Artificial Intelligence-Based Improvement of Empirical Methods for Accurate Global Solar Radiation Forecast: Development and Comparative Analysis
Abstract
:1. Introduction
- ▪
- Development of precise global solar radiation models for the studied locations as well as the whole region, which presently lack AI-based models, despite the presence of multiple proposed solar energy plants in the region.
- ▪
- Investigating different ANN architectures in GSR estimation, where ANNs’ performance is investigated and tested using different neuron numbers (five, ten, and fifteen neurons) within the hidden layer.
- ▪
- Examination of the impact of varying lengths of the validation data set on solar radiation models’ prediction and accuracy.
- ▪
- Assessment of the proficiency of ANN-based solar models in GSR forecasting in five new cities, particularly coastal ones, where no ANN-based models are proposed or developed at these sites.
- ▪
- Carrying out of a thorough comparison study that provides useful knowledge for designers and engineers as well as for any potential solar energy application at the studied locations:
- ⮚
- The best local and general models have been compared together.
- ⮚
- The obtained results from the two validation data sets, the short data set (Single Year) and the long data set (Three-Year Average), are compared to each other to assess the effect of varying lengths of validation data set on models’ efficacy.
- ⮚
- The performance of the ANN technique is compared to the performance of the traditional method (empirical technique)
- ▪
- The present work also deals with the issue of a lack of weather stations, which restricts the use of radiation measurement equipment at the research site.
2. Materials and Methods
2.1. Artificial Neural Network-Based Approach
2.1.1. ANNs’ Basic Concept
2.1.2. ANN-Based Forecasting Models
2.2. Empirical-Based Approach
2.3. Performance Comparison Metrics
2.4. Data Description
3. Results and Discussion
3.1. Validation Using Long-Term Data (Using the Data from the Succeeding Longer Years of 2018–2020)
3.2. Validation Using Neighbouring Year (i.e., Using the Data in 2018 for Validation)
3.3. Performance Comparison for ANNs and Empirical Techniques
3.4. Validation Data Set Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, H.; Band, S.S.; Karami, H.; Ehteram, M.; Chau K wing Zhang, Q. Solar radiation prediction using improved soft computing models for semi-arid, slightly-arid and humid climates. Alex. Eng. J. 2022, 61, 10631–10657. [Google Scholar] [CrossRef]
- Oyewola, O.M.; Patchali, T.E.; Ajide, O.O.; Singh, S.; Matthew, O.J. Global solar radiation predictions in Fiji Islands based on empirical models. Alex. Eng. J. 2022, 61, 8555–8571. [Google Scholar] [CrossRef]
- Ali, M.A.; Elsayed, A.; Elkabani, I.; Youssef, M.E.; Hassan, G.E. Modeling global solar radiation using ambient temperature. Clean. Energy Syst. 2024, 7, 100101. [Google Scholar] [CrossRef]
- Guermoui, M.; Melgani, F.; Gairaa, K.; Mekhalfi, M.L. A comprehensive review of hybrid models for solar radiation forecasting. J. Clean. Prod. 2020, 258, 120357. [Google Scholar] [CrossRef]
- Ali, M.A.; Hassan, G.E.; Youssef, M.E. Assessment the Performance of Artificial Neural Networks in Estimating Global Solar Radiation. In International Conference on New Trends for Sustainable Energy-ICNTSE; Pharos University: Alexandria, Egypt, 2016; pp. 148–150. [Google Scholar]
- Karaman, Ö.A.; Tanyıldızı Ağır, T.; Arsel, İ. Estimation of solar radiation using modern methods. Alex. Eng. J. 2021, 60, 2447–2455. [Google Scholar] [CrossRef]
- Eladawy, M.L.; Morsy, M.; Korany, M.H.; Basset, H.A.; El-adawy, M. Spatiotemporal variations of global solar radiation: Case Study Egypt. Alex. Eng. J. 2022, 61, 8625–8639. [Google Scholar] [CrossRef]
- He, C.; Liu, J.; Xu, F.; Zhang, T.; Chen, S.; Sun, Z.; Zheng, W.; Wang, R.; He, L.; Feng, H.; et al. Improving solar radiation estimation in China based on regional optimal combination of meteorological factors with machine learning methods. Energy Convers. Manag. 2020, 220, 113111. [Google Scholar] [CrossRef]
- Youssef, M.E.; Hassan, G.E.; Mohamed, Z.E.; Ali, M.A. Investigating the performance of different models in estimating global solar radiation. Adv. Nat. Appl. Sci. 2016, 10, 379–389. [Google Scholar]
- Tao, H.; Ewees, A.A.; Al-Sulttani, A.O.; Beyaztas, U.; Hameed, M.M.; Salih, S.Q.; Armanuos, A.M.; Al-Ansari, N.; Voyant, C.; Shahid, S.; et al. Global solar radiation prediction over North Dakota using air temperature: Development of novel hybrid intelligence model. Energy Rep. 2021, 7, 136–157. [Google Scholar] [CrossRef]
- Hassan, G.E.; Youssef, M.E.; Ali, M.A.; Mohamed, Z.E.; Hanafy, A.A. Evaluation of different sunshine-based models for predicting global solar radiation-Case study: New Borg El-Arab City, Egypt. Therm. Sci. 2018, 22, 979–992. [Google Scholar] [CrossRef]
- Amrouche, B.; Le Pivert, X. Artificial neural network based daily local forecasting for global solar radiation. Appl. Energy 2014, 130, 333–341. [Google Scholar] [CrossRef]
- Voyant, C.; Darras, C.; Muselli, M.; Paoli, C.; Nivet, M.L.; Poggi, P. Bayesian rules and stochastic models for high accuracy prediction of solar radiation. Appl. Energy 2014, 114, 218–226. [Google Scholar] [CrossRef]
- Besharat, F.; Dehghan, A.A.; Faghih, A.R. Empirical models for estimating global solar radiation: A review and case study. Renew. Sustain. Energy Rev. 2013, 21, 798–821. [Google Scholar] [CrossRef]
- Ali, M.A.; Elsayed, A.; Elkabani, I.; Youssef, M.E. Evaluation and performance comparison of different models for global solar radiation forecasting: A case study on five cities. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Angstrom, A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Q. J. R. Meteorol. Soc. 1924, 50, 121–125. [Google Scholar] [CrossRef]
- Prescott, J.A. Evaporation from water surface in relation to solar radiation. Trans. R. Soc. Aust. 1940, 46, 114–118. [Google Scholar]
- Uçkan, İ.; Khudhur, K.M. Improving of global solar radiation forecast by comparing other meteorological parameter models with sunshine duration models. Environ. Sci. Pollut. Res. 2022, 37867–37881. [Google Scholar] [CrossRef]
