A GIS-Based Approach for Urban Building Energy Modeling under Climate Change with High Spatial and Temporal Resolution
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Data
2.2. Building Prototypes
2.3. Determination of Building Types
2.4. Building Energy Simulation and Calibration
3. Results
3.1. Classification Results of Building Types and Their Spatial Distribution Patterns
3.2. Analysis of Building Energy Demand at Annual Scale
3.3. Time-Series Analysis of Building Energy Demand at Monthly and Hourly Scales
3.4. Spatial Patterns of Building Energy Consumption
3.4.1. Spatial Distribution at Individual Building Level
3.4.2. Spatial Patterns of Energy Consumption in Response to Climate Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Environment Programme. Emissions Gap Report 2023: Broken Record—Temperatures Hit New Highs, Yet World Fails to Cut Emissions (Again); United Nations Environment Programme: Nairobi, Kenya, 2023. [Google Scholar] [CrossRef]
- Wu, P.; Song, Y.; Zhu, J.; Chang, R. Analyzing the influence factors of the carbon emissions from China’s building and construction industry from 2000 to 2015. J. Clean. Prod. 2019, 221, 552–566. [Google Scholar] [CrossRef]
- Chen, C.; Bi, L. Study on spatio-temporal changes and driving factors of carbon emissions at the building operation stage—A case study of China. Build. Environ. 2022, 219, 109147. [Google Scholar] [CrossRef]
- World Energy Outlook 2022. Available online: https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf (accessed on 20 April 2024).
- China Association of Building Energy Efficiency. 2023 Research Report of China Building Energy Consumption and Carbon Emissions; Chongqing University: Chongqing, China, 2023. [Google Scholar]
- Zheng, Y.; Weng, Q. Modeling the Effect of Climate Change on Building Energy Demand in Los Angeles County by Using a GIS-Based High Spatial- and Temporal-Resolution Approach. Energy 2019, 176, 641–655. [Google Scholar] [CrossRef]
- Hwang, R.-L.; Lin, T.-P.; Lin, F.-Y. Evaluation and Mapping of Building Overheating Risk and Air Conditioning Use Due to the Urban Heat Island Effect. J. Build. Eng. 2020, 32, 101726. [Google Scholar] [CrossRef]
- Xu, L.; Tong, S.; He, W.; Zhu, W.; Mei, S.; Cao, K.; Yuan, C. Better Understanding on Impact of Microclimate Information on Building Energy Modelling Performance for Urban Resilience. Sustain. Cities Soc. 2022, 80, 103775. [Google Scholar] [CrossRef]
- Gao, Y.; Meng, X. A Comprehensive Review of Integrating Phase Change Materials in Building Bricks: Methods, Performance and Applications. J. Energy Storage 2023, 62, 106913. [Google Scholar] [CrossRef]
- Kheiri, F. A Review on Optimization Methods Applied in Energy-Efficient Building Geometry and Envelope Design. Renew. Sustain. Energy Rev. 2018, 92, 897–920. [Google Scholar] [CrossRef]
- Du, J.; Pan, W. Examining Energy Saving Behaviors in Student Dormitories Using an Expanded Theory of Planned Behavior. Habitat Int. 2021, 107, 102308. [Google Scholar] [CrossRef]
- Kanthila, C.; Boodi, A.; Beddiar, K.; Amirat, Y.; Benbouzid, M. Building Occupancy Behavior and Prediction Methods: A Critical Review and Challenging Locks. IEEE Access 2021, 9, 79353–79372. [Google Scholar] [CrossRef]
- Su, S.; Zhu, C.; Li, X.; Wang, Q. Dynamic Global Warming Impact Assessment Integrating Temporal Variables: Application to a Residential Building in China. Environ. Impact Assess. Rev. 2021, 88, 106568. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Liu, X.; Yang, L.; Zhang, Y.; He, J. How Does Future Climatic Uncertainty Affect Multi-Objective Building Energy Retrofit Decisions? Evidence from Residential Buildings in Subtropical Hong Kong. Sustain. Cities Soc. 2023, 92, 104482. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Kabisch, N.; McPhearson, T. Advancing Urban Environmental Governance: Understanding Theories, Practices and Processes Shaping Urban Sustainability and Resilience. Environ. Sci. Policy 2016, 62, 1–6. [Google Scholar] [CrossRef]
- Cao, H.; Liu, X.; Feng, G.; Wang, C.; Huang, K.; Hou, X.; Chen, J. Research on the evaluation of the renovation effect of existing energy-inefficient residential buildings in a severe cold region of China. Energy Build. 2024, 312, 114184. [Google Scholar] [CrossRef]
- Šujanová, P.; Rychtáriková, M.; Sotto Mayor, T.; Hyder, A. A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review. Energies 2019, 12, 1414. [Google Scholar] [CrossRef]
- Elsayed, M.; Romagnoni, P.; Pelsmakers, S.; Castaño-Rosa, R.; Klammsteiner, U. The Actual Performance of Retrofitted Residential Apartments: Post-Occupancy Evaluation Study in Italy. Build. Res. Inf. 2023, 51, 411–429. [Google Scholar] [CrossRef]
- Center for Science and Technology Development Promotion, Ministry of Housing and Urban-Rural Development, 2015. Research on Total Coal (Electricity) Consumption Control in the Construction Sector. Available online: http://www.nrdc.cn/Public/uploads/2017-01-12/5877251e7b90a.pdf (accessed on 20 April 2024).
