Revealing the Intrinsic Mechanisms of Hot and Cold Spots within a Locally Shaded Photovoltaic Module Based on Micro-Electrical Characteristics
Abstract
:1. Introduction
2. Experimental Methods and Calculation Settings
2.1. Experimental Methods
2.2. Calculation Settings
3. Results and Discussion
3.1. Micro-Electrical Characteristics of Different Solar Cells within a Locally Shaded PV Module
3.2. Heat-Source Power Densities for Different Positions within a Locally Shaded PV Module
3.3. Temperature Distribution within a Locally Shaded PV Module
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The State Council of the People’s Republic of China. Solar Power Installed Capacity Breaks through 600 Million Kilowatts. Available online: https://www.gov.cn/yaowen/liebiao/202401/content_6929204.htm (accessed on 2 February 2024).
- Ren, Z.; Chen, Y.; Song, C.; Liu, M.; Xu, A.; Zhang, Q. Economic analysis of rooftop photovoltaics system under different shadowing conditions for 20 cities in China. Build. Simul. 2024, 17, 235–252. [Google Scholar] [CrossRef]
- Huang, J.; Chen, X.; Yang, H.; Zhang, W. Numerical investigation of a novel vacuum photovoltaic curtain wall and integrated optimization of photovoltaic envelope systems. Appl. Energy 2018, 229, 1048–1060. [Google Scholar] [CrossRef]
- Li, S.; Ma, T.; Wang, D.J. Photovoltaic pavement and solar road: A review and perspectives. Sustain. Energy Technol. Assess. 2023, 55, 102933. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Z.; Xiong, W.; Zhang, L.; Zhao, C.; Yin, Y. Performance simulation and optimization of building façade photovoltaic systems under different urban building layouts. Energy 2024, 288, 129708. [Google Scholar] [CrossRef]
- Bulany, P.; Zhang, R. Shading analysis & improvement for distributed residential grid-connected photovoltaics systems. In Proceedings of the 52nd Annual Conference of the Australian Solar Council, Melbourne, Australia, May 2024. [Google Scholar]
- Zhu, D.; Wang, D.; Wang, F.; Gong, X.; Yang, G.; Yan, R. Experimental study of the effect of fallen leaf shading on the polarization characteristics of photovoltaic modules. SN Appl. Sci. 2023, 5, 165. [Google Scholar] [CrossRef]
- Swart, A.J. Quantifying the Impact of a Pigeon Dropping on the Output Power of a 10W PV Module. IJEETC 2021, 10, 54–59. [Google Scholar] [CrossRef]
- Simon, M.; Meyer, E.L. Detection and analysis of hot-spot formation in solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 106–113. [Google Scholar] [CrossRef]
- Ghosh, S.; Singh, S.K.; Yadav, V.K. Experimental investigation of hotspot phenomenon in PV arrays under mismatch conditions. Sol. Energy 2023, 253, 219–230. [Google Scholar] [CrossRef]
- Numan, A.; Hussein, H.A.; Dawood, Z.S. Hot spot analysis of photovoltaic module under partial shading conditions by using IR-imaging technology. Eng. Technol. J. 2021, 39, 1338–1344. [Google Scholar] [CrossRef]
- Asadpour, R.; Alam, M.A. Worldwide Lifetime Prediction of c-Si Modules Due to Finger Corrosion: A Phenomenological Approach. IEEE J. Photovolt. 2022, 12, 1211–1218. [Google Scholar] [CrossRef]
- Pandian, A.; Bansal, K.; Thiruvadigal, D.J.; Sakthivel, S. Fire hazards and overheating caused by shading faults on photo voltaic solar panel. Fire Technol. 2016, 52, 349–364. [Google Scholar] [CrossRef]
- He, W.; Liu, F.; Ji, J.; Zhang, S.; Chen, H. Safety analysis of solar module under partial shading. Int. J. Photoenergy 2015, 1, 907282. [Google Scholar] [CrossRef]
- Oufettoul, H.; Lamdihine, N.; Motahhir, S.; Lamrini, N.; Abdelmoula, I.A.; Aniba, G. Comparative performance analysis of PV module positions in a solar PV array under partial shading conditions. IEEE Access 2023, 11, 12176–12194. [Google Scholar] [CrossRef]
- Fodah, A.E.M.; Abdelwahab, T.A.M.; Ali, K.A.M.; Osman, Y.K.O.T.; Abuhussein, M.F.A.; El-wahhab, G.G.A. Performance evaluation of solar photovoltaic panels under bird droppings accumulation using thermography. MRS Energy Sustain. 2024, 11, 150–160. [Google Scholar] [CrossRef]
- Garcìa, M.A.; Herrmann, W.; Böhmer, W.; Proisy, B. Thermal and electrical effects caused by outdoor hot-spot testing in associations of photovoltaic cells. Prog. Photovolt. Res. Appl. 2003, 11, 293–307. [Google Scholar] [CrossRef]
- COMSOL Multiphysics®, Version 6.2; cn.comsol.com. COMSOL AB: Stockholm, Sweden.
