Thermodynamics-Informed Neural Networks for the Design of Solar Collectors: An Application on Water Heating in the Highland Areas of the Andes
Abstract
:1. Introduction
- How can ANN methodologies be applied to optimize the design parameters of flat-plate solar collectors for improved thermal efficiency?
- What impact do the specific climatic conditions of Ecuador have on the performance of solar collectors, and how can these be integrated into ANN models for enhanced design optimization?
1.1. Artificial Neural Networks
1.2. Physics-Informed Neural Networks
- Defining the Problem: what we are modeling.
- Curating Data: what data will inform the model.
- Designing the Neural Network Architecture: layers and activation functions.
- Defining an Optimization Function: loss function.
- Optimization.
2. Method
2.1. Conceptual PINN Model for the Design of Solar Collectors
2.1.1. Step 1. The Problem: What Are We Modeling?
2.1.2. Step 2. The Neural Network Architecture: A Thermodynamics-Based Approach
ANN 01: The Environmental and Solar Radiation-Informed ANN Model
ANN 02: The Design and Operational Efficiency-Informed ANN Model
ANN 03: The System Performance-Informed ANN Model
2.1.3. Step 3. Thermodynamics-Informed Data Sets for Training, Testing and Validation
DATA SET 01: Synthetic Data Generation for Predicting the Collector Overall Loss Coefficient
Definition | Thermodynamic Equations | |
---|---|---|
Solar collector independent variables | ||
Coefficient (C) | (2) | |
Collector back loss coefficient (Ub) | (3) | |
Collector edge loss coefficient (Ut) | (4) | |
Collector top loss coefficient (Ut) | (5) | |
Factor (f) | (6) | |
Mean plate temperature (TPM) | (7) | |
Plate absorptance (e) | (8) | |
Wind heat transfer coefficient (hw) | (9) | |
Solar Collector dependent variables | ||
Collector overall loss coefficient (UL) | (10) |
Synthetic Data Base Generation
Solar Collector Independent Variables | Abbreviation | Value Range |
---|---|---|
Ambient temperature (°C) | 8–30 | |
Collector tilt (°Sexa.) | 4–45 | |
Cover emittance (a.u.) | 0.04–0.98 | |
Cover transmittance (a.u.) | 0.62–0.92 | |
Global solar irradiation (W/m2) | 2–796 | |
Inlet fluid temperature (°C) | 7–33.5 | |
Insulation thermal conductivity (W/(m·K)) | 0.028–0.72 | |
Lateral insulation thickness (m) | 0.002–0.15 | |
Lower insulation thickness (m) | 0.005–0.45 | |
Number of covers (a.u.) | 1–5 | |
Plate absorptance (a.u.) | 0.08–0.97 | |
Plate emittance (a.u.) | 0.03–0.92 | |
Plate length (m) | 0.25–6 | |
Plate width (m) | 0.25–6 | |
Wind speed (m/s) | 0–2.20 |
DATA SET 02: Synthetic Data Generated for the Prediction of the Collector Efficiency Factor and the Collector Heat Removal Factor
Definition | Thermodynamic Equations | |
---|---|---|
Solar Collector Independent Variables | ||
Factor F | (11) | |
Constant C | (12) | |
Friction factor (fr) for turbulent flow | (13) | |
Heat transfer coefficient between fluid and tube wall (hfi) | (14) | |
Nusselt number (Nu) for laminar flow | (15) | |
Nusselt number (Nu) for turbulent flow | (16) | |
Prandtl number Pr | (17) | |
Reynold number Re | (18) | |
Width W | (19) | |
Solar collector independent variables | ||
Collector efficiency factor F′ | (20) | |
Collector heat removal factor (FR) | (21) |
Solar Collector Independent Variables | Abbreviation | Value Range |
---|---|---|