- Carli, R.; Dotoli, M.; Pellegrino, R. A Hierarchical Decision-Making Strategy for the Energy Management of Smart Cities. IEEE Trans. Autom. Sci. Eng. 2017, 14, 505–523. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.; Zhang, L.; Wu, X. Optimizing Energy Efficiency and Thermal Comfort in Building Green Retrofit. Energy 2021, 237, 121509. [Google Scholar] [CrossRef]
- Zhang, D.; Ding, Y.; Jiang, X. A Segmented Evaluation Model for Building Energy Performance Considering Seasonal Dynamic Fluctuations. Energy Convers. Manag. 2023, 298, 117780. [Google Scholar] [CrossRef]
- Tuniki, H.P.; Jurelionis, A.; Fokaides, P. A Review on the Approaches in Analysing Energy-Related Occupant Behaviour Research. J. Build. Eng. 2021, 40, 102630. [Google Scholar] [CrossRef]
- Liao, W.; Luo, Y.; Peng, J.; Wang, D.; Yuan, C.; Yin, R.; Li, N. Experimental Study on Energy Consumption and Thermal Environment of Radiant Ceiling Heating System for Different Types of Rooms. Energy 2022, 244, 122555. [Google Scholar] [CrossRef]
- Zheng, Y.; Weng, Q. High Spatial- and Temporal-Resolution Anthropogenic Heat Discharge Estimation in Los Angeles County, California. J. Environ. Manag. 2018, 206, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ge, X.; Zhao, Y.; Xia-Bauer, C. Creating Statistics for China’s Building Energy Consumption Using an Adapted Energy Balance Sheet. Energies 2019, 12, 4293. [Google Scholar] [CrossRef]
- Huo, T.; Ren, H.; Zhang, X.; Cai, W.; Feng, W.; Zhou, N.; Wang, X. China’s Energy Consumption in the Building Sector: A Statistical Yearbook-Energy Balance Sheet Based Splitting Method. J. Clean. Prod. 2018, 185, 665–679. [Google Scholar] [CrossRef]
- Haberl, H.; Löw, M.; Perez-Laborda, A.; Matej, S.; Plank, B.; Wiedenhofer, D.; Creutzig, F.; Erb, K.-H.; Duro, J.A. Built Structures Influence Patterns of Energy Demand and CO2 Emissions across Countries. Nat. Commun. 2023, 14, 3898. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Pan, X.; Lu, Y.; Pu, C. Evaluation of Consumption Preference in China under Environmental Regulation Policies: Scenario Analysis Based on a DECGE Model. Comput. Ind. Eng. 2021, 158, 107441. [Google Scholar] [CrossRef]
- Gudipudi, R.; Fluschnik, T.; Ros, A.G.C.; Walther, C.; Kropp, J.P. City Density and CO2 Efficiency. Energy Policy 2016, 91, 352–361. [Google Scholar] [CrossRef]
- De Rosa, M.; Bianco, V.; Scarpa, F.; Tagliafico, L.A. Heating and Cooling Building Energy Demand Evaluation; a Simplified Model and a Modified Degree Days Approach. Appl. Energy 2014, 128, 217–229. [Google Scholar] [CrossRef]
- Ürge-Vorsatz, D.; Cabeza, L.F.; Serrano, S.; Barreneche, C.; Petrichenko, K. Heating and Cooling Energy Trends and Drivers in Buildings. Renew. Sustain. Energy Rev. 2015, 41, 85–98. [Google Scholar] [CrossRef]
- Afaifia, M.; Djiar, K.A.; Bich-Ngoc, N.; Teller, J. An Energy Consumption Model for the Algerian Residential Building’s Stock, Based on a Triangular Approach: Geographic Information System (GIS), Regression Analysis and Hierarchical Cluster Analysis. Sustain. Cities Soc. 2021, 74, 103191. [Google Scholar] [CrossRef]
- Huang, J.; Gurney, K.R. The variation of climate change impact on building energy consumption to building type and spatiotemporal scale. Energy 2016, 111, 137–153. [Google Scholar] [CrossRef]
- Zou, Y.; Deng, Y.; Xia, D.; Lou, S.; Yang, X.; Huang, Y.; Guo, J.; Zhong, Z. Comprehensive analysis on the energy resilience performance of urban residential sector in hot-humid area of China under climate change. Sustain. Cities Soc. 2023, 88, 104233. [Google Scholar] [CrossRef]
