Stimulation Behavior of Fracture Networks in the Second Hydrate Trial Production Area of China Considering the Presence of Multiple Layers
Abstract
:1. Introduction
2. Numerical Model and Simulation Schemes
2.1. Geological Data
2.2. Model Establishment
2.3. Well and Fracture Design
2.4. Numerical Code
2.5. Initial and Boundary Conditions
2.6. Simulation Scenarios
3. Results and Discussion
3.1. Fracture Network’s Stimulation and the Influence of Well Arrangement on Development Performance
3.1.1. Spatial Evolution of Physical Parameters
3.1.2. Hydrate Dissociation Performance
3.1.3. CH4 Production Performance
3.1.4. Water Production Performance
3.2. The Influence of Fracture Distribution
3.2.1. Hydrate Dissociation Behavior
3.2.2. CH4 Production Behavior
3.2.3. Water Production Behavior and Summary of the Influence of Fracture Distribution on Stimulation Behavior
3.3. Commercial Production Evaluation of Shenhu Trial Production Area after Network Fracturing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases, 1st ed.; Taylor&Francis Group: Boca Raton, FL, USA, 2007; pp. 5–14. [Google Scholar] [CrossRef]
- Moridis, G.J.; Silpngarmlert, S.; Reagan, M.T.; Collett, T.; Zhang, K. Gas production from a cold, stratigraphically-bounded gas hydrate deposit at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Implications of uncertainties. Mar. Pet. Geol. 2011, 28, 517–534. [Google Scholar] [CrossRef]
- Boswell, R.; Collett, T.S. Current perspectives on gas hydrate resources. Energy Environ. Sci. 2011, 4, 1206–1215. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S.; Zhang, L. Sensitivity analysis of gas production from Class I hydrate reservoir by depressurization. Energy 2012, 39, 281–285. [Google Scholar] [CrossRef]
- Haligva, C.; Linga, P.; Ripmeester, J.; Englezos, P. Recovery of methane from a variable-volume bed of silica sand/hydrate by depressurization. Energy Fuels 2010, 24, 2947–2955. [Google Scholar] [CrossRef]
- Konno, Y.; Fujii, T.; Sato, A.; Akamine, K.; Naiki, M.; Masuda, Y.; Yamamoto, K.; Nagao, J. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: Toward future commercial production. Energy Fuels 2017, 31, 2607–2616. [Google Scholar] [CrossRef]
- Yamamoto, K.; Dallimore, S. Aurora-JOGMEC-NRCan Mallik 2006–2008 gas hydrate research project progress. Fire Ice 2008, 304, 285–4541. [Google Scholar]
- Li, J.F.; Ye, J.L.; Qin, X.W.; Qiu, H.J.; Wu, N.Y.; Lu, H.L.; Xie, W.W.; Lu, J.A.; Peng, F.; Xu, Z.Q. The first offshore natural gas hydrate production test in South China Sea. China Geol. 2018, 1, 5–16. [Google Scholar] [CrossRef]
- Ye, J.; Qin, X.; Xie, W.; Lu, H.; Ma, B.; Qiu, H.; Liang, J.; Lu, J.; Kuang, Z.; Lu, C. Main progress of the second gas hydrate trial production in the South China Sea. Geol. China 2020, 47, 557–568. [Google Scholar] [CrossRef]
- Yang, S.X.; Liang, J.Q.; Liu, C.L.; Sha, Z.B. Progresses of gas hydrate resources exploration in sea area. China Geol. 2017, 4, 1–8. [Google Scholar] [CrossRef]
- Qin, X.W.; Liang, Q.Y.; Ye, J.L.; Yang, L.; Qiu, H.J.; Xie, W.W.; Liang, J.Q.; Lu, J.A.; Lu, C.; Lu, H.L.; et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea. Appl. Energy 2020, 278, 115649. [Google Scholar] [CrossRef]
- Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K.N. Evaluation of the Gas Production Potential of Some Particularly Challenging Types of Oceanic Hydrate Deposits. Transp. Porous Media 2011, 90, 269–299. [Google Scholar] [CrossRef]