Collector overall loss coefficient W/(m2·K)) | 0.028–19.861 | |
Inlet fluid temperature (°C) | 7–33.5 | |
Inside tube diameter (mm) | 7–51 | |
Mass flow rate (kg/s) | 0.005–2.86 | |
Number of parallels tubes (units) | 1–25 | |
Outside tube diameter (mm) | 9.5–54 | |
Plate length (m) | 0.25–6 | |
Plate thermal conductivity (W/(m·K)) | 1.4–429 | |
Plate thickness (mm) | 0.2–12 | |
Plate width (m) | 0.25–6 |
DATA SET 03: Synthetic Data Generated for Prediction of Outlet Fluid Temperature, Collector Useful Energy Gain, and Global Collector Efficiency
Definition | Thermodynamic Equations | |
---|---|---|
Solar collector-independent variables | ||
Transmitted solar radiation S | (22) | |
Solar collector-dependent variables | ||
Collector outlet fluid temperature | (23) | |
Global collector efficiency η | (24) | |
Useful energy gain Qu | (25) |
Solar Collector Independent Variables | Abbreviation | Magnitude Range |
---|---|---|
Ambient temperature (°C) | 8–30 | |
Collector efficiency factor | 0.0159–0.9999 | |
Collector heat removal factor | 0.0159–0.9999 | |
Collector overall loss coefficient (W/(m2·K)) | 0.028–19.861 | |
Cover transmittance (a.u.) | 0.62–0.92 | |
Global solar irradiation (W/m2) | 2–796 | |
Inlet fluid temperature (°C) | 7–33.5 | |
Plate absorptance (a.u.) | A | 0.08–0.97 |
Plate length (m) | 0.25–6 | |
Plate width (m) | 0.25–6 |
2.2. Thermodynamics-Informed Neural Network Models
2.2.1. Part 01: Network Architecture
ANN Case | Output | ANN Model | Activation Function | Training | Topology | MAE | r | Connections |
---|---|---|---|---|---|---|---|---|
01 | Collector overall loss coefficient | BP-MLP | Sigmoid function | Incremental, cross-validation and batch Incremental, cross-validation and batch | 15/94/1 | 0.767 | 0.967 | 1. Operation and behavior: activation functions, training methods, hyperparameters 2. Neural model: multilayer perceptron 3. Activation functions: sigmoidea (sigmoid axon) 4. Training method: error backpropagation (RProp) 5. Loss function: incremental in the cross-validation set 6. Optimization algorithm: MSE (mean square error) 7. Epochs: 635 8. Weight initialization: batch |
02 | Collector efficiency factor | 10/88/2 | 0.026 | 0.988 | ||||
Collector heat removal factor | 0.028 | 0.988 | ||||||
03 | Collector outlet fluid temperature | 10/70/3 | 3.534 | 0.895 | ||||
Collector useful energy gain | 73.855 | 0.966 | ||||||
Global collector efficiency | 2.176 | 0.994 |
2.2.2. Part 02: Data Sets for Training, Validation, and Testing
Stages of Supervised Learning | Percentage (%) | Number of Vectors |
---|---|---|
Training | 60 | 635 |
Cross-validation | 15 | 158 |
Testing | 25 | 265 |
2.3. Validation of the PINNs Model against Experimental Data
Mapping | Indicator Excel Number | Global Solar Radiation (W/m2) | Wind Speed (m/s) | Ambient Temperature (°C) | Inlet Fluid Temperature (°C) | Collector Tilt (°Sex) | Plate Emittance (------) | Plate Absorptance (------) | Number of Covers (------) | Cover Emittance (------) | Cover Transmittane (------) | Insulation Thermal Conductivity (W/(m·K)) | Lower Insulation Thickness (m) | Lateral Insulation Thickness (m) | Plate Length (m) | Plate Width (m) | Collector Overall Loss Coefficient (W/(m2·K)) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | 2 | 946 | 0.32 | 29.4 | 32.6 | 16.5 | 0.05 | 0.85 | 2 | 0.14 | 0.9 | 0.13 | 0.27 | 0.11 | 1 | 2.1 | 2.5911 |