- Lu, S.; Li, Z.; Ma, T. Analysis of the power loss and quantification of the energy distribution in PV module. Appl. Energy 2020, 260, 114333. [Google Scholar]
- Singh, J.P.; Guo, S.; Peters, I.M.; Aberle, A.G.; Walsh, T.M. Comparison of glass/glass and glass/backsheet PV modules using bifacial silicon solar cells. Photovoltaic 2015, 5, 783–791. [Google Scholar] [CrossRef]
- Li, Y.F.; Liu, Z.H.; Liu, D.; Wang, Z.; Gong, Y.; Gao, W.; Liu, Y.; An, J.; Li, M. The Mechanism of the Semi-Transparent Coverings Affecting the Power Generation Capacity of the Photovoltaic Module and Array. Energies 2024, 17, 1601. [Google Scholar] [CrossRef]
- Oulefki, A.; Trongtirakul, T.; Agaian, S.; Benbelkacem, S.; Zenati, N. Multi-view VR imaging for enhanced analysis of dust accumulation on solar panels. Solar Energy 2024 279, 112708. [CrossRef]
- Oulefki, A.; Himeur, Y.; Trongtirakul, T.; Amara, K.; Agaian, S.; Benbelkacem, S.; Guerroudji, M.A.; Zemmouri, M.; Ferhat, S.; Atalla, S.; et al. Detection and analysis of deteriorated areas in solar PV modules using unsupervised sensing algorithms and 3D augmented reality. Heliyon 2024, 10, e27973. [Google Scholar] [CrossRef] [PubMed]
Materials | Glass | EVA | Si | TPT | Al |
---|---|---|---|---|---|
Thermal conductivity (W·m−1·K−1) | 6.17 | 0.34 | 148.0 | 0.24 | 230.0 |
Density (kg·m−3) | 2508.0 | 951.0 | 2400.0 | 2200.0 | 2700.0 |
Constant pressure heat capacity (J·kg−1·K−1) | 830.0 | 1400.0 | 124.0 | 1050.0 | 900.0 |
Irradiance (W/m2) | Shading Ratio | Voltage of Module (V) | Voltage of Shaded Cell (V) | Voltage of Unshaded Cell (V) | Current (A) | Reverse-Bias Current Density (A/m2) |
---|---|---|---|---|---|---|
250 | 0 | 16.488 | 0.458 | 0.458 | 1.681 | - |
1/4 | 15.970 | −0.130 | 0.460 | 1.310 | 10.717 | |
1/2 | 14.120 | −3.800 | 0.512 | 0.950 | 11.944 | |
3/4 | 13.380 | −5.240 | 0.532 | 0.560 | 13.235 | |
1 | 13.195 | −5.600 | 0.537 | 0.210 | 13.558 | |
500 | 0 | 16.524 | 0.459 | 0.459 | 2.952 | - |
1/4 | 15.950 | −0.220 | 0.462 | 2.280 | 10.330 | |
1/2 | 14.745 | −2.580 | 0.495 | 1.610 | 11.686 | |
3/4 | 14.100 | −3.890 | 0.514 | 0.950 | 12.331 | |
1 | 13.100 | −5.870 | 0.542 | 0.220 | 14.204 | |
750 | 0 | 16.560 | 0.460 | 0.460 | 3.770 | - |
1/4 | 15.925 | −0.350 | 0.465 | 3.350 | 10.653 | |
1/2 | 14.180 | −3.810 | 0.514 | 2.290 | 12.331 | |
3/4 | 13.105 | −5.900 | 0.543 | 1.200 | 13.816 | |
1 | 12.055 | −7.580 | 0.561 | 0.250 | 16.141 |
R | Position | 250 W/m2 | 500 W/m2 | 750 W/m2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Psunlight | PE | P | Psunlight | PE | P | Psunlight | PE | P | ||
0 | - | 215 | 49.71 | 165.29 | 430 | 87.48 | 342.52 | 645 | 111.96 | 533.04 |
1/4 | ① | 0 | −1.40 | 1.39 | 0 | −2.27 | 2.27 | 0 | −3.73 | 3.73 |
② | 215 | −14.20 | 229.20 | 430 | −42.42 | 472.42 | 645 | −99.69 | 744.69 | |
③ | 215 | 38.91 | 176.10 | 430 | 68.01 | 361.99 | 645 | 100.57 | 544.43 | |
1/2 | ① | 0 | −45.39 | 45.39 | 0 | −30.15 | 30.15 | 0 | −46.98 | 46.99 |
② | 215 | −420.76 | 635.76 | 430 | −506.21 | 936.21 | 645 | −1079.62 | 1724.62 | |
③ | 215 | 31.41 | 183.60 | 430 | 51.45 | 378.55 | 645 | 75.99 | 569.01 | |