- Su, Z.; He, Y.; Wu, N.Y.; Zhang, K.N.; Moridis, G.J. Evaluation on gas production potential from laminar hydrate deposits in Shenhu Area of South China Sea through depressurization using vertical wells. J. Pet. Sci. Eng. 2012, 86–87, 87–98. [Google Scholar] [CrossRef]
- Vedachalam, N.; Ramesh, S.; Srinivasalu, S.; Rajendran, G.A.; Atmanand, M.A. Assessment of methane gas production from Indian gas hydrate petroleum systems. Appl. Energy 2016, 168, 649–660. [Google Scholar] [CrossRef]
- Su, Z.; Moridis, G.J.; Zhang, K.N.; Wu, N.Y. A huff-and-puff production of gas hydrate deposits in Shenhu area of South China Sea through a vertical well. J. Pet. Sci. Eng. 2012, 86–87, 54–61. [Google Scholar] [CrossRef]
- Ma, X.; Sun, Y.; Guo, W.; Jia, R.; Li, B. Numerical simulation of horizontal well hydraulic fracturing technology for gas production from hydrate reservoir. Appl. Ocean Res. 2021, 112, 102674. [Google Scholar] [CrossRef]
- Yu, T.; Guan, G.Q.; Wang, D.Y.; Song, Y.C.; Abudula, A. Numerical evaluation on the effect of horizontal-well systems on the long-term gas hydrate production behavior at the second Shenhu test site. J. Nat. Gas Sci. Eng. 2021, 95, 104200. [Google Scholar] [CrossRef]
- Too, J.L.; Cheng, A.; Khoo, B.C.; Palmer, A.; Linga, P. Hydraulic fracturing in a penny-shaped crack. Part II: Testing the frackability of methane hydrate-bearing sand. J. Nat. Gas Sci. Eng. 2018, 52, 619–628. [Google Scholar] [CrossRef]
- Too, J.L.; Cheng, A.; Khoo, B.C.; Palmer, A.; Linga, P. Hydraulic fracturing in a penny-shaped crack. Part I: Methodology and testing of frozen sand. J. Nat. Gas Sci. Eng. 2018, 52, 609–618. [Google Scholar] [CrossRef]
- Konno, Y.; Jin, Y.; Yoneda, J.; Uchiumi, T.; Shinjou, K.; Nagao, J. Hydraulic fracturing in methane-hydrate-bearing sand. RSC Adv. 2016, 6, 73148–73155. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, X.; Jiang, S.; Cao, Q.; Wang, F.; Wang, Z.; Ge, Y.; Du, Y. Experimental study of hydraulic fracture initiation and propagation in highly saturated methane-hydrate-bearing sands. J. Nat. Gas Sci. Eng. 2020, 79, 103338. [Google Scholar] [CrossRef]
- Yao, Y.; Guo, Z.; Zeng, J.; Li, D.; Lu, J.; Liang, D.; Jiang, M. Discrete element analysis of hydraulic fracturing of methane hydrate-bearing sediments. Energy Fuels 2021, 35, 6644–6657. [Google Scholar] [CrossRef]
- Chen, C.; Yang, L.; Jia, R.; Sun, Y.; Guo, W.; Chen, Y.; Li, X. Simulation study on the effect of fracturing technology on the production efficiency of natural gas hydrate. Energies 2017, 10, 1241. [Google Scholar] [CrossRef]
- Yang, L.; Chen, C.; Jia, R.; Sun, Y.; Guo, W.; Pan, D.; Li, X.; Chen, Y. Influence of reservoir stimulation on marine gas hydrate conversion efficiency in different accumulation conditions. Energies 2018, 11, 339. [Google Scholar] [CrossRef]
- Feng, J.C.; Li, G.; Li, X.S.; Li, B.; Chen, Z.Y. Evolution of hydrate dissociation by warm brine stimulation combined depressurization in the South China Sea. Energies 2013, 6, 5402–5425. [Google Scholar] [CrossRef]
- Sun, J.; Ning, F.; Liu, T.; Liu, C.; Chen, Q.; Li, Y.; Cao, X.; Mao, P.; Zhang, L.; Jiang, G. Gas production from a silty hydrate reservoir in the South China Sea using hydraulic fracturing: A numerical simulation. Energy Sci. Eng. 2019, 7, 1106–1122. [Google Scholar] [CrossRef]
