One Health Ecological Approach to Sustainable Wireless Energy Transfer Aboard Electric Vehicles for Smart Cities
Abstract
:1. Introduction
2. Overview of IPT Tools
3. Design and Control of IPT Batteries Charging
4. Biological Effects on Living Tissues Due to EMF Radiation from IPT
5. Phenomena and Equations Governing IPT and Its EMF Radiation Effects
5.1. Governing Equations
5.2. Numerical Solution of EMF, BH, and Circuit Equations
5.3. Dedicated Models Adaptations
5.4. Example of Meta-Model Features
6. OH and RA Approaches in SC Context
6.1. Charging Modes Possessions
6.2. RA and OH Approaches of IPT Management in SCs
6.3. EMF Exposure and Charging Modes
6.4. Human in the SC Circle of RA and OH Approaches
7. Safeguard against the Unsafe Effects of SC Environment
7.1. Protection in Dynamic and Static Charging Modes
7.2. Control of BEs in Living Tissues
7.3. Living Tissues Models
7.4. Example of Exposure BEs
8. Discussion
9. Conclusions
Funding
Conflicts of Interest
References
- Shivanna, K.R. Climate change and its impact on biodiversity and human welfare. Proc. Indian Natl. Sci. Acad. 2022, 88, 160–171. [Google Scholar] [CrossRef]
- World Health Organization (WHO). One Health—Technical Advisory Group First Meeting. 31 October–1 November 2022, Concept Note. 2023. Available online: https://www.who.int/europe/initiatives/one-health (accessed on 14 March 2024).
- Deiana, G.; Arghittu, A.; Dettori, M.; Castiglia, P. One World, One Health: Zoonotic Diseases, Parasitic Diseases, and Infectious Diseases. Healthcare 2024, 12, 922. [Google Scholar] [CrossRef] [PubMed]
- Petroulakis, N.; Mattsson, M.-O.; Chatziadam, P.; Simko, M.; Gavrielides, A.; Yiorkas, A.M.; Zeni, O.; Scarfi, M.R.; Soudah, E.; Otin, R.; et al. NextGEM: Next-Generation Integrated Sensing and Analytical System for Monitoring and Assessing Radiofrequency Electromagnetic Field Exposure and Health. Int. J. Environ. Res. Public Health 2023, 20, 6085. [Google Scholar] [CrossRef] [PubMed]
- Cirimele, V.; Freschi, F.; Giaccone, L.; Pichon, L.; Repetto, M. Human Exposure Assessment in Dynamic Inductive Power Transfer for Automotive Applications. IEEE Trans. Magn. 2017, 53, 5000304. [Google Scholar] [CrossRef]
- Tran, N.T.; Jokic, L.; Keller, J.; Geier, J.U.; Kaldenhoff, R. Impacts of Radio-Frequency Electromagnetic Field (RF-EMF) on Lettuce (Lactuca sativa)—Evidence for RF-EMF Interference with Plant Stress Responses. Plants 2023, 12, 1082. [Google Scholar] [CrossRef] [PubMed]
- Sivani, S.; Sudarsanam, D. Impacts of radio-frequency electromagnetic field (RF-EMF) from cell phone towers and wireless devices on biosystem and ecosystem—A review. Biol. Med. 2012, 4, 202–216. [Google Scholar]
- Liu, Z.; Li, T.; Li, S.; Mi, C.C. Advancements and challenges in wireless power transfer: A comprehensive review. Nexus 2024, 1, 100014. [Google Scholar] [CrossRef]
- Tesla, N. System of Transmission of Electrical Energy. U.S. Patents 645,576, 20 March 1900. [Google Scholar]
- Tesla, N. The transmission of electrical energy without wires. Electr. World Eng. 1904, 1, 429–431. Available online: https://www.sowp.org/wp-content/uploads/2019/02/LR-1702021903-Tesla-Reprint.pdf (accessed on 1 August 2024).
