Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy
Abstract
1. Introduction
2. Geothermal Outlook of Italy, Iceland, and Belgium
2.1. Italian Case
2.2. Icelandic Case
2.3. Belgian Case
3. Methodology: Semi-Structured Interviews
4. Interview Results
4.1. Italy: Interview Results
4.2. Belgium: Interview Results
4.3. Iceland: Interview Results
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IRENA. Renewable Power Generation Costs in 2022, International Renewable Energy Agency, Abu Dhabi. 2023. Available online: https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Aug/IRENA_Renewable_power_generation_costs_in_2022.pdf?rev=1ae772b0f1ef4c2580bfe4bc620973b9 (accessed on 30 April 2024).
- Zuffi, C.; Manfrida, G.; Asdrubali, F.; Talluri, L. Life cycle assessment of geothermal power plants: A comparison with other energy conversion technologies. Geothermics 2022, 104, 102434. [Google Scholar] [CrossRef]
- Basosi, R.; Bonciani, R.; Frosali, D.; Manfrida, G.; Parisi, M.L.; Sansone, F. Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems. Sustainability 2020, 12, 2786. [Google Scholar] [CrossRef]
- Horton, J.; Macve, R.; Struyven, G. Qualitative research: Experiences in using semi-structured interviews. In Real Life Guide to Accounting Research; Elsevier: Amsterdam, The Netherlands, 2004; pp. 339–357. [Google Scholar] [CrossRef]
- Hoes, H.; Dupont, N.; Lagrou, D.; Petitclerc, E. Status and development on deep geothermal energy use in Belgium, a new momentum for deep geothermal energy production growth. In Proceedings of the World Geothermal Congress 2020, Reykjavik, Iceland, 24–27 October 2021; p. 8. [Google Scholar]
- Pellizzone, A.; Allansdottir, A.; Manzella, A. Geothermal Resources in Italy: Tracing a Path Towards Public Engagement. In Geothermal Energy and Society. Lecture Notes in Energy; Manzella, A., Allansdottir, A., Pellizzone, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 67. [Google Scholar] [CrossRef]
- Manzella, A.; Serra, D.; Cesari, G.; Bargiacchi, E.; Cei, M.; Cerutti, P.; Conti, P.; Giudetti, G.; Lupi, M.; Vaccaro, M. Geothermal Energy Use, Country Update for Italy. In Proceedings of the European Geothermal Congress 2019 Proceedings, Den Haag, The Netherlands, 11–14 June 2019. [Google Scholar]
- Della Vedova, B.; Bottio, I.; Cei, M.; Conti, P.; Giudetti, G.; Gola, G.; Spadoni, S.; Vaccaro, M.; Xodo, L. Geothermal Energy Use, Country Update for Italy. In Proceedings of the European Geothermal Congress 2022, Berlin, Germany, 17–21 October 2022. [Google Scholar]
- Barbier, E.; Buonasorte, G.; Dialuce, G.; Martini, A.; Squarci, P. The Italian geothermal inventory: A valid tool for energy strategy. In Proceedings of the World Geothermal Congress 1995, Florence, Italy, 18–31 May 1995. [Google Scholar]
- Pasquale, V.; Verdoya, M.; Chiozzi, P. Groundwater flow analysis using different geothermal constraints: The case study of Acqui Terme area, northwestern Italy. J. Volcanol. Geotherm. Res. 2011, 199, 38–46. [Google Scholar] [CrossRef]
- Calore, C.; Ghezzi, G.; Ghezzi, R.; Squarci, P.; Taffi, L. Po River plain. In Atlas of Geothermal Resources in Europe; Hurter, S., Haenel, R., Eds.; European Commission, Directorate-General for Research and Innovation: Brussels, Belgium, 2002; p. 39. [Google Scholar]
- Pasquale, V.; Chiozzi, P.; Verdoya, M. Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po Plain, Italy. Tectonophysics 2013, 594, 1–12. [Google Scholar] [CrossRef]
- Montanari, D.; Bertini, G.; Botteghi, S.; Caielli, G.; Caiozzi, F.; Catalano, R.; de Franco, R.; Doveri, M.; Gianelli, G.; Gola, G.; et al. Medium enthalpy geothermal systems in carbonate reservoirs, the Western Sicily example. In Proceedings of the European Geothermal Congress 2013, Pisa, Italy, 3–7 June 2013. [Google Scholar]
- Montanari, D.; Minissale, A.; Doveri, M.; Gola, G.; Trumpy, E.; Santilano, A.; Manzella, A. Geothermal resources within carbonate reservoirs in western Sicily (Italy): A review. Earth-Sci. Rev. 2017, 169, 180–201. [Google Scholar] [CrossRef]
- UGI. Growth Forecast of Geothermal Energy in Italy 2016–2030, with Projections to 2050. Unione Geothermica Italiana (ed.). 2017. Available online: https://www.unionegeotermica.it/pdfiles/STIME%20DI%20CRESCITA%20DELLA%20GEOTERMIA%20IN%20ITALIA%202016.pdf (accessed on 30 April 2024).