- Zhong, X.; Pan, D.; Zhai, L.; Zhu, Y.; Zhang, H.; Zhang, Y.; Wang, Y.; Li, X.; Chen, C. Evaluation of the gas production enhancement effect of hydraulic fracturing on combining depressurization with thermal stimulation from challenging ocean hydrate reservoirs. J. Nat. Gas Sci. Eng. 2020, 83, 103621. [Google Scholar] [CrossRef]
- Chen, C.; Meng, Y.; Zhong, X.; Nie, S.; Ma, Y.; Pan, D.; Liu, K.; Li, X.; Gao, S. Research on the influence of injection–production parameters on challenging natural gas hydrate exploitation using depressurization combined with thermal injection stimulated by hydraulic fracturing. Energy Fuels 2021, 35, 15589–15606. [Google Scholar] [CrossRef]
- Yu, T.; Guan, G.Q.; Wang, D.Y.; Song, Y.C.; Abudula, A. Gas Production Enhancement from a Multilayered Hydrate Reservoir in the South China Sea by Hydraulic Fracturing. Energy Fuels 2021, 35, 12104–12118. [Google Scholar] [CrossRef]
- Zhong, X.; Pan, D.; Zhu, Y.; Wang, Y.; Zhai, L.; Li, X.; Tu, G.; Chen, C. Fracture network stimulation effect on hydrate development by depressurization combined with thermal stimulation using injection-production well patterns. Energy 2021, 228, 120601. [Google Scholar] [CrossRef]
- Zhong, X.; Pan, D.; Zhu, Y.; Wang, Y.; Tu, G.; Nie, S.; Ma, Y.; Liu, K.; Chen, C. Commercial production potential evaluation of injection-production mode for CH-Bk hydrate reservoir and investigation of its stimulated potential by fracture network. Energy 2022, 239, 122113. [Google Scholar] [CrossRef]
- Qin, X.W.; Lu, J.A.; Lu, H.L.; Qiu, H.J.; Liang, J.Q.; Kang, D.J.; Zhan, L.S.; Lu, H.F.; Kuang, Z.G. Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea. China Geol. 2020, 3, 210–220. [Google Scholar] [CrossRef]
- Guo, W.; Zhong, X.P.; Chen, C.; Zhang, P.Y.; Liu, Z.; Wang, Y.; Tu, G.G. Stimulation effect of network fracturing combined with sealing boundaries on the depressurization development of hydrate reservoir in China's offshore test site. Energy 2024, 302, 131752. [Google Scholar] [CrossRef]
- Moridis, G.J.; Reagan, M.T. Gas production from oceanic class 2 hydrate accumulations. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April 2007. [Google Scholar] [CrossRef]
- Reagan, M.T.; Moridis, G.J.; Zhang, K.N. Sensitivity analysis of gas production from Class 2 and Class 3 hydrate deposits. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5 May 2008. [Google Scholar] [CrossRef]
- Jin, G.; Xu, T.; Xin, X.; Wei, M.; Liu, C. Numerical evaluation of the methane production from unconfined gas hydrate-bearing sediment by thermal stimulation and depressurization in Shenhu area, South China Sea. J. Nat. Gas Sci. Eng. 2016, 33, 497–508. [Google Scholar] [CrossRef]
- Hancock, S.; Collet, T.; Dallimore, S.; Satoh, T.; Inoue, T.; Huenges, E.; Henninges, J. Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC Mallik 51-38 gas hydrate production research well. In Proceedings of the 2002 Mallik International Symposium on Gas Hydrate Production Research Well Program, Makuhari, Japan, 8–10 December 2003. [Google Scholar]
- Boswell, R. Japan completes first offshore methane hydrate production test—Methane successfully produced from deepwater hydrate layers. Fire Ice 2013, 13, 1–30. [Google Scholar]
- Moridis, G.; Kowalsky, M.; Pruess, K. TOUGH+ Hydrate v1.2 User’s Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2008; pp. 1–58.
