Reflux Power Optimization of a Dual-Active Hybrid Full-Bridge Converter Based on Active Disturbance Rejection Control
Abstract
:1. Introduction
2. Modeling of the Dual-Active Hybrid Full-Bridge Converter
2.1. Soft Switching Characteristics of H-FDAB DC–DC Converter
2.2. Optimization of Reflux Power Based on DPS
3. Control Algorithm
3.1. Traditional PI Control Algorithm
3.2. Active Disturbance Rejection Control Algorithm
4. Experiment Verification Results
5. Conclusions
- (1)
- Dual-phase shift control can effectively increase the control freedom of the H-FDAB DC–DC converter, which creates conditions for the optimization of H-FDAB DC–DC converter performance;
- (2)
- The ADRC model introduced herein efficiently optimizes reflux power during H-FDAB DC–DC converter operation, thereby notably enhancing power transmission efficiency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Derivation of Formula (13)
Appendix A.2. Derivation of Formulas (26) and (27)
References
- Wang, Y.X.; Wang, H.; Zhu, B.X.; Zhou, Z.; Lv, W.G. Control strategy of grid-connected inverter under unbalanced grid voltage based on VSG. Renew. Energy 2022, 40, 696–702. [Google Scholar]
- Zheng, W.Q.; Gao, C.W.; Zheng, W.L.; Li, R.S.; Yang, L. An improved double closed-loop control strategy for photovoltaic grid-connected inverters. Renew. Energy 2022, 40, 260–265. [Google Scholar]
- Xu, G.; Li, L.; Chen, X.; Liu, Y.; Sun, Y.; Su, M. Optimized EPS control to achieve full load range ZVS with seamless transition for dual active bridge converters. IEEE Trans. Ind. Electron. 2020, 68, 8379–8390. [Google Scholar] [CrossRef]
- Awal, M.A.; Bipu, M.R.H.; Montes, O.A.; Feng, H.; Husain, I.; Yu, W.; Lukic, S. Capacitor voltage balancing for neutral point clamped dual active bridge converters. IEEE Trans. Power Electron. 2020, 35, 11267–11276. [Google Scholar] [CrossRef]
- Tu, C.M.; Guan, L.; Xiao, F.; Zhou, D. Parameter optimization selection and analysis of dual active bridge based on extended phase shift control. Trans. China Electrotech. Soc. 2020, 35, 850–861. [Google Scholar]
- Shi, Y.; Wang, X.; Xi, J.; Gui, X.; Yang, X. Wide load range ZVZCS three-level DC–DC converter with compact structure. IEEE Trans. Power Electron. 2018, 34, 5032–5037. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Z.; Chen, Y.; Feng, C.; Zhu, X. Asymmetric phase-shift modulation strategy of DAB converters for improved light-load efficiency. IEEE Trans. Power Electron. 2022, 37, 9104–9113. [Google Scholar] [CrossRef]
- Mou, D.; Luo, Q.; Wang, Z.; Li, J.; Wei, Y.; Shi, H.; Du, X. Optimal asymmetric duty modulation to minimize inductor peak-to-peak current for dual active bridge DC–DC converter. IEEE Trans. Power Electron. 2020, 36, 4572–4584. [Google Scholar] [CrossRef]
- Mahdavifard, M.; Mazloum, N.; Zahin, F.; KhakparvarYazdi, A.; Abasian, A.; Khajehoddin, S.A. An asymmetrical DAB converter modulation and control systems to extend the ZVS range and improve efficiency. IEEE Trans. Power Electron. 2022, 37, 12774–12792. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Y.; Wang, M.; Wang, K.; Huang, Y.; Xu, Z. Power sharing and storage-based regenerative braking energy utilization for sectioning post in electrified railways. IEEE Trans. Transp. Electrif. 2024, 10, 2677–2688. [Google Scholar] [CrossRef]
- Ma, F.; Wang, X.; Deng, L.; Zhu, Z.; Xu, Q.; Xie, N. Multiport railway power conditioner and its management control strategy with renewable energy access. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 1405–1418. [Google Scholar] [CrossRef]
- Gao, M.; Wang, D.Z.; Li, Z. A PWM full order robustness sliding mode control for phase-shifted full-bridge converter. Trans. China Electrotech. Soc. 2018, 33, 2293–2302. [Google Scholar]
- Leso, M.; Zilkova, J.; Girovsky, P. Development of a simple fuzzy logic controller for DC-DC converter. In Proceedings of the IEEE 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, Hungary, 4–8 March 2018. [Google Scholar]