- Tesla, N. Apparatus for Transmitting Electrical Energy. U.S. Patents 1,119,732, 1 December 1914. [Google Scholar]
- Brown, W. Experiments in the transportation of energy by microwave beam. In Proceedings of the 1958 IRE International Convention Record, New York, NY, USA, 21–25 March 1966; IEEE: New York, NY, USA, 1964; pp. 8–17. [Google Scholar] [CrossRef]
- Brown, W.C. The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 1984, 32, 1230–1242. [Google Scholar] [CrossRef]
- Glaser, P.E. Power from the sun: Its future. Science 1968, 162, 857–861. [Google Scholar] [CrossRef]
- Brown, W.C. Satellite power stations: A new source of energy? IEEE Spectr. 1973, 10, 38–47. [Google Scholar] [CrossRef]
- Covic, G.A.; Boys, J.T. Modern Trends in Inductive Power Transfer for Transportation Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 28–41. [Google Scholar] [CrossRef]
- Nutwong, S.; Sangswang, A.; Naetiladdanon, S.; Mujjalinvimut, E. A Novel Output Power Control of Wireless Powering Kitchen Appliance System with Free-Positioning Feature. Energies 2018, 11, 1671. [Google Scholar] [CrossRef]
- Shah, A.; Zada, M.; Shah, S.A.A.; Basir, A.; Yoo, H. Flexible metasurface-coupled efficient wireless power transfer system for implantable devices. IEEE Trans. Microw. Theory Tech. 2023, 72, 2534–2547. [Google Scholar] [CrossRef]
- Patil, D.; Mcdonough, M.K.; Miller, J.M.; Fahimi, B.; Balsara, P.T. Wireless power transfer for vehicular applications: Overview and challenges. IEEE Trans. Transp. Electrif. 2018, 4, 3–37. [Google Scholar] [CrossRef]
- Kod, M.; Zhou, J.; Huang, Y.; Hussein, M.; Sohrab, A.P.; Song, C. An Approach to Improve the Misalignment and Wireless Power Transfer into Biomedical Implants Using Meandered Wearable Loop Antenna. Wirel. Power Transf. 2021, 8, 6621899. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, K.; Chen, Z.; Sun, H.; Hu, S. Design considerations for contact-less underwater power delivery: A systematic review and critical analysis. Wirel. Power Transf. 2020, 7, 76–85. [Google Scholar] [CrossRef]
- Hutchinson, L.; Waterson, B.; Anvari, B.; Naberezhnykh, D. Potential of wireless power transfer for dynamic charging of electric vehicles. IET Intell. Transp. Syst. 2019, 13, 3–12. [Google Scholar] [CrossRef]
- Brahim, M.; Bernard, L.; Pichon, L.; Razek, A.; Houivet, J.; Cayol, O. Advanced modeling of a 2-kw series–series resonating inductive charger for real electric vehicle. IEEE Trans. Veh. Technol. 2015, 64, 421–430. [Google Scholar] [CrossRef]
- Cirimele, V.; Diana, M.; Freschi, F.; Mitolo, M. Inductive Power Transfer for Automotive Applications: State-of-the-Art and Future Trends. IEEE Trans. Ind. Appl. 2018, 54, 4069–4079. [Google Scholar] [CrossRef]
- Razek, A. Review of Contactless Energy Transfer Concept Applied to Inductive Power Transfer Systems in Electric Vehicles. Appl. Sci. 2021, 11, 3221. [Google Scholar] [CrossRef]
- Ibrahim, M.; Bernard, L.; Pichon, L.; Laboure, E.; Razek, A.; Cayol, O.; Ladas, D.; Irving, J. Inductive Charger for Electric Vehicle: Advanced Modeling and Interoperability Analysis. IEEE Trans. Power Electron. 2016, 31, 8096–8114. [Google Scholar] [CrossRef]
- Cirimele, V.; Diana, M.; Bellotti, F.; Berta, R.; El Sayed, N.; Kobeissi, A.; Guglielmi, P.; Ruffo, R.; Khalilian, M.; La Ganga, A.; et al. The Fabric ICT Platform for Managing Wireless Dynamic Charging Road Lanes. IEEE Trans. Veh. Technol. 2020, 69, 2501–2512. [Google Scholar] [CrossRef]
- Trevisan, R.; Costanzo, A. State-of-the-art of contactless energy transfer (CET) systems: Design rules and applications. Wirel. Power Transf. 2014, 1, 10–20. [Google Scholar] [CrossRef]
- Wang, C.S.; Stielau, O.H.; Covic, G.A. Design considerations for a contactless electric vehicle battery charger. IEEE Trans. Ind. Electron. 2005, 52, 1308–1314. [Google Scholar] [CrossRef]
- Russer, J.A.; Dionigi, M.; Mongiardo, M.; Russer, P. A moving field inductive power transfer system for electric vehicles. In Proceedings of the IEEE 43rd European Microwave Conference 2013, Nuremberg, Germany, 7–10 October 2013; pp. 519–522. [Google Scholar] [CrossRef]