3 | 946 | 0.48 | 30 | 32.9 | 9.5 | 0.03 | 0.47 | 4 | 0.14 | 0.9 | 0.029 | 0.41 | 0.14 | 1.9 | 0.7 | 0.8532 | |
4 | 854 | 1.8 | 26 | 27 | 14.5 | 0.92 | 0.97 | 4 | 0.14 | 0.9 | 0.06 | 0.21 | 0.004 | 1.45 | 2.8 | 7.7695 | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | |
634 | 946 | 0.48 | 30 | 32.9 | 28 | 0.75 | 0.89 | 1 | 0.87 | 0.84 | 0.19 | 0.45 | 0.13 | 1.5 | 0.3 | 9.9809 | |
635 | 944 | 0.38 | 29 | 32.6 | 10 | 0.14 | 0.89 | 1 | 0.04 | 0.88 | 0.032 | 0.33 | 0.01 | 0.25 | 2.1 | 11.8766 | |
636 | 946 | 0.48 | 30 | 32.9 | 8 | 0.87 | 0.95 | 4 | 0.69 | 0.92 | 0.13 | 0.26 | 0.032 | 0.3 | 1.7 | 10.0846 | |
Cross-validation | 637 | 942 | 0.44 | 27.1 | 29.9 | 13 | 0.87 | 0.95 | 1 | 0.98 | 0.82 | 0.33 | 0.35 | 0.085 | 1.25 | 0.6 | 12.4500 |
638 | 576 | 0.4 | 22 | 21 | 8.5 | 0.9 | 0.94 | 1 | 0.19 | 0.91 | 0.35 | 0.32 | 0.14 | 2.1 | 1.0 | 6.5936 | |
639 | 946 | 0.32 | 29.4 | 32.6 | 27 | 0.82 | 0.08 | 1 | 0.14 | 0.9 | 0.029 | 0.18 | 0.004 | 1.45 | 1.8 | 5.3210 | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | |
792 | 946 | 0.48 | 30 | 32.9 | 27 | 0.85 | 0.25 | 2 | 0.76 | 0.74 | 0.028 | 0.035 | 0.1 | 0.75 | 0.9 | 3.0152 | |
793 | 932 | 0.27 | 23.4 | 26.4 | 32 | 0.9 | 0.94 | 3 | 0.69 | 0.92 | 0.24 | 0.27 | 0.044 | 2.5 | 2.8 | 5.6508 | |
794 | 936 | 0.25 | 26.6 | 30 | 20 | 0.05 | 0.85 | 4 | 0.69 | 0.92 | 0.029 | 0.1 | 0.036 | 1.4 | 2.6 | 2.2576 | |
Testing | 795 | 923 | 0.05 | 19.2 | 24.7 | 13 | 0.85 | 0.25 | 3 | 0.87 | 0.84 | 0.029 | 0.25 | 0.13 | 1 | 5.5 | 2.3852 |
796 | 939 | 0.42 | 25.5 | 26 | 8 | 0.85 | 0.25 | 1 | 0.69 | 0.92 | 0.33 | 0.17 | 0.08 | 5.5 | 0.9 | 7.6782 | |
797 | 932 | 0.17 | 24.8 | 28.8 | 18 | 0.75 | 0.89 | 3 | 0.53 | 0.73 | 0.06 | 0.04 | 0.01 | 2.9 | 0.6 | 3.8148 | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | |
1057 | 946 | 0.48 | 30 | 32.9 | 8 | 0.9 | 0.26 | 2 | 0.98 | 0.82 | 0.046 | 0.17 | 0.004 | 1.25 | 0.9 | 10.7509 | |
1058 | 933 | 0.22 | 24.1 | 26.2 | 40 | 0.9 | 0.26 | 4 | 0.89 | 0.78 | 0.046 | 0.06 | 0.016 | 1.4 | 2.1 | 2.6093 | |
1059 | 936 | 0.23 | 24.6 | 27.5 | 23 | 0.87 | 0.13 | 4 | 0.19 | 0.91 | 0.19 | 0.38 | 0.012 | 6 | 5.5 | 5.3641 |
Mapping | Indicator Excel Number | Collector Overall Loss Coefficient (W/(m2·K)) | Ambient Temperature (°C) | Mass Flow Rate (kg/s) | Number of Paralels Tubes (a.u.) | Outside Tube Diameter (mm) | Inside Tube Diameter (mm) | Plate Thermal Conductivity (W/(m·K)) | Plate Thickness (mm) | Plate Length (m) | Plate Width (m) | Collector Efficiency Factor (a.u.) | Collector Heat Removal Factor (a.u.) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | 2 | 2.59 | 32.6 | 0.36 | 19 | 22.23 | 18.92 | 19.5 | 3.7 | 1.00 | 2.1 | 0.9657 | 0.9640 |
3 | 0.85 | 32.9 | 0.62 | 13 | 12.70 | 10.92 | 401.0 | 2.0 | 1.90 | 0.7 | 0.9995 | 0.9993 | |
4 | 7.77 | 27.0 | 0.02 | 3 | 9.53 | 8.00 | 429.0 | 1.1 | 1.45 | 2.8 | 0.3743 | 0.3411 | |
. | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | |
634 | 9.98 | 32.9 | 0.38 | 2 | 28.58 | 26.04 | 15.0 | 5.6 | 1.50 | 0.3 | 0.8921 | 0.8910 | |
635 | 11.88 | 32.6 | 0.20 | 10 | 12.70 | 11.43 | 116.0 | 0.4 | 0.25 | 2.1 | 0.5591 | 0.5579 | |
636 | 10.08 | 32.9 | 0.24 | 10 | 15.88 | 14.45 | 73.0 | 1.4 | 0.30 | 1.7 | 0.8226 | 0.8209 | |
Cross-validation | 637 | 12.45 | 29.9 | 0.02 | 19 | 9.53 | 8.00 | 73.0 | 11.3 | 1.25 | 0.6 | 0.9516 | 0.8871 |
638 | 6.59 | 21.0 | 0.01 | 3 | 28.58 | 26.80 | 80.0 | 2.8 | 2.10 | 1.0 | 0.6959 | 0.5634 | |