- Wang, R.; Lu, S.; Zhai, X.; Feng, W. The energy performance and passive survivability of high thermal insulation buildings in future climate scenarios. Build. Simul. 2022, 15, 1209–1225. [Google Scholar] [CrossRef]
- Berardi, U.; Jafarpur, P. Assessing the impact of climate change on building heating and cooling energy demand in Canada. Renew. Sustain. Energy Rev. 2020, 121, 109681. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial Planning for Multifunctional Green Infrastructure: Growing Resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Xia, H.; Liu, Z.; Efremochkina, M.; Liu, X.; Lin, C. Study on City Digital Twin Technologies for Sustainable Smart City Design: A Review and Bibliometric Analysis of Geographic Information System and Building Information Modeling Integration. Sustain. Cities Soc. 2022, 84, 104009. [Google Scholar] [CrossRef]
- Anderson, T.K. Kernel Density Estimation and K-Means Clustering to Profile Road Accident Hotspots. Accid. Anal. Prev. 2009, 41, 359–364. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, L.; Xu, W.; Ledwith, V. Use of Local Moran’s I and GIS to Identify Pollution Hotspots of Pb in Urban Soils of Galway, Ireland. Sci. Total Environ. 2008, 398, 212–221. [Google Scholar] [CrossRef]
- Yu, H.; Wang, M.; Lin, X.; Guo, H.; Liu, H.; Zhao, Y.; Wang, H.; Li, C.; Jing, R. Prioritizing Urban Planning Factors on Community Energy Performance Based on GIS-Informed Building Energy Modeling. Energy Build. 2021, 249, 111191. [Google Scholar] [CrossRef]
- Song, C.; Deng, Z.; Zhao, W.; Yuan, Y.; Liu, M.; Xu, S.; Chen, Y. Developing Urban Building Energy Models for Shanghai City with Multi-Source Open Data. Sustain. Cities Soc. 2024, 106, 105425. [Google Scholar] [CrossRef]
- Camporeale, P.E.; Mercader-Moyano, P. A GIS-Based Methodology to Increase Energy Flexibility in Building Cluster through Deep Renovation: A Neighborhood in Seville. Energy Build. 2021, 231, 110573. [Google Scholar] [CrossRef]
- García-Pérez, S.; Sierra-Pérez, J.; Boschmonart-Rives, J. Environmental Assessment at the Urban Level Combining LCA-GIS Methodologies: A Case Study of Energy Retrofits in the Barcelona Metropolitan Area. Build. Environ. 2018, 134, 191–204. [Google Scholar] [CrossRef]
- Lohman, W.; Cornelissen, H.; Borst, J.; Klerkx, R.; Araghi, Y.; Walraven, E. Building Digital Twins of Cities Using the Inter Model Broker Framework. Future Gener. Comput. Syst. 2023, 148, 501–513. [Google Scholar] [CrossRef]
- Peldon, D.; Banihashemi, S.; LeNguyen, K.; Derrible, S. Navigating Urban Complexity: The Transformative Role of Digital Twins in Smart City Development. Sustain. Cities Soc. 2024, 111, 105583. [Google Scholar] [CrossRef]
- HosseiniHaghighi, S.; De Uribarri, P.M.Á.; Padsala, R.; Eicker, U. Characterizing and Structuring Urban GIS Data for Housing Stock Energy Modelling and Retrofitting. Energy Build. 2022, 256, 111706. [Google Scholar] [CrossRef]
- Fonseca, J.A.; Schlueter, A. Integrated Model for Characterization of Spatiotemporal Building Energy Consumption Patterns in Neighborhoods and City Districts. Appl. Energy 2015, 142, 247–265. [Google Scholar] [CrossRef]
- Rossknecht, M.; Airaksinen, E. Concept and Evaluation of Heating Demand Prediction Based on 3D City Models and the CityGML Energy ADE—Case Study Helsinki. ISPRS Int. J. Geo-Inf. 2020, 9, 602. [Google Scholar] [CrossRef]
- Mylonas, G.; Kalogeras, A.; Kalogeras, G.; Anagnostopoulos, C.; Alexakos, C.; Munoz, L. Digital Twins from Smart Manufacturing to Smart Cities: A Survey. IEEE Access 2021, 9, 143222–143249. [Google Scholar] [CrossRef]
- GB 50176-2016; Code for Thermal Design of Civil Building. MOHURD: Beijing, China, 2016.