- Rizzoli, V.; Costanzo, A.; Masotti, D.; Donzelli, F. Integration of numerical and field-theoretical techniques in the design of single- and multi-band rectennas for micro-power generation. Int. J. Microw. Wirel. Technol. 2010, 2, 293–303. [Google Scholar] [CrossRef]
- Costanzo, A.; Romani, A.; Masotti, D.; Arbizzani, N.; Rizzoli, V. RF/baseband co-design of switching receivers for multiband microwave energy harvesting. Sens. Actuators A Phys. 2012, 179, 158–168. [Google Scholar] [CrossRef]
- Ohira, T. Via-wheel power transfer to vehicles in motion. In Proceedings of the 2013 IEEE Wireless Power Transfer Conference 2013, Perugia, Italy, 15–16 May 2013; pp. 242–246. [Google Scholar] [CrossRef]
- Pahlavan, S.; Jafarabadi-Ashtiani, S.; Mirbozorgi, S.A. Maze-Based Scalable Wireless Power Transmission Experimental Arena for Freely Moving Small Animals Applications. IEEE Trans. Biomed. Circuits Syst. 2024, 3, 1–10. [Google Scholar] [CrossRef]
- Sample, A.P.; Waters, B.H.; Wisdom, S.T.; Smith, J.R. Enabling seamless wireless power delivery in dynamic environments. Proc. IEEE 2013, 101, 1343–1358. [Google Scholar] [CrossRef]
- Islam, M.; Ross, C.; Lutz, C.W.; Sebastian, T.; Islam, M.S. In-Wheel Motor with Cooling System. U.S. Patent 11,431,228, 30 August 2022. Available online: https://patents.google.com/patent/US11431228B2/en (accessed on 1 August 2024).
- Boules, N.; Electric Drives for Battery Electric Vehicles. Navigating an Electric Vehicle Future Virtual Workshop, 25–28 October 2021—The US National Academies of Sciences Electric Drives for Vehicles—National Academies of Sciences. Available online: https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/D6B5A579A548566915FEC39CBDBB3EAF5E8933C796E8?noSaveAs=1 (accessed on 29 July 2024).
- Wu, J.; Li, Y.; Dai, X.; Gao, R.; He, M. A Dynamic Power Transfer Route Construction and Optimization Method Considering Random Node Distribution for Wireless Power Transfer Network. IEEE Trans. Power Electron. 2024, 39, 4858–4869. [Google Scholar] [CrossRef]
- Zhang, W.; Mi, C.C. Compensation Topologies of High-Power Wireless Power Transfer Systems. IEEE Trans. Veh. Technol. 2016, 65, 4768–4778. [Google Scholar] [CrossRef]
- Vishnuram, P.; Panchanathan, S.; Rajamanickam, N.; Krishnasamy, V.; Bajaj, M.; Piecha, M.; Blazek, V.; Prokop, L. Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives. Energies 2023, 16, 4020. [Google Scholar] [CrossRef]
- Bi, Z.; Kan, T.; Mi, C.C.; Zhang, Y.; Zhao, Z.; Keoleian, G.A. A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility. Appl. Energy 2016, 179, 413–425. [Google Scholar] [CrossRef]
- Ji, N.; Zhu, R.; Huang, Z.; You, L. An urban-scale spatiotemporal optimization of rooftop photovoltaic charging of electric vehicles. Urban Inform. 2024, 3, 4. [Google Scholar] [CrossRef]
- Afridi, K. The future of electric vehicle charging infrastructure. Nat. Electron. 2022, 5, 62–64. [Google Scholar] [CrossRef]
- Mudgal, Y.; Tiwari, R. Impact analysis of integrated renewable energy sources and EVs charging demand on the distribution system. In Proceedings of the 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies, GlobConHT 2023, Male, Maldives, 11–12 March 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Zavrel, M.; Kindl, V.; Frivaldsky, M.; Andriukaitis, D.; Navikas, D. Optimization of series-series compensated wireless power transfer system using alternative secondary side rectification. Sci. Rep. 2024, 14, 1191. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, Y.; Li, Y.; Yuan, H.; Wang, X.; Tang, Y. Precise Parameterized Modeling of Coil Inductance in Wireless Power Transfer Systems. IEEE Trans. Power Electron. 2024, 39, 11746–11757. [Google Scholar] [CrossRef]
- Campi, T.; Cruciani, S.; Maradei, F.; Feliziani, M. Magnetic Field Mitigation by Multicoil Active Shielding in Electric Vehicles Equipped With Wireless Power Charging System. IEEE Trans. Electromagn. Compat. 2020, 62, 1398–1405. [Google Scholar] [CrossRef]