- Banihashemi Dehkordi, S.N.; Bakhtiari, B.; Qaderi, K.; Ahmadi, M.M. Calibration and validation of the Angstrom–Prescott model in solar radiation estimation using optimization algorithms. Sci. Rep. 2022, 12, 4855. [Google Scholar] [CrossRef]
- Perdinan Winkler, J.A.; Andresen, J.A. Evaluation of multiple approaches to estimate daily solar radiation for input to crop process models. Atmosphere 2021, 12, 8. [Google Scholar] [CrossRef]
- Kaplan, Y.A. Forecasting of global solar radiation: A statistical approach using simulated annealing algorithm. Eng. Appl. Artif. Intell. 2024, 136, 109034. [Google Scholar] [CrossRef]
- Kamil, R.; Garniwa, P.M.P.; Lee, H. Performance assessment of global horizontal irradiance models in all-sky conditions. Energies 2021, 14, 7939. [Google Scholar] [CrossRef]
- Cunha, A.C.; Filho, L.R.A.G.; Tanaka, A.A.; Putti, F.F. Performance and estimation of solar radiation models in state of Minas Gerais, Brazil. Model. Earth Syst. Environ. 2021, 7, 603–622. [Google Scholar] [CrossRef]
- Bautista-Rodriguez, G.M.; Chacon-Cardona, C.A. Angstrom-Prescott Models of Solar radiation over Earth surface. J. Phys. Conf. Ser. 2021, 2135, 012005. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, R.; Aggarwal, R.K. Empirical model for the estimation of global solar radiation for Indian locations. Int. J. Ambient. Energy 2021, 42, 124–130. [Google Scholar] [CrossRef]
- Gouda, S.G.; Hussein, Z.; Luo, S.; Yuan, Q. Review of empirical solar radiation models for estimating global solar radiation of various climate zones of China. Prog. Phys. Geogr. 2020, 44, 168–188. [Google Scholar] [CrossRef]
- Blal, M.; Khelifi, S.; Dabou, R.; Sahouane, N.; Slimani, A.; Rouabhia, A.; Ziane, A.; Neçaibia, A.; Bouraiou, A.; Tidjar, B. A prediction models for estimating global solar radiation and evaluation meteorological effect on solar radiation potential under several weather conditions at the surface of Adrar environment. Meas. J. Int. Meas. Confed. 2019, 152, 107348. [Google Scholar] [CrossRef]
- Khorasanizadeh, H.; Sepehrnia, M. Solar exergy evaluation and empirical model establishment; case study: Iran. Heliyon 2020, 6, e05638. [Google Scholar] [CrossRef]
- Feng, Y.; Gong, D.; Jiang, S.; Zhao, L.; Cui, N. National-scale development and calibration of empirical models for predicting daily global solar radiation in China. Energy Convers. Manag. 2020, 203, 112236. [Google Scholar] [CrossRef]
- Teke, A.; Yildirim, H.B.; Çelik, Ö. Evaluation and performance comparison of different models for the estimation of solar radiation. Renew. Sustain. Energy Rev. 2015, 50, 1097–1107. [Google Scholar] [CrossRef]
- Teyabeen, A.A.; Elhatmi, N.B.; Essnid, A.A.; Mohamed, F. Estimation of monthly global solar radiation over twelve major cities of Libya. Energy Built Environ. 2024, 5, 46–57. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Zhou, B.; Li, C.; Cao, G.; Voropai, N.; Barakhtenko, E. Taxonomy research of artificial intelligence for deterministic solar power forecasting. Energy Convers. Manag. 2020, 214, 112909. [Google Scholar] [CrossRef]
- de Freitas Viscondi, G.; Alves-Souza, S.N. Solar irradiance prediction with machine learning algorithms: A Brazilian case study on photovoltaic electricity generation. Energies 2021, 14, 5657. [Google Scholar] [CrossRef]
- Faisal, A.N.M.F.; Rahman, A.; Habib, M.T.M.; Siddique, A.H.; Hasan, M.; Khan, M.M. Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of Bangladesh. Results Eng. 2022, 13, 100365. [Google Scholar] [CrossRef]
- Rocha, P.A.C.; Santos, V.O. Global horizontal and direct normal solar irradiance modeling by the machine learning methods XGBoost and deep neural networks with CNN-LSTM layers: A case study using the GOES-16 satellite imagery. Int. J. Energy Environ. Eng. 2022, 13, 1271–1286. [Google Scholar] [CrossRef]
- Qiu, R.; Liu, C.; Cui, N.; Gao, Y.; Li, L.; Wu, Z.; Jiang, S.; Hu, M. Generalized Extreme Gradient Boosting model for predicting daily global solar radiation for locations without historical data. Energy Convers. Manag. 2022, 258, 115488. [Google Scholar] [CrossRef]
- Husain, S.; Khan, U.A. Development of machine learning models based on air temperature for estimation of global solar radiation in India. Environ. Prog. Sustain. Energy 2021, 41, e13782. [Google Scholar] [CrossRef]
- Jagadeesh, V.; Venkata Subbaiah, K. Solar forecasting performance using artificial intelligence algorithms. Test. Eng. Manag. 2020, 83, 132–139. [Google Scholar]
- Benatiallah, D.; Bouchouicha, K.; Benatiallah, A.; Harouz, A.; Nasri, B. Artificial Neural Network Based Solar Radiation Estimation of Algeria Southwest Cities; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 174. [Google Scholar]
- Kaushika, N.D.; Tomar, R.K.; Kaushik, S.C. Artificial neural network model based on interrelationship of direct, diffuse and global solar radiations. Sol. Energy 2014, 103, 327–342. [Google Scholar] [CrossRef]
- Halima, D.; Djelloul, B.; Mehdi, G.; Camel, T.; Ali, B.; Bouchra, B. Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria. Comput. Mater. Contin. 2024, 79, 4725–4740. [Google Scholar] [CrossRef]
- Yadav, A.K.; Malik, H.; Chandel, S.S. Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models. Renew. Sustain. Energy Rev. 2014, 31, 509–519. [Google Scholar] [CrossRef]
- Yadav, A.K.; Chandel, S.S. Solar radiation prediction using Artificial Neural Network techniques: A review. Renew. Sustain. Energy Rev. 2014, 33, 772–781. [Google Scholar] [CrossRef]
- Choudhary, A.; Pandey, D.; Bhardwaj, S. A Review for the Development of ANN Based Solar Radiation Estimation Models; Springer: Singapore, 2021; Volume 194. [Google Scholar]
- Nawab, F.; Hamid, A.S.A.; Ibrahim, A.; Sopian, K.; Fazlizan, A.; Fauzan, M.F. Solar irradiation prediction using empirical and artificial intelligence methods: A comparative review. Heliyon 2023, 9, e17038. [Google Scholar] [CrossRef]
- Hassan, G.E.; Youssef, M.E.; Mohamed, Z.E.; Ali, M.A.; Hanafy, A.A. New Temperature-based Models for Predicting Global Solar Radiation. Appl. Energy 2016, 179, 437–450. [Google Scholar] [CrossRef]
- Korachagaon, I.; Bapat, V.N. General formula for the estimation of global solar radiation on earth’s surface around the globe. Renew. Energy 2012, 41, 394–400. [Google Scholar] [CrossRef]
- World Atlas. The Suze Canal’s Map. Pinterest n.d. Available online: https://www.pinterest.com/pin/460282024411255922/ (accessed on 1 November 2022).