- Nian, H.; Ye, Y.H. Model predictive control of three-port isolated bidirectional DC-DC converter. Trans. China Electrotech. Soc. 2020, 35, 3478–3488. [Google Scholar]
- Li, Z.; Zeng, J.; Huang, J.; Feng, J.; Hong, T. Time-frequency voltage control strategy of microgrid inverter based on linear active disturbance rejection control. Autom. Electr. Power Syst. 2020, 44, 145–154. [Google Scholar]
- Gao, Z.Q. Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the American Control Conference 2003, Denver, CO, USA, 4–6 June 2003. [Google Scholar]
- Zhou, X.; Zhong, W.; Ma, Y.; Guo, K.; Yin, J.; Wei, C. Control strategy research of D-STATCOM using active disturbance rejection control based on total disturbance error compensation. IEEE Access 2021, 9, 50138–50150. [Google Scholar] [CrossRef]
- Zuo, Y.; Mei, J.; Jiang, C.; Yuan, X.; Le, S.; Lee, C.H. Linear active disturbance rejection controllers for PMSM speed regulation system considering the speed filter. IEEE Trans. Power Electron. 2021, 36, 14579–14592. [Google Scholar] [CrossRef]
- Lin, P.; Wu, Z.; Liu, K.Z.; Sun, X.M. A class of linear–nonlinear switching active disturbance rejection speed and current controllers for PMSM. IEEE Trans. Power Electron. 2021, 36, 14366–14382. [Google Scholar] [CrossRef]
- Tao, H.J.; Zhang, J.S.; Xiao, Q.X.; Zheng, Z. Minimum Reflux Power Control for Three-Level Dual Active Hybrid Full-Bridge Converters. J. Shanghai Jiaotong Univ. 2023, 57, 521. [Google Scholar]
- Song, C.; Sangwongwanich, A.; Yang, Y.; Blaabjerg, F. Capacitor voltage balancing for multilevel dual-active-bridge DC–DC converters. IEEE Trans. Ind. Electron. 2022, 70, 2566–2575. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Z.Q.; Stone, D.A.; Foster, M.P.; Chu, W.Q.; Urquhart, I.; Greenough, J. Novel dual-phase-shift control with bidirectional inner phase shifts for a dual-active-bridge converter having low surge current and stable power control. IEEE Trans. Power Electron. 2016, 32, 4095–4106. [Google Scholar] [CrossRef]
- Sun, Y.G.; Lin, H.W.; Zhou, H.M.; Yang, X.L. Simulation research on tuning PID controller parameters based on critical proportionality method. Mod. Electron. Technol. 2012, 35, 192–194. [Google Scholar]
- Wang, W.; Lei, W.H.; Cai, F.H.; Jiang, J.H. active disturbance rejection control of dual active full-bridge converter combined with current stress optimization. Trans. China Electrotech. Soc. 2022, 37, 3073–3086. [Google Scholar]
- Liang, Q.; Wang, C.; Pan, J.; Wei, Y.; Wang, Y. Parameter identification of b0 and parameter tuning law in linear active disturbance rejection control. Control. Decis. 2015, 30, 1691–1695. [Google Scholar]
System Parameters | Numerical Value |
---|---|
Input voltage | 40 V |
Output voltage | 150 V |
Auxiliary inductance | 100 μH |
Transformer ratio | 1:3 |
Input side capacitance | 470 μF |
Output side capacitance | 300 μF |
Switching frequency | 10 kHz |
Rated load | 30 Ω |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; He, G.; Hou, N. Reflux Power Optimization of a Dual-Active Hybrid Full-Bridge Converter Based on Active Disturbance Rejection Control. Energies 2024, 17, 4299. https://doi.org/10.3390/en17174299
Luo S, He G, Hou N. Reflux Power Optimization of a Dual-Active Hybrid Full-Bridge Converter Based on Active Disturbance Rejection Control. Energies. 2024; 17(17):4299. https://doi.org/10.3390/en17174299
Chicago/Turabian StyleLuo, Shuang, Guofeng He, and Ning Hou. 2024. "Reflux Power Optimization of a Dual-Active Hybrid Full-Bridge Converter Based on Active Disturbance Rejection Control" Energies 17, no. 17: 4299. https://doi.org/10.3390/en17174299
APA StyleLuo, S., He, G., & Hou, N. (2024). Reflux Power Optimization of a Dual-Active Hybrid Full-Bridge Converter Based on Active Disturbance Rejection Control. Energies, 17(17), 4299. https://doi.org/10.3390/en17174299