- Liorni, I.; Bottauscio, O.; Guilizzoni, R.; Ankarson, P.; Bruna, J.; Fallahi, A.; Harmon, S.; Zucca, M. Assessment of Exposure to Electric Vehicle Inductive Power Transfer Systems: Experimental Measurements and Numerical Dosimetry. Sustainability 2020, 12, 4573. [Google Scholar] [CrossRef]
- Razek, A. Analysis and control of ornamental plants responses to exposure to electromagnetic fields. Ornam. Plant Res. 2024, 4, e009. [Google Scholar] [CrossRef]
- Etxegarai, G.; Camblong, H.; Ezeiza, A.; Lie, T.T. Design of Three Electric Vehicle Charging Tariff Systems to Improve Photovoltaic Self-Consumption. Energies 2024, 17, 1806. [Google Scholar] [CrossRef]
- Joseph, P.K.; Elangovan, D. A review on renewable energy powered wireless power transmission techniques for light electric vehicle charging applications. J. Energy Storage 2018, 16, 145–155. [Google Scholar] [CrossRef]
- Xie, H.; Huang, R.; Sun, H.; Han, Z.; Jiang, M.; Zhang, D.; Goh, H.H.; Kurniawan, T.A.; Han, F.; Liu, H.; et al. Wireless energy: Paving the way for smart cities and a greener future. Energy Build. 2023, 297, 113469. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection. Guide-lines for limiting exposure to time-varying electric and magnetic fields for low frequencies (1 Hz–100 kHz). Health Phys. 2010, 99, 818–836. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Scientific Evidence for Cell Phone Safety. 2020. Available online: https://www.fda.gov/radiation-emitting-products/cell-phones/scientific-evidence-cell-phone-safety (accessed on 4 January 2024).
- Council of the European Union. EU Recommendation 1999/519/EC on the Limitation of Exposure of the General Public to Electromagnetic Fields (0 Hz to 300 GHz). 1999. Available online: https://eur-lex.europa.eu/eli/reco/1999/519/oj (accessed on 4 January 2024).
- Boules, N.; Douglas, K.; Feldman, S.; Fix, L.; Hager, G.; Hailpern, B.; Martial Hebert, M.; Dan Lopresti, D.; Beth Mynatt, B.; Rossbach, C.C.; et al. The future of computing research: Industry-academic collaborations. arXiv 2016, arXiv:1606.09236. [Google Scholar] [CrossRef]
- Maxwell, J.C.V.I.I.I. A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. 1865, 155, 459–512. [Google Scholar] [CrossRef]
- Razek, A. Biological and Medical Disturbances Due to Exposure to Fields Emitted by Electromagnetic Energy Devices—A Review. Energies 2022, 15, 4455. [Google Scholar] [CrossRef]
- Razek, A. Thermal effects of electromagnetic origin from heating processes to biological disturbances due to field exposure—A review. Therm. Sci. Eng. 2023, 6, 1950. [Google Scholar] [CrossRef]
- Razek, A. Assessment of EMF Troubles of Biological and Instrumental Medical Questions and Analysis of Their Compliance with Standards. Standards 2023, 3, 227–239. [Google Scholar] [CrossRef]
- Pennes, H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1998, 85, 5–34. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.S.; Dular, P.; Chadebec, O.; Kuo-Peng, P. Subproblems Applied to a 3-D Magnetostatic Facet FEM Formulation. IEEE Trans. Magn. 2018, 54, 7402209. [Google Scholar] [CrossRef]
- Cicuttin, M.; Geuzaine, C. Numerical investigation of a 3D hybrid high-order method for the indefinite time-harmonic Maxwell problem. Finite Elem. Anal. Des. 2024, 233, 104124. [Google Scholar] [CrossRef]
- Piriou, F.; Razek, A. Numerical simulation of a nonconventional alternator connected to a rectifier. IEEE Trans. Energy Convers. 1990, 5, 512–518. [Google Scholar] [CrossRef]
- Bernard, L. Electrical Characterization of Biological Tissues and Computing of Phenomena Induced in the Human Body by Electromagnetic Fields below 1 GHz. Ph.D. Thesis, Universities of Ecole Centrale de Lyon, Écully, France, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2007. Available online: https://theses.hal.science/tel-00179791v3 (accessed on 1 August 2024).