- Hassan, G.E.; Ali, M.A. Performance Evaluation of Artificial Neural Networks in Estimating Global Solar Radiation, Case Study: New Borg El-arab City, Egypt. Int. J. Environ. Sci. Sustain. Dev. 2017, 2, 16. [Google Scholar] [CrossRef]
- Şenkal, O.; Kuleli, T. Estimation of solar radiation over Turkey using artificial neural network and satellite data. Appl. Energy 2009, 86, 1222–1228. [Google Scholar] [CrossRef]
- Jiang, Y. Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models. Energy 2009, 34, 1276–1283. [Google Scholar] [CrossRef]
- Sivamadhavi, V.; Selvaraj, R.S. Prediction of monthly mean daily global solar. J. Earth Syst. Sci. 2012, 121, 1501–1510. [Google Scholar] [CrossRef]
- Rahimikhoob, A. Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment. Renew. Energy 2010, 35, 2131–2135. [Google Scholar] [CrossRef]
- Ali, M.A.; Elsayed, A.; Elkabani, I.; Akrami, M.; Youssef, M.E.; Hassan, G.E. Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods. Energies 2023, 16, 6165. [Google Scholar] [CrossRef]
- Bounoua, Z.; Ouazzani Chahidi, L.; Mechaqrane, A. Estimation of daily global solar radiation using empirical and machine-learning methods: A case study of five Moroccan locations. Sustain. Mater. Technol. 2021, 28, e00261. [Google Scholar] [CrossRef]
- Kumar, S.; Kaur, T. Development of ANN Based Model for Solar Potential Assessment Using Various Meteorological Parameters. Energy Procedia 2016, 90, 587–592. [Google Scholar] [CrossRef]
- Çelik, Ö.; Teke, A.; Yildirim, H.B. The optimized artificial neural network model with Levenberg-Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean Region of Turkey. J. Clean. Prod. 2016, 116, 1–12. [Google Scholar] [CrossRef]
- Marzouq, M.; Bounoua, Z.; El Fadili, H.; Mechaqrane, A.; Zenkouar, K.; Lakhliai, Z. New daily global solar irradiation estimation model based on automatic selection of input parameters using evolutionary artificial neural networks. J. Clean. Prod. 2019, 209, 1105–1118. [Google Scholar] [CrossRef]
- Bounoua, Z.; Mechaqrane, A. Prediction of Short-Term and Long-Term Hourly Global Horizontal Solar Irradiation Using Artificial Neural Networks Techniques in Fez City, Morocco; Springer: Singapore, 2021; Volume 681. [Google Scholar]
- Bounoua, Z.; Mechaqrane, A. Hourly and sub-hourly ahead global horizontal solar irradiation forecasting via a novel deep learning approach: A case study. Sustain. Mater. Technol. 2023, 36, e00599. [Google Scholar] [CrossRef]
- Hassan, M.A.; Khalil, A.; Kaseb, S.; Kassem, M.A. Potential of four different machine-learning algorithms in modeling daily global solar radiation. Renew. Energy 2017, 111, 52–62. [Google Scholar] [CrossRef]
- Boubaker, S.; Benghanem, M.; Mellit, A.; Lefza, A.; Kahouli, O.; Kolsi, L. Deep Neural Networks for Predicting Solar Radiation at Hail Region, Saudi Arabia. IEEE Access 2021, 9, 36719–36729. [Google Scholar] [CrossRef]
- Brownlee, J. Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python; Machine Learning Mastery: Vermont, VA, USA, 2018. [Google Scholar]
- Bamisile, O.; Oluwasanmi, A.; Ejiyi, C.; Yimen, N.; Obiora, S.; Huang, Q. Comparison of machine learning and deep learning algorithms for hourly global/diffuse solar radiation predictions. Int. J. Energy Res. 2021, 46, 10052–10073. [Google Scholar] [CrossRef]
- Khalil, S.A.; Shaffie, A.M. Performance of Statistical Comparison Models of Solar Energy on Horizontal and Inclined Surface. Nternational J. Energy Power 2013, 2, 8–25. [Google Scholar]
- Li, H.; Cao, F.; Wang, X.; Ma, W. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China. Sci. World J. 2014, 2014, 128754. [Google Scholar] [CrossRef]
- Ghazouani, N.; Bawadekji, A.; El-Bary, A.A.; Elewa, M.M.; Becheikh, N.; Alassaf, Y.; Hassan, G.E. Performance evaluation of temperature-based global solar radiation models—Case study: Arar city, K.S.A. Sustainability 2022, 14, 35. [Google Scholar] [CrossRef]
- Ali, M.A.; Hassan, G.E.; Elsayed, A.; Elkabani, I.; Youssef, M.E. Global Solar Radiation Prediction Using Different Approaches–A Case Study on New Borg El-Arab City, Egypt. In Proceedings of the Third International Conference on New Trends in Sustainable Energy “From Waste to Energy”—ICNTSE-2021, Online, 1–2 March 2022; Pharos University and KTH: Alexandria, Egypt, 2022; pp. 130–135. [Google Scholar]
- Khorasanizadeh, H.; Mohammadi, K. Prediction of daily global solar radiation by day of the year in four cities located in the sunny regions of Iran. Energy Convers. Manag. 2013, 76, 385–392. [Google Scholar] [CrossRef]
- Ajayi, O.O.; Ohijeagbon, O.D.; Nwadialo, C.E.; Olasope, O. New model to estimate daily global solar radiation over Nigeria. Sustain. Energy Technol. Assess. 2014, 5, 28–36. [Google Scholar] [CrossRef]
- Hai, T.; Sharafati, A.; Mohammed, A.; Salih, S.Q.; Deo, R.C.; Al-Ansari, N.; Yaseen, Z.M. Global Solar Radiation Estimation and Climatic Variability Analysis Using Extreme Learning Machine Based Predictive Model. IEEE Access 2020, 8, 12026–12042. [Google Scholar] [CrossRef]
- Demircan, C.; Bayrakçı, H.C.; Keçebaş, A. Machine learning-based improvement of empiric models for an accurate estimating process of global solar radiation. Sustain. Energy Technol. Assess. 2020, 37, 100574. [Google Scholar] [CrossRef]
- Bayrakçı, H.C.; Demircan, C.; Keçebaş, A. The development of empirical models for estimating global solar radiation on horizontal surface: A case study. Renew. Sustain. Energy Rev. 2018, 81, 2771–2782. [Google Scholar] [CrossRef]
- Hassan, G.E.; Youssef, M.E.; Ali, M.A.; Mohamed, Z.E.; Shehata, A.I. Performance assessment of different day-of-the-year-based models for estimating global solar radiation-Case study: Egypt. J. Atmos. Solar-Terr. Phys. 2016, 149, 69–80. [Google Scholar] [CrossRef]
- NASA Surface Meteorology and Solar Energy. “These Data Were Obtained from the NASA Langley Research Center (LaRC) POWER Project Funded through the NASA Earth Science/Applied Science Program.” n.d. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 8 July 2021).
- Abdo, T.; EL-Shimy, M. Estimating the global solar radiation for solar energy projects-Egypt case study. Int. J. Sustain. Energy 2013, 32, 682–712. [Google Scholar] [CrossRef]
- Fadare, D.A. Modelling of solar energy potential in Nigeria using an artificial neural network model. Appl. Energy 2009, 86, 1410–1422. [Google Scholar] [CrossRef]
- Microsoft. Microsoft C# Language n.d. Available online: https://learn.microsoft.com/en-us/dotnet/csharp/ (accessed on 8 July 2021).
- Ayodele, T.R.; Ogunjuyigbe, A.S.O. Prediction of monthly average global solar radiation based on statistical distribution of clearness index. Energy 2015, 90, 1733–1742. [Google Scholar] [CrossRef]
- Jiang, Y. Estimation of monthly mean daily diffuse radiation in China. Appl. Energy 2009, 86, 1458–1464. [Google Scholar] [CrossRef]
- Khalil, S.A.; Shaffie, A.M. A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt. Renew. Sustain. Energy Rev. 2013, 27, 853–863. [Google Scholar] [CrossRef]
- Camacho, E.; Berenguel, M.; Rubio, F.; Martínez, D. Chapter 1-Solar Energy Fundamentals. In Control of Solar Energy Systems; Springer: London, UK, 2012; pp. 1–23. [Google Scholar]
- Karakoti, I.; Das, P.K.; Singh, S.K. Predicting monthly mean daily diffuse radiation for India. Appl. Energy 2012, 91, 412–425. [Google Scholar] [CrossRef]
- Li, H.; Ma, W.; Lian, Y.; Wang, X. Estimating daily global solar radiation by day of year in China. Appl. Energy 2010, 87, 3011–3017. [Google Scholar] [CrossRef]
- El-Metwally, M. Simple new methods to estimate global solar radiation based on meteorological data in Egypt. Atmos. Res. 2004, 69, 217–239. [Google Scholar] [CrossRef]
- Khorasanizadeh, H.; Mohammadi, K. Introducing the best model for predicting the monthly mean global solar radiation over six major cities of Iran. Energy 2013, 51, 257–266. [Google Scholar] [CrossRef]
- New & Renewable Energy Authority Egypt. Strategic Environmental & Social Assessment Final Report; New & Renewable Energy Authority Egypt: Nasr City, Egypt, 2016.