- Xuhui Statistical Yearbook 2023. Available online: https://www.xuhui.gov.cn/zfjg_qzfbm_tjj_tjnj/20240315/534021.html (accessed on 20 April 2024).
- Minhang Statistical Yearbook 2023. Available online: http://www.shmh.gov.cn/shmh/tjnj/20231106/563569.html (accessed on 20 April 2024).
- An, J.; Wu, Y.; Gui, C.; Yan, D. Chinese Prototype Building Models for Simulating the Energy Performance of the Nationwide Building Stock. Build. Simul. 2023, 16, 1559–1582. [Google Scholar] [CrossRef]
- GB 50189-2005; Design Standard for Energy Efficiency of Public Buildings. MOHURD: Beijing, China, 2005.
- JGJ 134-2001; Energy Efficiency Design Standard for Residential Building in Hot Summer and Cold Winter Zone. MOHURD: Beijing, China, 2001.
- Shanghai Statistical Yearbook 2023. Available online: https://tjj.sh.gov.cn/tjnj/nj23.htm?d1=2023tjnjen/E0202.html (accessed on 21 April 2024).
- Deng, Y.; Chen, R.; Yang, J.; Li, Y.; Jiang, H.; Liao, W.; Sun, M. Identify Urban Building Functions with Multisource Data: A Case Study in Guangzhou, China. Int. J. Geogr. Inf. Sci. 2022, 36, 2060–2085. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: San Francisco, CA, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Zeng, T.; Wu, L.; Peduto, D.; Glade, T.; Hayakawa, Y.S.; Yin, K. Ensemble Learning Framework for Landslide Susceptibility Mapping: Different Basic Classifier and Ensemble Strategy. Geosci. Front. 2023, 14, 101645. [Google Scholar] [CrossRef]
- Ma, M.; Zhao, G.; He, B.; Li, Q.; Dong, H.; Wang, S.; Wang, Z. XGBoost-Based Method for Flash Flood Risk Assessment. J. Hydrol. 2021, 598, 126382. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Y.; Wu, Q.; Chen, G.; Huang, X.; Yu, B. Urban Building Type Mapping Using Geospatial Data: A Case Study of Beijing, China. Remote Sens. 2020, 12, 2805. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, H.; Wu, W.; Tan, Q. A Novel Framework for Remote Sensing Image Scene Classification. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–3, 657–663. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less Is More: Optimizing Classification Performance through Feature Selection in a Very-High-Resolution Remote Sensing Object-Based Urban Application. GIScience Remote Sens. 2018, 55, 221–242. [Google Scholar] [CrossRef]
- Zhao, M.-m.; Lv, Z.-q. Energy Consumption Calculation of Campus Buildings Based on the Law of Personnel Flow. Energy Sci. Eng. 2023, 11, 1875–1885. [Google Scholar] [CrossRef]
- Peng, C.; Wang, L.; Zhang, X. DeST-Based Dynamic Simulation and Energy Efficiency Retrofit Analysis of Commercial Buildings in the Hot Summer/Cold Winter Zone of China: A Case in Nanjing. Energy Build. 2014, 78, 123–131. [Google Scholar] [CrossRef]
- Sheng, Y.; Miao, Z.; Zhang, J.; Lin, X.; Ma, H. Energy Consumption Model and Energy Benchmarks of Five-Star Hotels in China. Energy Build. 2018, 165, 286–292. [Google Scholar] [CrossRef]
- Cui, Z.; Guo, C.; Zhao, D. Energy-Saving and Economic Analysis of Passive Radiative Sky Cooling for Telecommunication Base Station in China. Build. Simul. 2022, 15, 1775–1787. [Google Scholar] [CrossRef]
- Bian, F.; Chong, H.-Y.; Ding, C.; Zhang, W.; Li, L. Occupant Behavior Effects on Energy-Saving Measures and Thermal Comfort in Severe Cold Areas. Energy Sustain. Dev. 2023, 73, 1–12. [Google Scholar] [CrossRef]