639 | 5.32 | 32.6 | 0.86 | 19 | 12.70 | 10.92 | 429.0 | 0.3 | 1.45 | 1.8 | 0.9755 | 0.9737 | |
. | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | |
792 | 3.02 | 32.9 | 0.28 | 20 | 15.88 | 12.57 | 174.0 | 0.7 | 0.75 | 0.9 | 0.9907 | 0.9899 | |
793 | 5.65 | 26.4 | 0.03 | 3 | 28.58 | 26.04 | 80.0 | 0.4 | 2.50 | 2.8 | 0.1653 | 0.1603 | |
794 | 2.26 | 30.0 | 0.10 | 6 | 9.53 | 7.04 | 19.5 | 1.0 | 1.40 | 2.6 | 0.4385 | 0.4366 | |
Testing | 795 | 2.39 | 24.7 | 0.01 | 7 | 22.23 | 18.92 | 174.0 | 10.8 | 1.00 | 5.5 | 0.7729 | 0.6122 |
796 | 7.68 | 26.0 | 0.02 | 8 | 12.70 | 10.92 | 174.0 | 4.4 | 5.50 | 0.9 | 0.8974 | 0.7446 | |
797 | 3.81 | 28.8 | 0.04 | 7 | 15.88 | 13.84 | 15.0 | 3.4 | 2.90 | 0.6 | 0.9422 | 0.9247 | |
. | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | |
1057 | 10.75 | 32.9 | 0.70 | 14 | 15.88 | 14.45 | 51.0 | 5.6 | 1.25 | 0.9 | 0.9875 | 0.9856 | |
1058 | 2.61 | 26.2 | 0.02 | 17 | 15.88 | 13.84 | 51.0 | 3.0 | 1.40 | 2.1 | 0.9469 | 0.8941 | |
1059 | 5.36 | 27.5 | 0.02 | 9 | 22.23 | 18.92 | 317.0 | 8.5 | 6.00 | 5.5 | 0.6708 | 0.3006 |
Mapping | Indicator Excel Number | Collector Overall Loss Coefficient (W/(m2·K)) | Collector Efficiency Factor (------) | Collector Heat Removal Factor (------) | Global Solar Radiation (W/m2) | Ambient Temperature (°C) | Inlet Fluid Temperature (°C) | Plate Absorptance (------) | Cover Transmittance (------) | Plate Length (m) | Plate Width (m) | Outlet Fluid Temperature (°C) | Collector Useful Energy Gain (W) | Global Collector Efficiency (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | 2 | 2.5911 | 0.9657 | 0.9640 | 946 | 29.4 | 32.6 | 0.85 | 0.90 | 1.00 | 2.1 | 33.5738 | 1462.9330 | 73.6400 |
3 | 0.8532 | 0.9995 | 0.9993 | 946 | 30.0 | 32.9 | 0.47 | 0.90 | 1.90 | 0.7 | 33.0915 | 495.7288 | 42.4313 | |
4 | 7.7695 | 0.3743 | 0.3411 | 854 | 26.0 | 27.0 | 0.97 | 0.90 | 1.45 | 2.8 | 43.9985 | 1032.0085 | 29.7646 | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | |
634 | 9.9809 | 0.8921 | 0.8910 | 946 | 30.0 | 32.9 | 0.89 | 0.84 | 1.50 | 0.3 | 33.0733 | 274.7939 | 64.5511 | |
635 | 11.8766 | 0.5591 | 0.5579 | 944 | 29.0 | 32.6 | 0.89 | 0.88 | 0.25 | 2.1 | 32.8471 | 206.2085 | 41.6078 | |
636 | 10.0846 | 0.8226 | 0.8209 | 946 | 30.0 | 32.9 | 0.95 | 0.92 | 0.30 | 1.7 | 33.2369 | 337.3635 | 69.9257 | |
Cross-validation | 637 | 12.4500 | 0.9516 | 0.8871 | 942 | 27.1 | 29.9 | 0.95 | 0.82 | 1.25 | 0.6 | 37.5809 | 469.9361 | 66.5161 |
638 | 6.5936 | 0.6959 | 0.5634 | 576 | 22.0 | 21.0 | 0.94 | 0.91 | 2.10 | 1.0 | 50.1297 | 566.7194 | 49.3177 | |
639 | 5.3210 | 0.9755 | 0.9737 | 946 | 29.4 | 32.6 | 0.08 | 0.90 | 1.45 | 1.8 | 32.6367 | 131.5501 | 5.3279 | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | |
792 | 3.0152 | 0.9907 | 0.9899 | 946 | 30.0 | 32.9 | 0.25 | 0.74 | 0.75 | 0.9 | 32.9960 | 112.2647 | 17.5812 | |
793 | 5.6508 | 0.1653 | 0.1603 | 932 | 23.4 | 26.4 | 0.94 | 0.92 | 2.50 | 2.8 | 35.0532 | 894.1553 | 13.7056 | |
794 | 2.2576 | 0.4385 | 0.4366 | 936 | 26.6 | 30.0 | 0.85 | 0.92 | 1.40 | 2.6 | 32.7880 | 1162.6495 | 34.1249 | |
Testing | 795 | 2.3852 | 0.7729 | 0.6122 | 923 | 19.2 | 24.7 | 0.25 | 0.84 | 1.00 | 5.5 | 56.5427 | 614.9603 | 12.1139 |
796 | 7.6782 | 0.8974 | 0.7446 | 939 | 25.5 | 26.0 | 0.25 | 0.92 | 5.50 | 0.9 | 35.5035 | 745.9813 | 16.9934 | |
797 | 3.8148 | 0.9422 | 0.9247 | 932 | 24.8 | 28.8 | 0.89 | 0.73 | 2.90 | 0.6 | 34.5799 | 959.5033 | 59.1672 | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | |
