Thermal Performance Improvement of Composite Phase-Change Storage Material of Octanoic Acid–Tetradecanol by Modified Expanded Graphite
Abstract
1. Introduction
2. Experiment and Method
2.1. Materials and Instruments
2.2. Preparation of CPCMs
2.2.1. Preparation of OA-TD Binary Low Eutectic Mixture
2.2.2. Preparation of OA-TD/EG
2.3. Characterization of CPCMs
2.3.1. Latent Heat
2.3.2. Thermal Conductivity Testing
3. Results and Discussion
3.1. Characteristics of EG and EG-HDTMOS
3.2. Determination of OA-TD Low Eutectic Mixture Ratios
3.3. Optimization of the Mass Ratio of OA-TD to EG
3.4. Thermal Conductivity Analysis of Materials
3.5. Melting–Solidification Multi-Cycle Test
3.6. Mechanism Analysis and Cycle Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
CPCM | Composite phase-change material |
OA | Octanoic acid |
TD | Tetradecanol |
EG | Expanded graphite |
HDTMOS | Hexadecyltrimethoxysilane |
EG-HDTMOS | Mixture of HDTMOS-modified EG and unmodified EG in a 1:1 mass ratio |
References
- Gao, Y.; Meng, X. A Comprehensive Review of Integrating Phase Change Materials in Building Bricks: Methods, Performance and Applications. J. Energy Storage 2023, 62, 106913. [Google Scholar] [CrossRef]
- Chang, Y.; Yao, X.; Chen, Y.; Huang, L.; Zou, D. Review on Ceramic-Based Composite Phase Change Materials: Preparation, Characterization and Application. Compos. Part B Eng. 2023, 254, 110584. [Google Scholar] [CrossRef]
- Sadeghi, G. Energy Storage on Demand: Thermal Energy Storage Development, Materials, Design, and Integration Challenges. Energy Storage Mater. 2022, 46, 192–222. [Google Scholar] [CrossRef]
- Takudzwa Muzhanje, A.; Hassan, M.A.; Hassan, H. Phase Change Material Based Thermal Energy Storage Applications for Air Conditioning: Review. Appl. Therm. Eng. 2022, 214, 118832. [Google Scholar] [CrossRef]
- Meng, B.; Zhang, X.; Hua, W.; Liu, L.; Ma, K. Development and Application of Phase Change Material in Fresh E-Commerce Cold Chain Logistics: A Review. J. Energy Storage 2022, 55, 105373. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, Z.W.; Wang, R.Z. An Overview of Phase Change Material Slurries: MPCS and CHS. Renew. Sustain. Energy Rev. 2010, 14, 598–614. [Google Scholar] [CrossRef]
- Su, D.; Jia, Y.; Alva, G.; Tang, F.; Fang, G. Preparation and Thermal Properties of n–Octadecane/Stearic Acid Eutectic Mixtures with Hexagonal Boron Nitride as Phase Change Materials for Thermal Energy Storage. Energy Build. 2016, 131, 35–41. [Google Scholar] [CrossRef]
- Ayaz, H.; Chinnasamy, V.; Jeon, Y.; Cho, H. Thermo-Physical Studies and Corrosion Analysis of Caprylic Acid–Cetyl Alcohol Binary Mixture as Novel Phase Change Material for Refrigeration Systems. Energy Rep. 2022, 8, 7143–7153. [Google Scholar] [CrossRef]
- Jebasingh, E.B.; Arasu, V.A. Characterisation and Stability Analysis of Eutectic Fatty Acid as a Low Cost Cold Energy Storage Phase Change Material. J. Energy Storage 2020, 31, 101708. [Google Scholar] [CrossRef]
- Mebarek-Oudina, F.; Chabani, I. Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems. Energies 2023, 16, 1066. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, S.; Li, T.; Yang, L.; Li, D.; Bai, H.; Wang, X. Review on Thermal Properties with Influence Factors of Solid-Liquid Organic Phase-Change Micro/Nanocapsules. Energies 2024, 17, 604. [Google Scholar] [CrossRef]
- Liu, K.; Yuan, Z.F.; Zhao, H.X.; Shi, C.H.; Zhao, F. Properties and applications of shape-stabilized phase change energy storage materials based on porous material supportd—A review. Mater. Today Sustain. 2023, 21, 100336. [Google Scholar] [CrossRef]
- Huang, D.; Ma, G.; Yu, Z.; Lv, P.; Zhou, Q.; Liu, Q.; Peng, C.; Xiong, F.; Huang, Y. Highly thermal conductive shape-stabilized composite phase change materials based on boron nitride and expanded graphite for solar thermal applications. RSC Adv. 2023, 13, 13252–13262. [Google Scholar] [CrossRef]
- Lin, Y.; Zhu, C.; Alva, G.; Fang, G. Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage. Appl. Energy 2018, 228, 1801–1809. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Ji, J.; Li, Y.; Munyalo, J.M.; Liu, B.; Xu, X.; Liu, S. Thermal Conductivity Modification of N-Octanoic Acid-Myristic Acid Composite Phase Change Material. J. Mol. Liq. 2019, 288, 111092. [Google Scholar] [CrossRef]
- Gowthami, D.; Sharma, R.K. Influence of Hydrophilic and Hydrophobic Modification of the Porous Matrix on the Thermal Performance of Form Stable Phase Change Materials: A Review. Renew. Sustain. Energy Rev. 2023, 185, 113642. [Google Scholar] [CrossRef]