3/4 | ① | 0 | −69.35 | 69.35 | 0 | −47.97 | 47.97 | 0 | −81.52 | 81.52 |
② | 215 | −549.75 | 764.75 | 430 | −810.46 | 1240.46 | 645 | −1583.86 | 2228.86 | |
③ | 215 | 19.23 | 195.77 | 430 | 31.52 | 398.47 | 645 | 42.07 | 602.93 | |
1 | ① | 0 | −75.93 | 75.93 | 0 | −83.38 | 83.38 | 0 | −122.35 | 122.35 |
③ | 215 | 7.28 | 207.72 | 430 | 7.70 | 422.30 | 645 | 9.06 | 635.95 |
Irradiance (W/m2) | The Lowest Temp. in ① (°C) | The Highest Temp. in ② (°C) | The Average Temp. in ③ (°C) | |||
---|---|---|---|---|---|---|
Measured | Simulated | Measured | Simulated | Measured | Simulated | |
750 | 44.7 | 43.04 | 74.1 | 77.66 | 52.3 | 50.08 |
500 | 35.8 | 35.34 | 50.8 | 53.37 | 39.1 | 40.59 |
250 | 30.1 | 29.52 | 38.3 | 42.75 | 31.0 | 30.37 |
R | Position | The Average Temp. (°C) | The Highest Temp. (°C) | The Lowest Temp. (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
250 W/m2 | 500 W/m2 | 750 W/m2 | 250 W/m2 | 500 W/m2 | 750 W/m2 | 250 W/m2 | 500 W/m2 | 750 W/m2 | ||
0 | - | 26.43 | 33.15 | 40.05 | 27.33 | 34.94 | 42.76 | 24.22 | 28.62 | 33.15 |
1/4 | ① | 25.91 | 31.83 | 37.93 | 27.20 | 34.48 | 41.86 | 24.89 | 29.58 | 34.66 |
② | 27.29 | 34.86 | 42.79 | 28.12 | 36.62 | 45.47 | 25.38 | 30.74 | 36.50 | |
③ | 26.79 | 33.75 | 40.37 | 27.79 | 35.73 | 43.26 | 24.39 | 28.80 | 33.11 | |
1/2 | ① | 32.87 | 40.23 | 51.58 | 38.21 | 46.99 | 65.52 | 29.52 | 35.34 | 43.04 |
② | 40.17 | 49.83 | 71.35 | 42.75 | 53.37 | 77.66 | 35.10 | 42.07 | 56.67 | |
③ | 30.37 | 40.59 | 50.08 | 32.12 | 44.01 | 54.70 | 26.90 | 33.93 | 39.45 | |
3/4 | ① | 31.29 | 37.57 | 47.24 | 36.83 | 45.99 | 63.44 | 28.21 | 32.63 | 38.85 |
② | 37.27 | 46.97 | 65.68 | 38.88 | 49.54 | 70.02 | 33.40 | 40.17 | 54.00 | |
③ | 31.02 | 41.59 | 51.69 | 32.87 | 45.15 | 56.54 | 27.34 | 34.59 | 40.52 | |
1 | ① | 26.98 | 31.18 | 35.72 | 31.07 | 40.43 | 48.19 | 23.67 | 24.95 | 27.11 |
③ | 31.66 | 42.77 | 53.23 | 33.63 | 46.54 | 58.29 | 27.82 | 35.43 | 41.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Gong, Y.; Wang, Z.; Li, Y.; Liu, D. Revealing the Intrinsic Mechanisms of Hot and Cold Spots within a Locally Shaded Photovoltaic Module Based on Micro-Electrical Characteristics. Energies 2024, 17, 4462. https://doi.org/10.3390/en17174462
Liu Z, Gong Y, Wang Z, Li Y, Liu D. Revealing the Intrinsic Mechanisms of Hot and Cold Spots within a Locally Shaded Photovoltaic Module Based on Micro-Electrical Characteristics. Energies. 2024; 17(17):4462. https://doi.org/10.3390/en17174462
Chicago/Turabian StyleLiu, Zhihan, Yongshuai Gong, Zixuan Wang, Yingfeng Li, and Dongxue Liu. 2024. "Revealing the Intrinsic Mechanisms of Hot and Cold Spots within a Locally Shaded Photovoltaic Module Based on Micro-Electrical Characteristics" Energies 17, no. 17: 4462. https://doi.org/10.3390/en17174462
APA StyleLiu, Z., Gong, Y., Wang, Z., Li, Y., & Liu, D. (2024). Revealing the Intrinsic Mechanisms of Hot and Cold Spots within a Locally Shaded Photovoltaic Module Based on Micro-Electrical Characteristics. Energies, 17(17), 4462. https://doi.org/10.3390/en17174462