. | . | . | . | . | . | . | . | . | . | . | . | . | . | |
1057 | 10.7509 | 0.9875 | 0.9856 | 946 | 30.0 | 32.9 | 0.26 | 0.82 | 1.25 | 0.9 | 32.9619 | 180.6728 | 17.9752 | |
1058 | 2.6093 | 0.9469 | 0.8941 | 933 | 24.1 | 26.2 | 0.26 | 0.78 | 1.40 | 2.1 | 34.1388 | 487.9389 | 17.7884 | |
1059 | 5.3641 | 0.6708 | 0.3006 | 936 | 24.6 | 27.5 | 0.13 | 0.91 | 6.00 | 5.5 | 47.3110 | 955.1287 | 3.0922 |
Experimental Data | Magnitude |
---|---|
Ambient temperature (°C) | 20 |
Collector heat removal factor | 765 |
Collector tilt (°Sexa.) | 60 |
Cover emittance (a.u.) | 0.9 |
Cover transmittance (a.u.) | 0.82 |
Global solar irradiation (W/m2) | 1088 |
Inlet fluid temperature (°C) | 15 |
Inside tube diameter (mm) | 9 |
Insulation thermal conductivity (W/(m·K)) | 0.07 |
Lateral insulation thickness (mm) | 10 |
Lower insulation thickness (mm) | 30 |
Mass flow rate (kg/s) | 0.01 |
Number of covers (a.u.) | 1 |
Number of parallels tubes (units) | 11 |
Outside tube diameter (mm) | 10 |
Plate absorptance (a.u.) | 0.9 |
Plate emittance (a.u.) | 0.9 |
Plate length (m) | 2 |
Plate thermal conductivity (W/(m·K)) | 385 |
Plate thickness (mm) | 0.5 |
Plate width (m) | 1 |
Wind speed (m/s) | 0.4 |
ANN Case | Output | ANN Model | Activation Function | Training | Topology | MAE | R | Connections |
---|---|---|---|---|---|---|---|---|
01 | Collector overall loss coefficient | BP-MLP | Sigmoid function | Incremental, cross-validation and batch Incremental, cross-validation and batch | 15/70/1 | 0.611 | 0.980 | 1. Operation and behavior: activation functions, training methods, hyperparameters 2. Neural model: multilayer perceptron 3. Activation functions: sigmoid (sigmoidaxon) 4. Training method: error backpropagation (RProp) 5. Loss function: incremental in the cross-validation set 6. Optimization algorithm: mean square error (MSE) 7. Epochs: 635 8. Weight initialization: batch |
02 | Collector efficiency factor | 10/60/2 | 0.060 | 0.945 | ||||
Collector heat removal factor | 0.079 | 0.923 | ||||||
03 | Collector outlet fluid temperature | 10/70/3 | 3.816 | 0.859 | ||||
Collector useful energy gain | 68.414 | 0.972 | ||||||
Global collector efficiency | 2.194 | 0.994 |
2.4. Case Study: Residencial House—Family Demand
Study Case | Units | Magnitude | Materials |
---|---|---|---|
Ambient temperature | °C | 12.75 | a.u. |
Collector tilt | °Sexag. | 8 | a.u. |
Cover emittance | a.u. | 0.9 | Greenhouse rigid plastic (PVC wavy) |
Cover transmittance | a.u. | 0.82 | Greenhouse rigid plastic (PVC wavy) |
Demanded thermal power | W | 726.7 | a.u. |
Global solar radiation | W/m2 | 742 | a.u. |
Inlet fluid temperature | °C | 13.2 | Water |
Inside tube diameter | mm | 8.001 | Galvanized tube, type L |
Insulation thermal conductivity | W/(m·K) | 0.06 | Shells of pressed wheat (90 kg/m3) |
Lateral insulation thickness | mm | 25 | Shells of pressed wheat (90 kg/m3) |
Lower insulation thickness | mm | 50 | Shells of pressed wheat (90 kg/m3) |
Mass flow rate | kg/s | 0.00371 | Water |
Number of covers N | a.u. | 1 | Greenhouse rigid plastic (PVC wavy) |
Number of parallels tubes N | a.u. | 12 | Galvanized tube, type L |
Outside tube diameter | Mm | 9.525 | Galvanized tube, type L |
Plate absorptance | a.u. | 0.7 | (Electrostatic black paint) |
Plate effective area | m2 | 2.8 | a.u. |