- Ren, Z.; Razek, A. Force calculation by Maxwell stress tensor in 3D hybrid finite element-boundary integral formulation. IEEE Trans. Magn. 1990, 26, 2774–2776. [Google Scholar] [CrossRef]
- Freschi, F.; Giaccone, L.; Cirimele, V.; Canova, A. Numerical assessment of low-frequency dosimetry from sampled magnetic fields. Phys. Med. Biol. 2018, 63, 015029. [Google Scholar] [CrossRef]
- Li, C.; Ren, Z.; Razek, A. An approach to adaptive mesh refinement for three-dimensional eddy-current computations. IEEE Trans. Magn. 1994, 30, 113–117. [Google Scholar] [CrossRef]
- Piriou, F.; Razek, A. Calculation of saturated inductances for numerical simulation of synchronous machines. IEEE Trans. Magn. 1983, 19, 2628–2631. [Google Scholar] [CrossRef]
- Madani, S.S.; Schaltz, E.; Kær, S.K. Thermal Analysis of Cold Plate with Different Configurations for Thermal Management of a Lithium-Ion Battery. Batteries 2020, 6, 17. [Google Scholar] [CrossRef]
- Urdaneta-Calzadilla, A.; Galopin, N.; Niyonzima, I.; Chadebec, O.; Meunier, G.; Bannwarth, B. FEM-BEM Modeling of Nonlinear Magnetoelectric Effects in Heterogeneous Composite Structures. IEEE Trans. Magn. 2024, 60, 7401704. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef]
- Barchanski, A.; Steiner, T.; De Gersem, H.; Clemens, M.; Weiland, T. Local grid refinement for low-frequency current computations in 3-D human anatomy models. IEEE Trans. Magn. 2006, 42, 1371–1374. [Google Scholar] [CrossRef]
- Hasgall, P.A.; Di Gennaro, F.; Baumgartner, C.; Neufeld, E.; Lloyd, B.; Gosselin, M.C.; Payne, D.; Klingenböck, A.; Kuster, N. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.1; IEEE: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Makarov, S.N.; Noetscher, G.M.; Yanamadala, J.; Piazza, M.W.; Louie, S.; Prokop, A.; Nazarian, A.; Nummenmaa, A. Virtual Human Models for Electromagnetic Studies and Their Applications. IEEE Rev. Biomed. Eng. 2017, 10, 95–121. [Google Scholar] [CrossRef]
- Razek, A. Coupled Models in Complex Systems Related to Smart Electromagnetic Energy Procedures. J. Mod. Green Energy 2024, 3, 2. [Google Scholar] [CrossRef]
- Razek, A. Strategies for managing models regarding environmental confidence and complexity involved in intelligent control of energy systems—A review. Adv. Environ. Energ. 2023, 2, 1–17. [Google Scholar] [CrossRef]
- Lebensztajn, L.; Marretto, C.A.R.; Costa, M.C.; Coulomb, J.L. Kriging: A Useful Tool for Electromagnetic Device Optimization. IEEE Trans. Magn. 2004, 40, 1196–1199. [Google Scholar] [CrossRef]
- Kudela, J.; Matousek, R. Recent advances and applications of surrogate models for finite element method computations: A review. Soft Comput. 2022, 26, 13709–13733. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Fundamentals of Data-Driven Surrogate Modeling; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2022; pp. 1–37. [Google Scholar] [CrossRef]
- Gaignaire, R.; Scorretti, R.; Sabariego, R.V.; Geuzaine, C. Stochastic Uncertainty Quantification of Eddy Currents in the Human Body by Polynomial Chaos Decomposition. IEEE Trans. Magn. 2012, 48, 451–454. [Google Scholar] [CrossRef]
- Razek, A.; Pichon, L.; Kameni, A.; Makong, L.; Rasm, S. Evaluation of Human Exposure owing to Wireless Power Transfer Systems in Electric Vehicles. Athens J. Technol. Eng. 2019, 6, 239–258. [Google Scholar] [CrossRef]