- Sun, H.; Leng, M. Analysis on Building Energy Performance of Tibetan Traditional Dwelling in Cold Rural Area of Gannan. Energy Build. 2015, 96, 251–260. [Google Scholar] [CrossRef]
- Tamer, T.; Dino, I.G.; Baker, D.K.; Akgul, C.M. Coupling PCM wallboard utilization with night Ventilation: Energy efficiency and overheating risk in office buildings under climate change impact. Energy Build. 2023, 298, 113482. [Google Scholar] [CrossRef]
- Duan, Z. Impact of climate change on the life cycle greenhouse gas emissions of cross-laminated timber and reinforced concrete buildings in China. J. Clean. Prod. 2023, 395, 136446. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, Z.; Peng, Z.; Yang, J.; Chen, Z.; Deng, Z. Impacts of climate change and building energy efficiency improvement on city-scale building energy consumption. J. Build. Eng. 2023, 78, 107646. [Google Scholar] [CrossRef]
- Yan, D.; Zhou, X.; An, J.; Kang, X.; Bu, F.; Chen, Y.; Pan, Y.; Gao, Y.; Zhang, Q.; Zhou, H.; et al. DeST: A new-generation building performance simulation platform. Build. Simul. 2022, 15, 1849–1868. [Google Scholar] [CrossRef]
- Shanghai Municipal Commission of Housing and Urban-Rural Development and Management, 2021. 2021 Shanghai State Office Buildings and Large-scale Public Buildings Energy Consumption Monitoring and Analysis Report. Available online: https://www.shanghai.gov.cn/cmsres/c7/c7b131aa628a4c63b24f50d4a6515fe5/e720cb50065e63ddfa559990e52926bf.pdf (accessed on 21 April 2024). (In Chinese)
- Braulio-Gonzalo, M.; Bovea, M.D.; Jorge-Ortiz, A.; Juan, P. Which Is the Best-Fit Response Variable for Modelling the Energy Consumption of Households? An Analysis Based on Survey Data. Energy 2021, 231, 120835. [Google Scholar] [CrossRef]
- Jones, R.V.; Lomas, K.J. Determinants of High Electrical Energy Demand in UK Homes: Socio-Economic and Dwelling Characteristics. Energy Build. 2015, 101, 24–34. [Google Scholar] [CrossRef]
- Ahlrichs, J.; Wenninger, S.; Wiethe, C.; Häckel, B. Impact of Socio-Economic Factors on Local Energetic Retrofitting Needs—A Data Analytics Approach. Energy Policy 2022, 160, 112646. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zou, Y.; Xiang, K.; Zhan, Q.; Li, Z. A simulation-based method to predict the life cycle energy performance of residential buildings in different climate zones of China. Build. Environ. 2021, 193, 107663. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Available online: https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm (accessed on 12 May 2024).
- Li, X.; Yang, H.; Yang, M.; Yang, G. Flexible Time-of-Use Tariff with Dynamic Demand Using Artificial Bee Colony with Transferred Memory Scheme. Swarm Evol. Comput. 2019, 46, 235–251. [Google Scholar] [CrossRef]
- Bouakkaz, A.; Mena, A.J.G.; Haddad, S.; Ferrari, M.L. Efficient Energy Scheduling Considering Cost Reduction and Energy Saving in Hybrid Energy System with Energy Storage. J. Energy Storage 2021, 33, 101887. [Google Scholar] [CrossRef]
- Chu, W.; Zhang, Y.; He, W.; Zhang, S.; Hu, Z.; Ru, B.; Ying, S. Research on Flexible Allocation Strategy of Power Grid Interactive Buildings Based on Multiple Optimization Objectives. Energy 2023, 278, 127943. [Google Scholar] [CrossRef]
- CO2 Emission Factors for Electricity 2021; Ministry of Ecology and Environment (MEE) and National Bureau of Statistics. 2024. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202404/t20240412_1070565.html (accessed on 21 April 2024).