Plate emittance | a.u. | 0.2 | Selective surface of galvanized steel |
Plate length | m | 2.25 | Galvanized plate |
Plate thermal conductivity | W/(m·K) | 58 | Galvanized plate |
Plate thickness | Mm | 2 | (Electrostatic black paint) |
Plate width | m | 1.25 | Galvanized plate |
Wind speed | m/s | 2.19 | a.u. |
3. Results
3.1. ANN Predictive Capability
3.1.1. Output Temperature Analysis
3.1.2. Collector Useful Energy Gain
3.1.3. Global Collector Efficiency
3.1.4. Collector Heat Removal Factor
3.1.5. Collector Overall Loss Coefficient
3.1.6. Collector Efficiency Factor
3.2. Validation of the ANN Model against Experimental Data
3.3. Performance of the ANN in a Residential House Located in the Andes of Ecuador
Study Case | Abbreviation | Units | Results Thermodynamics Model | Results ANN | |
---|---|---|---|---|---|
Output | Collector overall loss coefficient | W/(m2·K) | 5.189 | 5.199 | |
Collector efficiency factor | a.u. | 0.907 | 0.883 | ||
Collector heat removal factor | a.u. | 0.610 | 0.662 | ||
Collector outlet fluid temperature | °C | 67.22 | 55.05 | ||
Collector useful energy gain | W | 733.4 | 722.85 | ||
Global collector efficiency | % | 35.15 | 33.68 |
4. Discussion
4.1. Practical Applications and Design Frameworks
4.2. Theoretical Contributions
4.3. Implications for Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ANN | Artificial Neural Network. |
AnP | Plate Width (m). |
D | Outside Tube Diameter (mm). |
Di | Inside Tube Diameter (mm). |
F′ | Collector Efficiency Factor. |
FR | Collector Heat Removal Factor. |
HT | Global Solar Irradiation (W/m2). |
k | Plate Thermal Conductivity (W/m·K). |
LP | Plate Length (m). |
m | Mass Flow Rate (kg/s). |
PINN | Physics-Informed Neural Network. |
Qu | Collector Useful Energy Gain (W). |
Ta | Ambient Temperature (°C). |
Tfi | Inlet Fluid Temperature (°C). |
Tfo | Collector Outlet Fluid Temperature (°C). |
UL | Collector Overall Loss Coefficient (W/m2·K). |
α | Plate Absorptance (a.u.). |
δ | Plate Thickness (mm). |
εc | Cover Emittance (a.u.). |
εp | Plate Emittance (a.u.). |
η | Global Collector Efficiency (%). |
τ | Cover Transmittance (a.u.). |
References
- Kopnina, H. The Solar Power: A Brief Review of Renewable Energy Potential in the World of Limited Resources; Nova Science Publishers: Hauppauge, NY, USA, 2016; pp. 71–78. [Google Scholar]
- Nazarov, A.; Sulimin, V.; Shvedov, V. Renewable energy sources: Global implementation experience. E3S Web Conf. 2024, 474, 01030. [Google Scholar] [CrossRef]
- Elavarasan, R.M. The Motivation for Renewable Energy and its Comparison with Other Energy Sources: A Review. Eur. J. Sustain. Dev. Res. 2019, 3, em0076. [Google Scholar] [CrossRef]
- Ekins-Daukes, N.J. Solar Energy for Heat and Electricity: The Potential for Mitigating Climate Change; Grantham Institute for Climate Change: London, UK, 2009. [Google Scholar]
- Sala, R. Computational Rational Engineering and Development: Synergies and Opportunities. In Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; Volume 294, pp. 744–763. [Google Scholar] [CrossRef]
- Jalili Jamshidian, F.; Gorjian, S.; Far, M. An Overview of Solar Thermal Power Generation Systems. J. Sol. Energy Res. 2018, 3, 301–312. [Google Scholar]
- Arroyo, M.F.R.; Miguel, L.J. The Role of Renewable Energies for the Sustainable Energy Governance and Environmental Policies for the Mitigation of Climate Change in Ecuador. Energies 2020, 13, 3883. [Google Scholar] [CrossRef]