- Abdeali, G.; Mazaheri, K.; Ahmadi, L.S.; Bahramian, A.R. Effect of expanded graphite surface modification on phase change materials nanocomposites thermal protection efficiency. Polym. Compos. 2022, 43, 1974–1984. [Google Scholar] [CrossRef]
- Blackley, E.; Lai, T.; Odukomaiya, A.; Tabares-Velasco, P.C.; Wheeler, L.M.; Woods, J. Surface-Modified Compressed Expanded Graphite for Increased Salt Hydrate Phase Change Material Thermal Conductivity and Stability. ACS Appl. Energy Mater. 2023, 6, 8775–8786. [Google Scholar] [CrossRef]
- Tian, H.Y.; Tang, J.; Yuan, S.R.; Yang, L.S.; Wang, F.Y.; Yue, G.X.; Wang, C.P. The mechanisms study of the effect of sludge hydrolysis residual preparation on the performance of composite phase change materials. J. Energy Storage 2022, 56, 105869. [Google Scholar] [CrossRef]
- Tian, H.Y.; An, Z.W.; Cui, W.W.; Tang, X.D.; Sui, D.H.; Wang, C.P. Effect of surface modification of sludge hydropyrolysis residue on the heat storage performance of composite hydrated salt. J. Energy Storage 2024, 78, 109928. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Su, Y.H.; Ge, X.S. Theoretical prediction of melting point and melting heat of (quasi) eutectic phase change materials. J. China Univ. Sci. Technol. 1995, 25, 474–478. [Google Scholar]
- Zhao, L.; Li, M.; Yu, Q.; Zhang, Y.; Li, G.; Huang, Y. Improving the Thermal Performance of Novel Low-Temperature Phase Change Materials through the Configuration of 1-Dodecanol-Tetradecane Nanofluids/Expanded Graphite Composites. J. Mol. Liq. 2021, 322, 114948. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Zhu, X.; Xin, S. A Low-Temperature Phase Change Material Based on Capric-Stearic Acid/Expanded Graphite for Thermal Energy Storage. ACS Omega 2021, 6, 17988–17998. [Google Scholar] [CrossRef] [PubMed]
- Fei, H.; He, Q.; Du, W.; Li, P.; Zhou, J.; Pan, Y.; Liang, X. Structural Characteristics and Thermal Performances of Capric Acid-Stearic Acid-Octadecanol Adsorbed into Porous Expanded Graphite under Vacuum Condition. J. Energy Storage 2023, 72, 108326. [Google Scholar] [CrossRef]
- D’Oliveira, E.J.; Azimov, U.; Pereira, S.-C.C.; Lafdi, K. Effect of particle size on the thermal conductivity of organic phase change materials with expanded graphite. J. Energy Storage 2024, 92, 112090. [Google Scholar] [CrossRef]
Specific Surface Area/m2·g−1 | Mean Pore Size/nm | Pore Volume/cm3·g−1 | |
---|---|---|---|
EG | 19.1941 | 15.1601 | 0.0727464 |
EG-HDTMOS | 7.2841 | 29.9451 | 0.0545309 |
Mass Ratio of OA-TD | 79:21 | 78:22 | 77:23 | 76:24 | 75:25 |
---|---|---|---|---|---|
Phase-transition temperature/°C | 12.2 | 11.6 | 11.4 | 11.4 | 11.8 |
Latent heat/J/g | 145–150 | 150–155 | 150–155 | 150–155 | 155–160 |
Mass Ratio of OA-TD to EG | Quality before Standing/g | Quality after Standing/g | Leakage/g | Leakage Rate/% |
---|---|---|---|---|
10:1 | 1.0257 | 0.9837 | 0.0420 | 4.09 |
12:1 | 0.9810 | 0.8978 | 0.0832 | 8.48 |
14:1 | 1.0998 | 0.9546 | 0.1452 | 13.20 |
16:1 | 1.0543 | 0.8849 | 0.1694 | 16.07 |
PCMS | Mass Ratio of EG | Melting Process | Thermal Conductivity (W/(m·K)) | Ref. | |
---|---|---|---|---|---|
Tm (°C) | Hm (J/g) | ||||
OA-MA | 7 wt% | 6.8 | 136 | 0.998 | [15] |
CA-SA-OD | 8.33% | 27.06 | 142.09 | 3.136 | [23] |
CA-SA | 10 wt% | 24.47 | 150.42 | 0.528 | [24] |
RT62HC | 6 wt% | 62.2 | 174 ± 3 | 0.518 | [25] |
OA-TD | 7.69 wt% | 11.2 | 138–143 | 0.7 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Li, Y.; Ren, Y.; An, Z.; Zhang, Z.; Yang, L.; Cui, W.; Wang, C. Thermal Performance Improvement of Composite Phase-Change Storage Material of Octanoic Acid–Tetradecanol by Modified Expanded Graphite. Energies 2024, 17, 4311. https://doi.org/10.3390/en17174311
Tang J, Li Y, Ren Y, An Z, Zhang Z, Yang L, Cui W, Wang C. Thermal Performance Improvement of Composite Phase-Change Storage Material of Octanoic Acid–Tetradecanol by Modified Expanded Graphite. Energies. 2024; 17(17):4311. https://doi.org/10.3390/en17174311
Chicago/Turabian StyleTang, Jin, Yongfei Li, Yunxiu Ren, Zewen An, Ziqi Zhang, Laishun Yang, Weiwei Cui, and Cuiping Wang. 2024. "Thermal Performance Improvement of Composite Phase-Change Storage Material of Octanoic Acid–Tetradecanol by Modified Expanded Graphite" Energies 17, no. 17: 4311. https://doi.org/10.3390/en17174311
APA StyleTang, J., Li, Y., Ren, Y., An, Z., Zhang, Z., Yang, L., Cui, W., & Wang, C. (2024). Thermal Performance Improvement of Composite Phase-Change Storage Material of Octanoic Acid–Tetradecanol by Modified Expanded Graphite. Energies, 17(17), 4311. https://doi.org/10.3390/en17174311