- Benban Solar Park. Wikipedia n.d. Available online: https://en.wikipedia.org/wiki/Benban_Solar_Park (accessed on 15 June 2023).
- GEO-CRADLE Team. Solar Atlas of Egypt; GEO-CRADLE Reg Work; GEO-CRADLE Team: Nasr City, Egypt, 2018; pp. 1–277. [Google Scholar]
# | Site Name | Longitude. E | Latitude. N |
---|---|---|---|
1 | Port Said | 32°18′ | 31°15′ |
2 | El Kantara | 32°18′ | 30°51′ |
3 | Ismailia | 32°16′ | 30°35′ |
4 | Fayid | 32°18′ | 30°18′ |
5 | Suez | 32°33′ | 29°58′ |
Site | Local Models | General Models | ||
---|---|---|---|---|
Model Type | Iteration No. | Model Type | Iteration No. | |
Port Said | Model_5N | 8 | Model_5N | 10 |
Model_10N | 10 | Model_10N | 5 | |
Model_15N | 10 | Model_15N | 10 | |
El Kantara | Model_5N | 8 | Model_5N | 10 |
Model_10N | 10 | Model_10N | 5 | |
Model_15N | 10 | Model_15N | 10 | |
Ismailia | Model_5N | 9 | Model_5N | 10 |
Model_10N | 10 | Model_10N | 5 | |
Model_15N | 4 | Model_15N | 10 | |
Fayid | Model_5N | 9 | Model_5N | 10 |
Model_10N | 10 | Model_10N | 5 | |
Model_15N | 10 | Model_15N | 10 | |
Suez | Model_5N | 10 | Model_5N | 10 |
Model_10N | 10 | Model_10N | 5 | |
Model_15N | 3 | Model_15N | 10 |
Type | Site | Model | MPE | MBE | RMSE | MAPE | MABE | Rank | ||
---|---|---|---|---|---|---|---|---|---|---|
Local Models | Port Said | Model_5N | 3.65490 | 0.40327 | 0.92969 | 5.35676 | 0.84151 | 0.99535 | 0.97856 | 2 |
Model_10N | 1.92217 | 0.11361 | 0.84811 | 4.41988 | 0.73673 | 0.99463 | 0.98215 | 1 | ||
Model_15N | 3.60763 | 0.36405 | 1.14504 | 6.11046 | 1.03554 | 0.99087 | 0.96747 | 3 | ||
El Kantara | Model_5N | 2.24654 | 0.22460 | 0.78356 | 3.79819 | 0.66934 | 0.99854 | 0.98359 | 1 | |
Model_10N | 2.15237 | 0.20589 | 0.81524 | 4.07256 | 0.73167 | 0.99711 | 0.98224 | 2 | ||
Model_15N | 2.37725 | 0.27635 | 1.02763 | 4.27861 | 0.79210 | 0.99122 | 0.97178 | 3 | ||
Ismailia | Model_5N | 2.14154 | 0.20317 | 0.84457 | 3.90937 | 0.71149 | 0.99695 | 0.98094 | 1 | |
Model_10N | 3.55581 | 0.47516 | 0.91382 | 4.68668 | 0.80093 | 0.99814 | 0.97768 | 2 | ||
Model_15N | 1.57824 | 0.04712 | 1.55105 | 5.73291 | 1.08472 | 0.97052 | 0.93571 | 3 | ||
Fayid | Model_5N | 2.35806 | 0.26666 | 0.77417 | 3.71788 | 0.66071 | 0.99796 | 0.98398 | 2 | |
Model_10N | 2.54464 | 0.30327 | 0.76652 | 3.79592 | 0.66428 | 0.99825 | 0.98430 | 1 | ||
Model_15N | 1.98925 | 0.18159 | 0.81653 | 3.81238 | 0.70567 | 0.99710 | 0.98218 | 3 | ||
Suez | Model_5N | 4.61072 | 0.69807 | 1.12449 | 5.50349 | 0.95460 | 0.99667 | 0.96418 | 1 | |
Model_10N | 5.26722 | 0.81045 | 1.22514 | 5.99275 | 1.02269 | 0.99821 | 0.95748 | 2 | ||
Model_15N | 4.55418 | 0.65296 | 1.28840 | 6.10674 | 1.11445 | 0.99322 | 0.95298 | 3 |
Type | Site | Model | MPE | MBE | RMSE | MAPE | MABE | Rank | ||
---|---|---|---|---|---|---|---|---|---|---|
General Models (Suez Canal Zone) | Port Said | Model_5N | 2.22622 | 0.11679 | 0.89560 | 4.89941 | 0.79687 | 0.99580 | 0.98010 | 1 |
Model_10N | 1.10850 | -0.09991 | 0.95111 | 5.22469 | 0.86057 | 0.99447 | 0.97756 | 2 | ||
Model_15N | 2.26700 | 0.11408 | 1.19298 | 6.66175 | 1.05889 | 0.98611 | 0.96469 | 3 | ||
El Kantara | Model_5N | 1.70379 | 0.15432 | 0.67046 | 3.35007 | 0.61371 | 0.99857 | 0.98799 | 2 | |
Model_10N | 2.19621 | 0.27324 | 0.65596 | 3.22489 | 0.56519 | 0.99848 | 0.98850 | 1 | ||
Model_15N | 3.29598 | 0.44940 | 0.91358 | 4.51385 | 0.79933 | 0.99667 | 0.97770 | 3 | ||
Ismailia | Model_5N | 1.70379 | 0.15432 | 0.67046 | 3.35007 | 0.61371 | 0.99857 | 0.98799 | 2 | |
Model_10N | 2.19621 | 0.27324 | 0.65596 | 3.22489 | 0.56519 | 0.99848 | 0.98850 | 1 | ||
Model_15N | 3.29598 | 0.44940 | 0.91358 | 4.51385 | 0.79933 | 0.99667 | 0.97770 | 3 | ||
Fayid | Model_5N | 2.07041 | 0.24630 | 0.69588 | 3.48560 | 0.64340 | 0.99749 | 0.98706 | 1 | |
Model_10N | 2.37430 | 0.31167 | 0.70841 | 3.30568 | 0.58208 | 0.99771 | 0.98659 | 2 | ||
Model_15N | 3.54005 | 0.50269 | 0.96939 | 4.76469 | 0.85463 | 0.99559 | 0.97489 | 3 | ||
Suez | Model_5N | 1.81652 | 0.20719 | 0.79294 | 3.56140 | 0.70421 | 0.99509 | 0.98219 | 2 | |
Model_10N | 1.87895 | 0.22070 | 0.68448 | 3.23424 | 0.60953 | 0.99798 | 0.98673 | 1 | ||
Model_15N | 2.20825 | 0.26389 | 0.82541 | 3.80005 | 0.72465 | 0.99624 | 0.98070 | 3 |