Data | Source | Year |
---|---|---|
Building footprint | Gaode Map | 2020 |
Point of Interest (POI) | Gaode Map | 2022 |
Land use Data | Essential Urban Land Use Categories (EULUC) China Data | 2018 |
Building prototypes | Tsinghua University | N/A |
Chinese Standard Weather Data | National Solar Radiation Data Base (NSRDB) | 2020 |
Landsat 8 satellite imagery | https://www.usgs.gov/, accessed on 16 April 2024 | 2020 |
Number | Floor Area (million m2) | |||||
---|---|---|---|---|---|---|
Types | Xuhui | Minhang | Total | Xuhui | Minhang | Total |
Commercial | 489 | 1071 | 1560 | 17 | 37 | 54 |
Educational | 1552 | 4243 | 5795 | 30 | 80 | 111 |
Hotel | 244 | 582 | 826 | 11 | 22 | 33 |
Industrial | 500 | 7275 | 7775 | 10 | 293 | 303 |
Office | 1502 | 3176 | 4678 | 88 | 115 | 204 |
Residential | 14,703 | 65,115 | 79,818 | 494 | 1565 | 2059 |
Hospital | 717 | 1081 | 1798 | 28 | 41 | 69 |
Total | 19,707 | 82,543 | 102,250 | 679 | 2153 | 2832 |
Types | Total | Heating Season | Cooling Season | |||
---|---|---|---|---|---|---|
AD | RC | AD | RC | AD | RC | |
Residential | 0.81 | 2.12 | −0.49 | −2.69 | 1.27 | 7.68 |
Commercial | 0.77 | 0.55 | −0.15 | −0.31 | 0.83 | 1.17 |
Office | 0.66 | 0.74 | −2.35 | −7.37 | 2.59 | 5.60 |
Educational | 0.56 | 1.25 | −1.27 | −6.35 | 1.56 | 8.70 |
Hotel | 3.14 | 2.81 | 0.04 | 0.11 | 2.64 | 4.21 |
Hospital | 4.01 | 2.70 | −1.44 | −2.68 | 4.99 | 6.42 |
2020 | 2050 | |||||
---|---|---|---|---|---|---|
Xuhui | Minhang | Total | Xuhui | Minhang | Total | |
Com | 24.3 | 52.1 | 76.5 | 24.5 | 52.4 | 76.9 |
Edu | 13.6 | 36.2 | 49.9 | 13.8 | 36.7 | 50.5 |
Hotel | 12.2 | 24.8 | 36.9 | 12.5 | 25.5 | 38.0 |
Off | 79.3 | 103.5 | 182.8 | 79.9 | 104.3 | 184.2 |
Res | 187.6 | 594.4 | 782.0 | 191.6 | 607.0 | 798.6 |
Hosp | 41.8 | 60.6 | 102.3 | 42.9 | 62.2 | 105.1 |
Total | 358.9 | 871.6 | 1230.4 | 365.2 | 888.0 | 1253.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zheng, Y.; Yu, J.; Peng, Y.; Li, R.; Han, S. A GIS-Based Approach for Urban Building Energy Modeling under Climate Change with High Spatial and Temporal Resolution. Energies 2024, 17, 4313. https://doi.org/10.3390/en17174313
Chen L, Zheng Y, Yu J, Peng Y, Li R, Han S. A GIS-Based Approach for Urban Building Energy Modeling under Climate Change with High Spatial and Temporal Resolution. Energies. 2024; 17(17):4313. https://doi.org/10.3390/en17174313
Chicago/Turabian StyleChen, Liang, Yuanfan Zheng, Jia Yu, Yuanhang Peng, Ruipeng Li, and Shilingyun Han. 2024. "A GIS-Based Approach for Urban Building Energy Modeling under Climate Change with High Spatial and Temporal Resolution" Energies 17, no. 17: 4313. https://doi.org/10.3390/en17174313
APA StyleChen, L., Zheng, Y., Yu, J., Peng, Y., Li, R., & Han, S. (2024). A GIS-Based Approach for Urban Building Energy Modeling under Climate Change with High Spatial and Temporal Resolution. Energies, 17(17), 4313. https://doi.org/10.3390/en17174313