- Chen, L.; Feng, Y.C.; Okajima, J.; Komiya, A.; Maruyama, S. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea. J. Nat. Gas Sci. Eng. 2018, 53, 55–66. [Google Scholar] [CrossRef]
- Li, B.; Liang, Y.P.; Li, X.S.; Wu, H.J. Numerical analysis of methane hydrate decomposition experiments by depressurization around freezing point in porous media. Fuel 2015, 159, 925–934. [Google Scholar] [CrossRef]
- Li, B.; Li, X.S.; Li, G.; Feng, J.C.; Wang, Y. Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator. Appl. Energy 2014, 129, 274–286. [Google Scholar] [CrossRef]
- Feng, Y.C.; Chen, L.; Suzuki, A.; Kogawa, T.; Okajima, J.; Maruyama, S. Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization. Energy 2019, 166, 1106–1119. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Moridis, G.; Chong, Z.R.; Tan, H.K.; Linga, P. Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium. Appl. Energy 2018, 230, 444–459. [Google Scholar] [CrossRef]
- Ma, X.L.; Sun, Y.H.; Liu, B.C.; Guo, W.; Jia, R.; Li, B.; Li, S.L. Numerical study of depressurization and hot water injection for gas hydrate production in China's first offshore test site. J. Nat. Gas Sci. Eng. 2020, 83, 103530. [Google Scholar] [CrossRef]
- Zheng, R.Y.; Li, S.X.; Li, Q.P.; Li, X.L. Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs. Appl. Energy 2018, 215, 405–415. [Google Scholar] [CrossRef]
- Yu, T.; Guan, G.Q.; Abudula, A.; Wang, D.Y. 3D investigation of the effects of multiple-well systems on methane hydrate production in a low-permeability reservoir. J. Nat. Gas Sci. Eng. 2020, 76, 103213. [Google Scholar] [CrossRef]
- Li, W. Limit Analysis of Horizontal Drilling for Ocean Deepwater Natural Gas Hydrates. Ph.D. Thesis, China University of Petroleum (Beijing), Beijing, China, 2023. [Google Scholar]
Interval | Depth (m bsf) | Thickness (m) | Effective Porosity (%) | Average Saturation (%) | Average Permeability (mD) |
---|---|---|---|---|---|
GHL | 207.8~253.4 | 45.6 | 37.3 | 31 | 2.38 |
MXL | 253.4~278 | 24.6 | 34.6 | 11.7 (SH); 13.2 (SG) | 6.63 |
FGL | 278~297 | 19 | 34.7 | 7.3 | 6.8 |
Parameters | Value | Parameters | Value |
---|---|---|---|
Grain density (all deposits) | 2650 kg/m3 | Grain-specific heat | 1000 Jkg−1°C−1 |
Intrinsic permeability (overburden and underburden) | 6.8×10−15 m2 | Relative permeability model | |
Geothermal gradient | 0.0437 m/°C | 3.572 | |
Capillary pressure model | 3.572 | ||
0.45 | 0.30 | ||
105 Pa | 0.03 | ||
Fracture porosity | 0.38 | Fracture spacing | 4 m |
Dry thermal conductivity (all deposits) | 1.0 W/m/K | Wet thermal conductivity (all deposits) | 3.1 W/m/K |
Development Methods | Well Location | |
---|---|---|
WM-D | depressurization | MXL |
WH-D | GHL | |
WM-D+T | combined method | MXL |
WH-D+T | GHL | |
WMF-D | depressurization stimulated by fracture network | MXL |
WHF-D | GHL | |
WMF-D+T | combined method stimulated by fracture network | MXL |
WHF-D+T | GHL | |
development methods | Fracture distribution | |
FHMF-D | depressurization | GHL, MXL, FGL |
FHM-D | GHL, MXL | |
FH-D | GHL | |
FHMF-D+T | combined method | GHL, MXL, FGL |
FHM-D+T | GHL, MXL | |
FH-D+T | GHL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Li, X.; Zhong, X. Stimulation Behavior of Fracture Networks in the Second Hydrate Trial Production Area of China Considering the Presence of Multiple Layers. Energies 2024, 17, 4244. https://doi.org/10.3390/en17174244
Chen C, Li X, Zhong X. Stimulation Behavior of Fracture Networks in the Second Hydrate Trial Production Area of China Considering the Presence of Multiple Layers. Energies. 2024; 17(17):4244. https://doi.org/10.3390/en17174244
Chicago/Turabian StyleChen, Chen, Xitong Li, and Xiuping Zhong. 2024. "Stimulation Behavior of Fracture Networks in the Second Hydrate Trial Production Area of China Considering the Presence of Multiple Layers" Energies 17, no. 17: 4244. https://doi.org/10.3390/en17174244
APA StyleChen, C., Li, X., & Zhong, X. (2024). Stimulation Behavior of Fracture Networks in the Second Hydrate Trial Production Area of China Considering the Presence of Multiple Layers. Energies, 17(17), 4244. https://doi.org/10.3390/en17174244