8.51 |
Resource use, minerals and metals | 6.36 × 10−2 | 7.55 |
Resource use, fossils | 6.50 × 104 | 8.32 |
Impact Category | Unit | PTHS | PTSS | STHS | STSS | Difference between Technologies | Difference between HTFs |
---|---|---|---|---|---|---|---|
Acidification | mol H+ eq | 3.58 × 10−4 | 3.50 × 10−4 | 2.77 × 10−4 | 2.76 × 10−4 | 28% | 1% |
Global warming potential | kg CO2 eq | 8.36 × 10−2 | 8.26 × 10−2 | 7.53 × 10−2 | 7.46 × 10−2 | 11% | 1% |
Ecotoxicity, freshwater | CTUe | 6.29 × 10−1 | 6.28 × 10−1 | 1.96 × 10−1 | 1.94 × 10−1 | 222% | 0% |
Particulate matter formation | disease inc. | 3.61 × 10−9 | 3.62 × 10−9 | 2.70 × 10−9 | 2.61 × 10−9 | 36% | 1% |
Eutrophication, marine | kg N eq | 9.24 × 10−5 | 9.31 × 10−5 | 4.37 × 10−5 | 4.40 × 10−5 | 112% | −1% |
Eutrophication, freshwater | kg P eq | 1.28 × 10−5 | 1.25 × 10−5 | 1.07 × 10−5 | 1.09 × 10−5 | 17% | 0% |
Eutrophication, terrestrial | mol N eq | 9.97 × 10−4 | 9.61 × 10−4 | 4.89 × 10−4 | 4.79 × 10−4 | 102% | 3% |
Human toxicity, cancer | CTUh | 1.08 × 10−10 | 1.07 × 10−10 | 1.11 × 10−10 | 1.11 × 10−10 | −3% | 0% |
Human toxicity, non-cancer | CTUh | 6.58 × 10−10 | 6.39 × 10−10 | 7.94 × 10−10 | 7.92 × 10−10 | −18% | 2% |
Ionizing radiation | kBq U-235 eq | 1.87 × 10−3 | 1.61 × 10−3 | 1.30 × 10−3 | 1.22 × 10−3 | 38% | 12% |
Land use | Pt | 3.47 × 100 | 3.43 × 100 | 3.98 × 100 | 3.97 × 100 | −13% | 1% |
Ozone depletion | kg CFC-11 eq | 3.80 × 10−9 | 3.76 × 10−9 | 2.69 × 10−9 | 2.68 × 10−9 | 41% | 1% |
Photochemical oxidant formation | kg NMVOC eq | 3.30 × 10−4 | 3.33 × 10−4 | 2.12 × 10−4 | 2.13 × 10−4 | 56% | −1% |
Resource use, fossils | MJ | 1.10 × 100 | 1.10 × 100 | 9.83 × 10−1 | 9.82 × 10−1 | 12% | 0% |
Resource use, minerals and metals | kg Sb eq | 4.57 × 10−7 | 4.26 × 10−7 | 4.14 × 10−7 | 4.05 × 10−7 | 8% | 5% |
Water use | m3 depriv. | 6.63 × 10−2 | 1.92 × 10−2 | 3.00 × 10−2 | 1.75 × 10−2 | 80% | 162% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luu, L.Q.; Cellura, M.; Longo, S.; Guarino, F. A Comparison of the Life-Cycle Impacts of the Concentrating Solar Power with the Product Environmental Footprint and ReCiPe Methods. Energies 2024, 17, 4461. https://doi.org/10.3390/en17174461
Luu LQ, Cellura M, Longo S, Guarino F. A Comparison of the Life-Cycle Impacts of the Concentrating Solar Power with the Product Environmental Footprint and ReCiPe Methods. Energies. 2024; 17(17):4461. https://doi.org/10.3390/en17174461
Chicago/Turabian StyleLuu, Le Quyen, Maurizio Cellura, Sonia Longo, and Francesco Guarino. 2024. "A Comparison of the Life-Cycle Impacts of the Concentrating Solar Power with the Product Environmental Footprint and ReCiPe Methods" Energies 17, no. 17: 4461. https://doi.org/10.3390/en17174461
APA StyleLuu, L. Q., Cellura, M., Longo, S., & Guarino, F. (2024). A Comparison of the Life-Cycle Impacts of the Concentrating Solar Power with the Product Environmental Footprint and ReCiPe Methods. Energies, 17(17), 4461. https://doi.org/10.3390/en17174461