Type | Month | Port Said (Model_10N) | El Kantara (Model_5N) | Ismailia (Model_5N) | Fayid (Model_10N) | Suez (Model_5N) |
---|---|---|---|---|---|---|
Local Models | January | 1.4 | 5.7 | 6.4 | 9.3 | 8.3 |
February | 6.7 | 6.2 | 5.5 | 6.0 | 12.2 | |
March | 5.5 | 3.0 | 4.8 | 2.7 | 4.5 | |
April | 3.3 | 0.0 | −0.1 | −0.6 | 2.9 | |
May | 1.1 | 0.2 | 1.2 | 1.1 | 2.2 | |
June | −1.8 | −2.9 | −2.9 | −2.8 | −0.9 | |
July | −3.0 | −3.8 | −5.3 | −3.9 | −2.2 | |
August | −5.8 | −2.7 | −2.3 | −0.2 | −2.2 | |
September | −4.4 | 1.6 | 1.0 | 2.0 | 0.9 | |
October | 0.5 | 2.0 | 0.9 | 3.5 | 4.6 | |
November | 5.4 | 5.4 | 4.9 | 3.4 | 7.7 | |
December | 14.2 | 12.2 | 11.7 | 10.0 | 17.4 | |
General Models (Suez Canal Zone) | (Model_5N) | (Model_10N) | (Model_10N) | (Model_5N) | (Model_10N) | |
January | 5.1 | 5.4 | 5.4 | 3.3 | 5.6 | |
February | 5.6 | 5.1 | 5.1 | 5.3 | 5.4 | |
March | 5.3 | 3.4 | 3.4 | 3.8 | 1.6 | |
April | 3.3 | 2.4 | 2.4 | 2.1 | 2.0 | |
May | 0.4 | −1.3 | −1.3 | 1.9 | 1.2 | |
June | −2.8 | −3.6 | −3.6 | −2.7 | −4.2 | |
July | −4.2 | −0.3 | −0.3 | −2.7 | −1.4 | |
August | −5.3 | −0.3 | −0.3 | −2.1 | −1.7 | |
September | −3.7 | −0.6 | −0.6 | −1.0 | −0.8 | |
October | 0.4 | 3.7 | 3.7 | 2.6 | 2.8 | |
November | 7.5 | 3.4 | 3.4 | 3.5 | 3.6 | |
December | 15.1 | 9.2 | 9.2 | 10.9 | 8.5 |
Type | Site | Model | MPE | MBE | RMSE | MAPE | MABE | Rank | ||
---|---|---|---|---|---|---|---|---|---|---|
Local Models | Port Said | Model_5N | 2.23881 | 0.16004 | 0.73494 | 4.13855 | 0.63993 | 0.99736 | 0.98682 | 1 |
Model_10N | 0.54890 | -0.08165 | 0.74252 | 3.31423 | 0.59720 | 0.99548 | 0.98655 | 2 | ||
Model_15N | -0.05539 | -0.30909 | 1.02216 | 4.58919 | 0.87105 | 0.99670 | 0.97451 | 3 | ||
El Kantara | Model_5N | 1.91737 | 0.18452 | 0.79110 | 3.75218 | 0.70187 | 0.99615 | 0.98298 | 1 | |
Model_10N | 2.56215 | 0.31626 | 0.93584 | 4.19557 | 0.77972 | 0.99275 | 0.97618 | 2 | ||
Model_15N | 2.53084 | 0.31061 | 1.14735 | 4.94496 | 0.94551 | 0.98632 | 0.96419 | 3 | ||
Ismailia | Model_5N | 2.38853 | 0.28405 | 0.94852 | 4.32869 | 0.83579 | 0.99241 | 0.97553 | 1 | |
Model_10N | 3.84825 | 0.52777 | 1.10227 | 5.35620 | 0.94103 | 0.99228 | 0.96695 | 2 | ||
Model_15N | 2.19189 | 0.21263 | 1.31003 | 5.59356 | 1.08920 | 0.98004 | 0.95332 | 3 | ||
Fayid | Model_5N | 2.16554 | 0.24301 | 0.86331 | 3.82517 | 0.71419 | 0.99402 | 0.97973 | 2 | |
Model_10N | 2.46797 | 0.29213 | 0.85560 | 4.02212 | 0.73455 | 0.99516 | 0.98009 | 1 | ||
Model_15N | 1.85009 | 0.18039 | 0.90241 | 3.86167 | 0.75382 | 0.99295 | 0.97785 | 3 | ||
Suez | Model_5N | 4.52488 | 0.74273 | 1.10459 | 5.39579 | 0.99335 | 0.99420 | 0.96529 | 1 | |
Model_10N | 6.02530 | 0.97575 | 1.37355 | 6.73833 | 1.18131 | 0.99448 | 0.94633 | 2 | ||
Model_15N | 4.97716 | 0.72684 | 1.53231 | 7.18430 | 1.37926 | 0.98398 | 0.93320 | 3 | ||
General Models (Suez Canal Zone) | Port Said | Model_5N | 1.00481 | -0.10090 | 0.84267 | 4.16739 | 0.68918 | 0.99659 | 0.98267 | 1 |
Model_10N | 1.61809 | 0.00738 | 0.86085 | 4.62802 | 0.74703 | 0.99552 | 0.98192 | 2 | ||
Model_15N | 1.79198 | -0.03430 | 1.09332 | 6.01821 | 0.95618 | 0.99217 | 0.97083 | 3 | ||
El Kantara | Model_5N | 2.32779 | 0.32902 | 0.83957 | 3.54344 | 0.67904 | 0.99333 | 0.98083 | 2 | |
Model_10N | 2.38929 | 0.32548 | 0.78656 | 3.50812 | 0.64196 | 0.99531 | 0.98317 | 1 | ||
Model_15N | 4.64530 | 0.64718 | 1.24316 | 5.99219 | 1.02980 | 0.99172 | 0.95796 | 3 | ||
Ismailia | Model_5N | 2.32779 | 0.32902 | 0.83957 | 3.54344 | 0.67904 | 0.99333 | 0.98083 | 2 | |
Model_10N | 2.38929 | 0.32548 | 0.78656 | 3.50812 | 0.64196 | 0.99531 | 0.98317 | 1 | ||
Model_15N | 4.64530 | 0.64718 | 1.24316 | 5.99219 | 1.02980 | 0.99172 | 0.95796 | 3 | ||
Fayid | Model_5N | 2.72405 | 0.40201 | 0.89906 | 3.94340 | 0.75313 | 0.99285 | 0.97801 | 1 | |
Model_10N | 2.96009 | 0.42316 | 0.90638 | 4.13992 | 0.75621 | 0.99413 | 0.97765 | 2 | ||
Model_15N | 4.89683 | 0.69868 | 1.30289 | 6.20925 | 1.07373 | 0.99039 | 0.95383 | 3 | ||
Suez | Model_5N | 3.07131 | 0.47601 | 1.11636 | 4.68751 | 0.94479 | 0.98756 | 0.96455 | 1 | |
Model_10N | 3.62559 | 0.57856 | 1.19167 | 5.09772 | 1.00837 | 0.98720 | 0.95960 | 2 | ||
Model_15N | 4.78915 | 0.72645 | 1.34822 | 6.43214 | 1.20408 | 0.98866 | 0.94829 | 3 |
Type | Month | Port Said (Model_10N) | El Kantara (Model_5N) | Ismailia (Model_5N) | Fayid (Model_10N) | Suez (Model_5N) |