- Aktas, A.; Aydin, E.; Onar, O.C.; Su, G.J.; Ozpineci, B.; Tolbert, L.M. Medium-Duty Delivery Truck Integrated Bidirectional Wireless Power Transfer System with Grid and Stationary Energy Storage System Connectivity. IEEE J. Emerg. Sel. Top. Power Electron. 2024; early access. [Google Scholar] [CrossRef]
- De Lacerda, M.L.S.S.; dos Santos, W.M. Assessment of Time and Frequency Domain Models of Bidirectional LCC-LCC Inductive Power Transfer Systems. J. Control Autom. Electr. Syst. 2024, 35, 758–768. [Google Scholar] [CrossRef]
- Song, K.; Lan, Y.; Zhang, X.; Jiang, J.; Sun, C.; Yang, G.; Yang, F.; Lan, H. A Review on Interoperability of Wireless Charging Systems for Electric Vehicles. Energies 2023, 16, 1653. [Google Scholar] [CrossRef]
- Wang, D.; Qu, X.; Yao, Y.; Yang, P. Hybrid Inductive-Power-Transfer Battery Chargers for Electric Vehicle Onboard Charging With Configurable Charging Profile. IEEE Trans. Intell. Transp. Syst. 2021, 22, 592–599. [Google Scholar] [CrossRef]
- Boules, N. The Automotive Technological Revolution and the Future of Personal Mobility. In Proceedings of the International School on Energetic Efficiency of Connected Vehicles 2018, Bordeaux, France, 17 October 2018; Available online: https://events.vtools.ieee.org/m/324202 (accessed on 25 July 2024).
- Sagar, A.; Kashyap, A.; Nasab, M.A.; Padmanaban, S.; Bertoluzzo, M.; Kumar, A.; Blaabjerg, F. A Comprehensive Review of the Recent Development of Wireless Power Transfer Technologies for Electric Vehicle Charging Systems. IEEE Access 2023, 11, 83703–83751. [Google Scholar] [CrossRef]
- Quercio, M.; Lozito, G.M.; Corti, F.; Fulginei, F.R.; Laudani, A. Recent Results in Shielding Technologies for Wireless Electric Vehicle Charging Systems. IEEE Access 2024, 12, 16728–16740. [Google Scholar] [CrossRef]
- Harris, L.R.; Zhadobov, M.; Chahat, N.; Sauleau, R. Electromagnetic dosimetry for adult and child models within a car: Multi-exposure scenarios. Int. J. Microw. Wirel. Technol. 2011, 3, 707–715. [Google Scholar] [CrossRef]
- Gjonaj, E.; Bartsch, M.; Clemens, M.; Schupp, S.; Weiland, T. High-resolution human anatomy models for advanced electromagnetic field computations. IEEE Trans. Magn. 2002, 38, 357–360. [Google Scholar] [CrossRef]
- Glingston, R.S.; Yadav, J.; Rajpoot, J.; Joshi, N.; Nagotu, S. Contribution of yeast models to virus research. Appl. Microbiol. Biotechnol. 2021, 105, 4855–4878. [Google Scholar] [CrossRef]
- Bunse, C.; Bertos-Fortis, M.; Sassenhagen, I.; Sildever, S.; Sjöqvist, C.; Godhe, A.; Gross, S.; Kremp, A.; Lips, I.; Lundholm, N.; et al. Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom. Front. Microbiol. 2016, 21, 517. [Google Scholar] [CrossRef] [PubMed]
- Maurice, K.; Bourceret, A.; Robin-Soriano, A.; Vincent, B.; Boukcim, H.; Selosse, M.A.; Ducousso, M. Simulated precipitation in a desert ecosystem reveals specific response of rhizosphere to water and a symbiont response in freshly emitted roots. Appl. Soil Ecol. 2024, 199, 105412. [Google Scholar] [CrossRef]
- Mou, W.; Lu, M. Safety evaluation of electromagnetic exposure for compact wireless charging stations of electric vehicles. J. Chin. Inst. Eng. 2024, 1–15. [Google Scholar] [CrossRef]
- Salgado, R.M.; Danzi, F.; Oliveira, J.E.; El-Azab, A.; Camanho, P.P.; Braga, M.H. The Latest Trends in Electric Vehicles Batteries. Molecules 2021, 26, 3188. [Google Scholar] [CrossRef]