- Echegaray-Aveiga, R.C.; Masabanda, M.; Rodriguez, F.; Toulkeridis, T.; Mato, F. Solar Energy Potential in Ecuador. In Proceedings of the 2018 5th International Conference on EDemocracy and EGovernment, ICEDEG 2018, Ambato, Ecuador, 4–6 April 2018; pp. 46–51. [Google Scholar] [CrossRef]
- Celec, E.P. Ecuador Actualiza su Plan Maestro de Electricidad para Impulsar Inversiones en Energías Renovables No Convencionales por Cerca de USD 2.200 Millones 2020. Available online: https://www.celec.gob.ec/gensur/noticias/ecuador-actualiza-su-plan-maestro-de-electricidad-para-impulsar-inversiones-en-energias-renovables-no-convencionales-por-cerca-de-usd-2-200-millones/ (accessed on 22 July 2024).
- Bolívar Chávez, O.E.; Vargas Prias, G.D.; Delgado Cedeño, L.A.; Navarrete Pita, Y.; Henríquez Coronel, M.A.; Rodríguez Fiallos, J.L. Objetivos del Desarrollo Sostenible: Una mirada de su implementación y cumplimiento en Ecuador. Estud. Del Desarro. Soc. Cuba Y América Lat. 2020, 8, 309–3026. [Google Scholar]
- Riffat, S.B.; Doherty, P.S.; Abdel Aziz, E.I. Performance testing of different types of liquid flat plate collectors. Int. J. Energy Res. 2000, 24, 1203–1215. [Google Scholar] [CrossRef]
- Shariah, A.; Al-Akhras, M.-A.; Al-Omari, I.A. Optimizing the tilt angle of solar collectors. Renew. Energy 2002, 26, 587–598. [Google Scholar] [CrossRef]
- Recalde, C.; Cisneros, C.; Avila, C.; Logroño, W.; Recalde, M. Single Phase Natural Circulation Flow through Solar Evacuated Tubes Collectors on the Equatorial Zone. Energy Procedia 2015, 75, 467–472. [Google Scholar] [CrossRef]
- Ahmad, A.; Ghritlahre, H.; Chandrakar, P. Implementation of ANN technique for performance prediction of solar thermal systems: A Comprehensive Review. Trends Renew. Energy 2020, 6, 12–36. [Google Scholar] [CrossRef]
- Yaici, W.; Entchev, E.; Longo, M.; Brenna, M.; Foiadelli, F. Artificial neural network modelling for performance prediction of solar energy system. In Proceedings of the 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015; pp. 1147–1151. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Artificial intelligence for the modeling and control of combustion processes: A review. Prog. Energy Combust. Sci. 2003, 29, 515–566. [Google Scholar] [CrossRef]
- Liger Pereira, J.E.; Miniguano Chanchicocha, D.F. Análisis Comparativo del Rendimiento Térmico de Colectores Solares con Adición de Aletas y Variación de Altura en la Placa Absorbedora; Universidad Técnica de Cotopaxi: Av. Simón Rodríguez, Latacunga, Ecuador, 2023. [Google Scholar]
- Martínez Maldonado, I.O. Diseño e Instalación de un Sistema de Calentamiento Solar de Agua, para el Sector Rural; Escuela Superior Politécnica de Chimborazo: Riobamba, Ecuador, 2011. [Google Scholar]
- Bland, C.; Tonello, L.; Biganzoli, E.; Snowdon, D. Advances in Artificial Neural Networks; Scientific Research Publishing, Inc.: Irvine, CA, USA, 2020. [Google Scholar]
- Dastgheib, M.A.; Raie, A.A. Reforming architecture and loss function of artificial neural networks in binary classification problems. In Proceedings of the 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 4–6 August 2020. [Google Scholar] [CrossRef]
- IBM. What Is a Neural Network? 2024. Available online: https://www.ibm.com/topics/neural-networks (accessed on 22 July 2024).