---|---|---|---|---|---|---|
Local Models | January | 9.6 | 7.4 | 7.9 | 10.6 | 8.7 |
February | 8.5 | 4.6 | 4.4 | 4.9 | 11.7 | |
March | 1.9 | 0.3 | 2.8 | 1.6 | 3.4 | |
April | 0.4 | −1.1 | −1.3 | −1.3 | 3.9 | |
May | 1.4 | 3.9 | 5.5 | 4.6 | 6.4 | |
June | −0.7 | −3.0 | −3.2 | −3.1 | −0.7 | |
July | −3.2 | −3.9 | −5.5 | −4.0 | −2.4 | |
August | −5.0 | −2.9 | −1.6 | −0.9 | −2.1 | |
September | −2.4 | 2.1 | 3.2 | 1.8 | 2.1 | |
October | 4.8 | 1.8 | 4.1 | 3.5 | 5.8 | |
November | 3.0 | 3.1 | 0.5 | 0.6 | 5.8 | |
December | 8.7 | 10.9 | 11.8 | 11.3 | 11.8 | |
General Models (Suez Canal Zone) | (Model_5N) | (Model_10N) | (Model_10N) | (Model_5N) | (Model_10N) | |
January | 5.5 | 7.1 | 7.1 | 4.6 | 2.6 | |
February | 6.7 | 2.9 | 2.9 | 7.2 | 12.8 | |
March | 0.0 | 3.8 | 3.8 | 3.7 | 3.8 | |
April | −0.5 | −0.1 | −0.1 | 0.9 | 3.4 | |
May | 1.7 | 3.7 | 3.7 | 7.3 | 8.0 | |
June | −3.0 | −4.4 | −4.4 | −2.8 | −2.7 | |
July | −4.8 | −0.5 | −0.5 | −2.8 | −3.8 | |
August | −5.5 | −1.4 | −1.4 | −1.7 | −3.2 | |
September | −4.7 | 1.2 | 1.2 | 0.5 | 0.4 | |
October | −0.4 | 6.6 | 6.6 | 3.8 | 2.9 | |
November | 3.0 | −0.3 | −0.3 | 1.4 | 3.2 | |
December | 14.1 | 10.1 | 10.1 | 10.5 | 9.5 |
Location | a | b | c |
---|---|---|---|
Port Said | 0.00034 | 0.84062 | 0.50640 |
El Kantara | 0.00101 | 0.51049 | 0.47280 |
Ismailia | 0.00101 | 0.51062 | 0.47281 |
Fayid | 0.00089 | 0.53876 | 0.48038 |
Suez | 0.00099 | 0.49708 | 0.50472 |
Suez Canal Zone General Model | 0.00076 | 0.58719 | 0.48948 |
Type | Site | MPE | MBE | RMSE | MAPE | MABE | ||
---|---|---|---|---|---|---|---|---|
Local Models | Port Said | 9.3092 | 1.6925 | 1.7998 | 9.3092 | 1.6925 | 0.9975 | 0.9196 |
El Kantra | −5.6514 | −1.0118 | 1.1207 | 5.6514 | 1.0118 | 0.9979 | 0.9664 | |
Ismailia | −5.6512 | −1.0118 | 1.1207 | 5.6512 | 1.0118 | 0.9979 | 0.9664 | |
Fayid | −5.6506 | −1.0151 | 1.1219 | 5.6506 | 1.0151 | 0.9979 | 0.9664 | |
Suez | −4.4699 | −0.8082 | 0.9823 | 4.8015 | 0.8989 | 0.9971 | 0.9727 | |
General Models (Suez Canal Zone) | Port Said | 6.7679 | 1.1712 | 1.3275 | 6.7679 | 1.1712 | 0.9954 | 0.9563 |
El Kantra | −4.1394 | −0.6977 | 0.8606 | 4.3170 | 0.7461 | 0.9982 | 0.9802 | |
Ismailia | −4.1394 | −0.6977 | 0.8606 | 4.3170 | 0.7461 | 0.9982 | 0.9802 | |
Fayid | −4.3220 | −0.7255 | 0.8973 | 4.5274 | 0.7814 | 0.9981 | 0.9785 | |
Suez | −6.4757 | −1.2098 | 1.3175 | 6.5420 | 1.2279 | 0.9976 | 0.9508 |
Type | Site | MPE | MBE | RMSE | MAPE | MABE | ||
---|---|---|---|---|---|---|---|---|
Local Models | Port Said | 10.5113 | 1.8491 | 2.0009 | 10.5113 | 1.8491 | 0.9949 | 0.9023 |
El Kantra | −5.3352 | −0.9423 | 1.1776 | 6.0551 | 1.1312 | 0.9950 | 0.9623 | |
Ismailia | −5.3350 | −0.9423 | 1.1776 | 6.0549 | 1.1312 | 0.9950 | 0.9623 | |
Fayid | −5.3578 | −0.9508 | 1.1799 | 6.0634 | 1.1360 | 0.9950 | 0.9621 | |
Suez | −3.6626 | −0.6399 | 1.0303 | 4.8051 | 0.9390 | 0.9927 | 0.9698 | |
General Models (Suez Canal Zone) | Port Said | 7.8331 | 1.3024 | 1.4987 | 7.8331 | 1.3024 | 0.9935 | 0.9452 |
El Kantra | −3.7947 | −0.6218 | 0.9672 | 4.7566 | 0.8741 | 0.9952 | 0.9746 | |
Ismailia | −3.7947 | −0.6218 | 0.9672 | 4.7566 | 0.8741 | 0.9952 | 0.9746 | |
Fayid | −4.0050 | −0.6557 | 1.0015 | 4.9680 | 0.9084 | 0.9951 | 0.9727 | |
Suez | −5.6395 | −1.0325 | 1.2968 | 6.3898 | 1.2306 | 0.9932 | 0.9522 |
Site | Model Type | MPE | MBE | RMSE | MAPE | MABE | Rank | ||
---|---|---|---|---|---|---|---|---|---|
Port Said | ANN–Local | 1.9222 | 0.1136 | 0.8481 | 4.4199 | 0.7367 | 0.9946 | 0.9822 | 1 |
Empirical–Local | 9.3092 | 1.6925 | 1.7998 | 9.309 | 1.6925 | 0.9975 | 0.9196 | 4 | |
ANN–Canal Zone | 2.2262 | 0.1168 | 0.8956 | 4.8994 | 0.7969 | 0.9958 | 0.9801 | 2 | |
Empirical–Canal Zone | 6.7679 | 1.1712 | 1.3275 | 6.7679 | 1.1712 | 0.9954 | 0.9563 | 3 | |
El Kantara | ANN–Local | 2.2465 | 0.2246 | 0.7836 | 3.7982 | 0.6693 | 0.9985 | 0.9836 | 2 |
Empirical–Local | −5.6514 | −1.0118 | 1.1207 | 5.6514 | 1.0118 | 0.9979 | 0.9664 | 4 | |
ANN–Canal Zone | 2.1962 | 0.2732 | 0.6560 | 3.2249 | 0.5652 | 0.9985 | 0.9885 | 1 | |
Empirical–Canal Zone | −4.1394 | −0.6977 | 0.8606 | 4.3170 | 0.7461 | 0.9982 | 0.9802 | 3 | |
Ismailia | ANN–Local | 2.1415 | 0.2032 | 0.8446 | 3.9094 | 0.7115 | 0.9970 | 0.9809 | 2 |