- Ibrahim, M.; Rassõlkin, A.; Vaimann, T.; Kallaste, A. Overview on Digital Twin for Autonomous Electrical Vehicles Propulsion Drive System. Sustainability 2022, 14, 601. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- White, G.; Zink, A.; Codecá, L.; Clarke, S. A digital twin smart city for citizen feedback. Cities 2021, 110, 103064. [Google Scholar] [CrossRef]
- Mohammadi, N.; Taylor, J.E. Smart city digital twins. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI) 2017, Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Trans-disciplinary Perspectives on Complex Systems; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar] [CrossRef]
- Razek, A. Monitoring Complexity in Clean Energy Systems Applications. Clean Energy Sustain. 2024, 2, 10007. [Google Scholar] [CrossRef]
- Ibrahim, M.; Rjabtšikov, V.; Gilbert, R. Overview of Digital Twin Platforms for EV Applications. Sensors 2023, 23, 1414. [Google Scholar] [CrossRef]
- Polat, A.O.; Erden, B.C.; Kul, S.; Nasiroglu, F. Light Electric Vehicle Performance with Digital Twin Technology: A Comparison of Motor Types. Arab. J. Sci. Eng. 2024, 49, 7209–7222. [Google Scholar] [CrossRef]
- Ali, W.A.; Fanti, M.P.; Roccotelli, M.; Ranieri, L. A Review of Digital Twin Technology for Electric and Autonomous Vehicles. Appl. Sci. 2023, 13, 5871. [Google Scholar] [CrossRef]
- Venturini, S.; Rosso, C.; Velardocchia, M. An automotive steel wheel digital twin for failure identification under accelerated fatigue tests. Eng. Fail. Anal. 2024, 158, 107979. [Google Scholar] [CrossRef]
- Gao, J.; Peng, C.; Yoshinaga, T.; Han, G.; Guleng, S.; Wu, C. Digital Twin-Enabled Internet of Vehicles Applications. Electronics 2024, 13, 1263. [Google Scholar] [CrossRef]
- Li, X.; Niu, W.; Tian, H. Application of Digital Twin in Electric Vehicle Powertrain: A Review. World Electr. Veh. J. 2024, 15, 208. [Google Scholar] [CrossRef]
- Venkatesan, S.; Manickavasagam, K.; Tengenkai, N.; Vijayalakshmi, N. Health monitoring and prognosis of electric vehicle motor using intelligent-digital twin. IET Electr. Power Appl. 2019, 13, 1328–1335. [Google Scholar] [CrossRef]
- Liao, X.; Zhao, X.; Wang, Z.; Zhao, Z.; Han, K.; Gupta, R.; Barth, M.J.; Wu, G. Driver Digital Twin for Online Prediction of Personalized Lane-Change Behavior. IEEE Internet Things J. 2023, 10, 13235–13246. [Google Scholar] [CrossRef]
- Razek, A. Interaction of electromagnetic fields with body-onboard devices. Explor. Digit. Health Technol. 2024, 2, 124–134. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razek, A. One Health Ecological Approach to Sustainable Wireless Energy Transfer Aboard Electric Vehicles for Smart Cities. Energies 2024, 17, 4349. https://doi.org/10.3390/en17174349
Razek A. One Health Ecological Approach to Sustainable Wireless Energy Transfer Aboard Electric Vehicles for Smart Cities. Energies. 2024; 17(17):4349. https://doi.org/10.3390/en17174349
Chicago/Turabian StyleRazek, Adel. 2024. "One Health Ecological Approach to Sustainable Wireless Energy Transfer Aboard Electric Vehicles for Smart Cities" Energies 17, no. 17: 4349. https://doi.org/10.3390/en17174349
APA StyleRazek, A. (2024). One Health Ecological Approach to Sustainable Wireless Energy Transfer Aboard Electric Vehicles for Smart Cities. Energies, 17(17), 4349. https://doi.org/10.3390/en17174349