- Urolagin, S.; Prema, K.V.; Reddy, N.V.S. Generalization Capability of Artificial Neural Network Incorporated with Pruning Method. In Proceedings of the Advanced Computing, Networking and Security: International Conference, ADCONS 2011, Surathkal, India, 16–18 December 2011; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer: Berlin/Heidelberg, Germany, 2012; Volume 7135, pp. 171–178. [Google Scholar] [CrossRef]
- Avila, C.; Shiraishi, Y.; Tsuji, Y. Crack width prediction of reinforced concrete structures by artificial neural networks. In Proceedings of the 2004 Seventh Seminar on Neural Network Applications in Electrical Engineering—Proceedings, NEUREL 2004, Belgrade, Serbia, 23–25 September 2004; pp. 39–44. [Google Scholar] [CrossRef]
- Abraham, A. Artificial Neural Networks. In Handbook of Measuring System Design; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Montaño Moreno, A. Redes Neuronales Artificiales Aplicadas al Análisis de Datos; Universitat de les Illes Balears: Illes Balears, Spain, 2004. [Google Scholar]
- Fan, F.-L.; Xiong, J.; Li, M.; Wang, G. On Interpretability of Artificial Neural Networks: A Survey. IEEE Trans. Radiat. Plasma Med. Sci. 2021, 5, 741–760. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Liu, L.; Ma, F.; Fan, H. Performance prediction of solar collectors using artificial neural networks. In Proceedings of the 2009 International Conference on Artificial Intelligence and Computational Intelligence, AICI 2009, Shanghai, China, 7–8 November 2009; Volume 2, pp. 573–576. [Google Scholar] [CrossRef]
- Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. In Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge University Press: Cambridge, UK, 2019; pp. 1–472. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Lawal, Z.K.; Yassin, H.; Lai, D.T.C.; Che Idris, A. Physics-Informed Neural Network (PINN) Evolution and Beyond: A Systematic Literature Review and Bibliometric Analysis. Big Data Cogn. Comput. 2022, 6, 140. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley and Sons: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Ministerio de Desarrollo Urbano y Vivienda. Norma Ecuatoriana de la Construcción. Ecuador: 2020. Available online: https://www.habitatyvivienda.gob.ec/wp-content/uploads/2023/03/4.-NEC-HS-Eficiencia-Energetica.pdf (accessed on 5 August 2024).
- NeuroSolutions. AertiaNeuroSolutions. 2024. Available online: http://www.aertia.com/en/productos.asp?pid=218 (accessed on 11 August 2024).
- Alvarez, A.; Cabeza, O.; Muñiz, M.C.; Varela, L.M. Experimental and numerical investigation of a flat-plate solar collector. Energy 2010, 35, 3707–3716. [Google Scholar] [CrossRef]
- CONELEC. Atlas Solar del Ecuador con Fines de Generación Eléctrica. 2008. Available online: https://www.ariae.org/servicio-documental/atlas-solar-del-ecuador-con-fines-de-generacion-electrica (accessed on 5 September 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cáceres, M.; Avila, C.; Rivera, E. Thermodynamics-Informed Neural Networks for the Design of Solar Collectors: An Application on Water Heating in the Highland Areas of the Andes. Energies 2024, 17, 4978. https://doi.org/10.3390/en17194978
Cáceres M, Avila C, Rivera E. Thermodynamics-Informed Neural Networks for the Design of Solar Collectors: An Application on Water Heating in the Highland Areas of the Andes. Energies. 2024; 17(19):4978. https://doi.org/10.3390/en17194978
Chicago/Turabian StyleCáceres, Mauricio, Carlos Avila, and Edgar Rivera. 2024. "Thermodynamics-Informed Neural Networks for the Design of Solar Collectors: An Application on Water Heating in the Highland Areas of the Andes" Energies 17, no. 19: 4978. https://doi.org/10.3390/en17194978
APA StyleCáceres, M., Avila, C., & Rivera, E. (2024). Thermodynamics-Informed Neural Networks for the Design of Solar Collectors: An Application on Water Heating in the Highland Areas of the Andes. Energies, 17(19), 4978. https://doi.org/10.3390/en17194978