Empirical–Local | −5.6512 | −1.0118 | 1.1207 | 5.6512 | 1.0118 | 0.9979 | 0.9664 | 4 | |
ANN–Canal Zone | 2.1962 | 0.2732 | 0.6560 | 3.2249 | 0.5652 | 0.9985 | 0.9885 | 1 | |
Empirical–Canal Zone | −4.1394 | −0.6977 | 0.8606 | 4.3170 | 0.7461 | 0.9982 | 0.9802 | 3 | |
Fayid | ANN–Local | 2.5446 | 0.3033 | 0.7665 | 3.7959 | 0.6643 | 0.9982 | 0.9843 | 2 |
Empirical–Local | −5.6506 | −1.0151 | 1.1219 | 5.6506 | 1.0151 | 0.9979 | 0.9664 | 4 | |
ANN–Canal Zone | 2.0704 | 0.2463 | 0.6959 | 3.4856 | 0.6434 | 0.9975 | 0.9871 | 1 | |
Empirical–Canal Zone | −4.3220 | −0.7255 | 0.8973 | 4.5274 | 0.7814 | 0.9981 | 0.9785 | 3 | |
Suez | ANN–Local | 4.6107 | 0.6981 | 1.1245 | 5.5035 | 0.9546 | 0.9967 | 0.9642 | 3 |
Empirical–Local | −4.4699 | −0.8082 | 0.9823 | 4.8015 | 0.8989 | 0.9971 | 0.9727 | 2 | |
ANN–Canal Zone | 1.8789 | 0.2207 | 0.6845 | 3.2342 | 0.6095 | 0.9980 | 0.9867 | 1 | |
Empirical–Canal Zone | −6.4757 | −1.2098 | 1.3175 | 6.5420 | 1.2279 | 0.9976 | 0.9508 | 4 |
Site | Model Type | MPE | MBE | RMSE | MAPE | MABE | Rank | ||
---|---|---|---|---|---|---|---|---|---|
Port Said | ANN–Local | 2.2388 | 0.1600 | 0.7349 | 4.1386 | 0.6399 | 0.9974 | 0.9868 | 1 |
Empirical–Local | 10.5113 | 1.8491 | 2.0009 | 10.511 | 1.8491 | 0.9949 | 0.9023 | 4 | |
ANN–Canal Zone | 1.0048 | −0.1009 | 0.8427 | 4.1674 | 0.6892 | 0.9966 | 0.9827 | 2 | |
Empirical–Canal Zone | 7.8331 | 1.3024 | 1.4987 | 7.8331 | 1.3024 | 0.9935 | 0.9452 | 3 | |
El Kantara | ANN–Local | 1.9174 | 0.1845 | 0.7911 | 3.7522 | 0.7019 | 0.9962 | 0.9830 | 2 |
Empirical–Local | −5.3352 | −0.9423 | 1.1776 | 6.0551 | 1.1312 | 0.9950 | 0.9623 | 4 | |
ANN–Canal Zone | 2.3893 | 0.3255 | 0.7866 | 3.5081 | 0.6420 | 0.9953 | 0.9832 | 1 | |
Empirical-Canal Zone | −3.7947 | −0.6218 | 0.9672 | 4.7566 | 0.8741 | 0.9952 | 0.9746 | 3 | |
Ismailia | ANN–Local | 2.3885 | 0.2841 | 0.9485 | 4.3287 | 0.8358 | 0.9924 | 0.9755 | 2 |
Empirical–Local | −5.3350 | −0.9423 | 1.1776 | 6.0549 | 1.1312 | 0.9950 | 0.9623 | 4 | |
ANN–Canal Zone | 2.3893 | 0.3255 | 0.7866 | 3.5081 | 0.6420 | 0.9953 | 0.9832 | 1 | |
Empirical–Canal Zone | −3.7947 | −0.6218 | 0.9672 | 4.7566 | 0.8741 | 0.9952 | 0.9746 | 3 | |
Fayid | ANN–Local | 2.4680 | 0.2921 | 0.8556 | 4.0221 | 0.7346 | 0.9952 | 0.9801 | 1 |
Empirical–Local | −5.3578 | −0.9508 | 1.1799 | 6.0634 | 1.1360 | 0.9950 | 0.9621 | 4 | |
ANN–Canal Zone | 2.7241 | 0.4020 | 0.8991 | 3.9434 | 0.7531 | 0.9929 | 0.9780 | 2 | |
Empirical–Canal Zone | −4.0050 | −0.6557 | 1.0015 | 4.9680 | 0.9084 | 0.9951 | 0.9727 | 3 | |
Suez | ANN–Local | 4.5249 | 0.7427 | 1.1046 | 5.3958 | 0.9934 | 0.9942 | 0.9653 | 2 |
Empirical–Local | −3.6626 | −0.6399 | 1.0303 | 4.8051 | 0.9390 | 0.9927 | 0.9698 | 1 | |
ANN–Canal Zone | 3.0713 | 0.4760 | 1.1164 | 4.6875 | 0.9448 | 0.9876 | 0.9645 | 3 | |
Empirical–Canal Zone | −5.6395 | −1.0325 | 1.2968 | 6.3898 | 1.2306 | 0.9932 | 0.9522 | 4 |
Site | Model Type | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Port Said | ANN–Local | 1.4 | 6.7 | 5.5 | 3.3 | 1.1 | −1.8 | −3.0 | −5.8 | −4.4 | 0.5 | 5.4 | 14.2 |
Empirical–Local | 12.2 | 13.5 | 11.7 | 11.7 | 10.9 | 7.6 | 7.7 | 6.3 | 5.4 | 6.7 | 4.4 | 13.5 | |
ANN–Canal Zone | 5.1 | 5.6 | 5.3 | 3.3 | 0.4 | −2.8 | −4.2 | −5.3 | −3.7 | 0.4 | 7.5 | 15.1 | |
Empirical–Canal Zone | 10.7 | 12.1 | 10.4 | 10.3 | 8.4 | 4.4 | 3.9 | 2.4 | 1.9 | 3.6 | 1.9 | 11.4 | |
El Kantara | ANN–Local | 5.7 | 6.2 | 3.0 | 0.0 | 0.2 | −2.9 | −3.8 | −2.7 | 1.6 | 2.0 | 5.4 | 12.2 |
Empirical–Local | −9.9 | −5.8 | −3.0 | −1.8 | −0.2 | −3.6 | −2.6 | −4.0 | −5.9 | −7.6 | −13.3 | −10.0 | |
ANN–Canal Zone | 5.4 | 5.1 | 3.4 | 2.4 | −1.3 | −3.6 | −0.3 | −0.3 | −0.6 | 3.7 | 3.4 | 9.2 | |
Empirical–Canal Zone | −8.3 | −4.4 | −1.8 | −0.6 | 1.1 | −2.2 | −1.1 | −2.4 | −4.3 | −5.9 | −11.6 | −8.2 | |
Ismailia | ANN–Local | 6.4 | 5.5 | 4.8 | −0.1 | 1.2 | −2.9 | −5.3 | −2.3 | 1.0 | 0.9 | 4.9 | 11.7 |
Empirical–Local | −9.9 | −5.8 | −3.0 | −1.8 | −0.2 | −3.6 | −2.6 | −4.0 | −5.9 | −7.6 | −13.3 | −10.0 | |
ANN–Canal Zone | 5.4 | 5.1 | 3.4 | 2.4 | −1.3 | −3.6 | −0.3 | −0.3 | −0.6 | 3.7 | 3.4 | 9.2 | |
Empirical–Canal Zone | −8.3 | −4.4 | −1.8 | −0.6 | 1.1 | −2.2 | −1.1 | −2.4 | −4.3 | −5.9 | −11.6 | −8.2 | |
Fayid | ANN–Local | 9.3 | 6.0 | 2.7 | −0.6 | 1.1 | −2.8 | −3.9 | −0.2 | 2.0 | 3.5 | 3.4 | 10.0 |
Empirical–Local | −9.8 | −5.8 | −3.1 | −1.9 | −0.2 | −3.7 | −2.7 | −4.0 | −6.0 | −7.6 | −13.2 | −9.8 | |
ANN–Canal Zone | 3.3 | 5.3 | 3.8 | 2.1 | 1.9 | −2.7 | −2.7 | −2.1 | −1.0 | 2.6 | 3.5 | 10.9 | |
Empirical–Canal Zone | −8.7 | −4.6 | −2.0 | −0.7 | 1.2 | −2.2 | −1.1 | −2.5 | −4.5 | −6.2 | −12.0 | −8.6 | |
Suez | ANN–Local | 8.3 | 12.2 | 4.5 | 2.9 | 2.2 | −0.9 | −2.2 | −2.2 | 0.9 | 4.6 | 7.7 | 17.4 |
Empirical–Local | −8.2 | −3.8 | −4.4 | 0.0 | 2.0 | −2.2 | −2.5 | −4.0 | −4.4 | −6.4 | −10.6 | −9.1 | |
ANN–Canal Zone | 5.6 | 5.4 | 1.6 | 2.0 | 1.2 | −4.2 | −1.4 | −1.7 | −0.8 | 2.8 | 3.6 | 8.5 | |
Empirical–Canal Zone | −11.1 | −6.7 | −7.0 | −2.4 | 0.4 | −3.5 | −3.6 | −5.1 | −5.8 | −8.3 | −12.9 | −11.8 |
Site | Model Type | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Port Said | ANN–Local | 9.6 | 8.5 | 1.9 | 0.4 | 1.4 | −0.7 | −3.2 | −5.0 | −2.4 | 4.8 | 3.0 | 8.7 |
Empirical–Local | 17.2 | 16.9 | 8.5 | 9.7 | 15.6 | 8.4 | 7.9 | 6.4 | 5.5 | 7.9 | 4.4 | 17.7 | |
ANN–Canal Zone | 5.5 | 6.7 | 0.0 | −0.5 | 1.7 | −3.0 | −4.8 | −5.5 | −4.7 | −0.4 | 3.0 | 14.1 | |
Empirical–Canal Zone | 15.4 | 15.3 | 6.9 | 7.9 | 12.7 | 5.0 | 4.0 | 2.6 | 1.9 | 4.8 | 2.0 | 15.6 | |
El Kantara | ANN–Local | 7.4 | 4.6 | 0.3 | −1.1 | 3.9 | −3.0 | −3.9 | −2.9 | 2.1 | 1.8 | 3.1 | 10.9 |
Empirical–Local | −7.2 | −7.6 | −6.2 | −3.2 | 4.3 | −3.3 | −2.5 | −3.7 | −5.2 | −6.6 | −13.9 | −9.0 | |
ANN–Canal Zone | 7.1 | 2.9 | 3.8 | −0.1 | 3.7 | −4.4 | −0.5 | −1.4 | 1.2 | 6.6 | −0.3 | 10.1 | |
Empirical–Canal Zone | −5.5 | −6.1 | −4.9 | −2.0 | 5.8 | −1.9 | −1.0 | −2.1 | −3.6 | −4.9 | −12.2 | −7.2 | |
Ismailia | ANN–Local | 7.9 | 4.4 | 2.8 | −1.3 | 5.5 | −3.2 | −5.5 | −1.6 | 3.2 | 4.1 | 0.5 | 11.8 |
Empirical–Local | −7.2 | −7.6 | −6.2 | −3.2 | 4.3 | −3.3 | −2.5 | −3.7 | −5.2 | −6.6 | −13.9 | −9.0 | |
ANN–Canal Zone | 7.1 | 2.9 | 3.8 | −0.1 | 3.7 | −4.4 | −0.5 | −1.4 | 1.2 | 6.6 | −0.3 | 10.1 | |
Empirical–Canal Zone | −5.5 | −6.1 | −4.9 | −2.0 | 5.8 | −1.9 | −1.0 | −2.1 | −3.6 | −4.9 | −12.2 | −7.2 | |
Fayid | ANN–Local | 10.6 | 4.9 | 1.6 | −1.3 | 4.6 | −3.1 | −4.0 | −0.9 | 1.8 | 3.5 | 0.6 | 11.3 |
Empirical–Local | −7.2 | −7.4 | −6.2 | −3.4 | 4.2 | −3.3 | −2.6 | −3.7 | −5.3 | −6.7 | −13.8 | −8.9 | |
ANN–Canal Zone | 4.6 | 7.2 | 3.7 | 0.9 | 7.3 | −2.8 | −2.8 | −1.7 | 0.5 | 3.8 | 1.4 | 10.5 | |
Empirical–Canal Zone | −6.1 | −6.2 | −5.1 | −2.1 | 5.8 | −1.8 | −1.0 | −2.1 | −3.8 | −5.3 | −12.6 | −7.7 | |
Suez | ANN–Local | 8.7 | 11.7 | 3.4 | 3.9 | 6.4 | −0.7 | −2.4 | −2.1 | 2.1 | 5.8 | 5.8 | 11.8 |
Empirical–Local | −7.6 | −1.4 | −5.2 | 0.8 | 6.1 | −2.2 | −2.8 | −3.9 | −3.6 | −5.9 | −10.5 | −7.9 | |
ANN–Canal Zone | 2.6 | 12.8 | 3.8 | 3.4 | 8.0 | −2.7 | −3.8 | −3.2 | 0.4 | 2.9 | 3.2 | 9.5 | |
Empirical–Canal Zone | −10.5 | −4.1 | −7.5 | −1.4 | 4.5 | −3.4 | −3.8 | −5.1 | −5.0 | −7.8 | −12.8 | −10.7 |
Location | Area (km2) | Actual Electrical Power (MW) |
---|---|---|
A | 80 | 2186 |
B | 76 | 2076 |
C | 8.19 | 223.8 |
D | 8.66 | 236.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.A.; Elsayed, A.; Elkabani, I.; Akrami, M.; Youssef, M.E.; Hassan, G.E. Artificial Intelligence-Based Improvement of Empirical Methods for Accurate Global Solar Radiation Forecast: Development and Comparative Analysis. Energies 2024, 17, 4302. https://doi.org/10.3390/en17174302
Ali MA, Elsayed A, Elkabani I, Akrami M, Youssef ME, Hassan GE. Artificial Intelligence-Based Improvement of Empirical Methods for Accurate Global Solar Radiation Forecast: Development and Comparative Analysis. Energies. 2024; 17(17):4302. https://doi.org/10.3390/en17174302
Chicago/Turabian StyleAli, Mohamed A., Ashraf Elsayed, Islam Elkabani, Mohammad Akrami, M. Elsayed Youssef, and Gasser E. Hassan. 2024. "Artificial Intelligence-Based Improvement of Empirical Methods for Accurate Global Solar Radiation Forecast: Development and Comparative Analysis" Energies 17, no. 17: 4302. https://doi.org/10.3390/en17174302
APA StyleAli, M. A., Elsayed, A., Elkabani, I., Akrami, M., Youssef, M. E., & Hassan, G. E. (2024). Artificial Intelligence-Based Improvement of Empirical Methods for Accurate Global Solar Radiation Forecast: Development and Comparative Analysis. Energies, 17(17), 4302. https://doi.org/10.3390/en17174302