- Bellani, S.; Calore, C.; Grassi, S.; Squarci, P. Pantelleria Island. In Atlas of geothermal Resources in Europe; Hurter, S., Haenel, R., Eds.; European Commission, Directorate-General for Research and Innovation: Brussels, Belgium, 2002; p. 41. [Google Scholar]
- Trumpy, E.; Botteghi, S.; Caiozzi, F.; Donato, A.; Gianluca, G.; Montanari, D.; Pluymaekers, M.P.D.; Santilano, A.; Van Wees, J.; Manzella, A. Geothermal potential assessment for a low carbon strategy: A new systematic approach applied in southern Italy. Energy 2016, 103, 167–181. [Google Scholar] [CrossRef]
- Cataldi, R.; Mongelli, F.; Squarci, P.; Taffi, L.; Zito, G.; Calore, C. Geothermal ranking of the Italian territory. Geothermics 1995, 24, 115–129. [Google Scholar] [CrossRef]
- Bargiacchi, E.; Conti, P.; Manzella, A.; Vaccaro, M.; Cerutti, P.; Cesari, G. Thermal Uses of Geothermal Energy, Country Update for Italy. In Proceedings of the World Geothermal Congress 2020, Reykjavik, Iceland, 26 April–2 May 2020. [Google Scholar]
- Björgvinsson, S.T.; Bonciani, D.; Torsello, L. Reports on Market Actors Mapping and Engagement Strategies. Horizon 2020 GEOENVI Project Deliverable 5.1. 2020. Available online: https://www.geoenvi.eu/wp-content/uploads/2020/04/D5.1-Reports-on-market-actors-mapping-and-engagement-strategies.pdf (accessed on 30 April 2024).
- Magagna, D.; Shortall, R.; Telsnig, T.; Uihlein, A.; Vazquez Hernandez, C. Supply Chain of Renewable Energy Technologies in Europe—An Analysis for Wind, Geothermal and Ocean Energy; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-74281-1. Available online: https://data.europa.eu/doi/10.2760/271949 (accessed on 30 April 2024).
- Pellizzone, A.; Allansdottir, A.; De Franco, R.; Muttoni, G. Exploring public engagement with geothermal energy in southern Italy: A case study. Energy Policy 2015, 85, 1–11. [Google Scholar] [CrossRef]
- Bravi, M.; Basosi, R. Environmental impact of electricity from selected geothermal power plants in Italy. J. Clean. Prod. 2014, 66, 301–308. [Google Scholar] [CrossRef]
- Parisi, M.L.; Ferrara, N.; Torsello, L.; Basosi, R. Life cycle assessment of atmospheric emission profiles of the Italian geothermal power plants. J. Clean. Prod. 2019, 234, 881894. [Google Scholar] [CrossRef]
- Sbrana, A.; Lenzi, A.; Paci, M.; Gambini, R.; Sbrana, M.; Ciani, V.; Marianelli, P. Analysis of Natural and Power Plant CO2 Emissions in the Mount Amiata (Italy) Volcanic–Geothermal Area Reveals Sustainable Electricity Production at Zero Emissions. Energies 2021, 14, 4692. [Google Scholar] [CrossRef]
- Mayalla, J.W. Geothermal Mapping in the Hromundartindur Area, SW-Iceland; United Nations University: Tokyo, Japan, 2006. [Google Scholar]
- Ragnarsson, Á.; Steingrímsson, B.; Thorhallsson, S. Geothermal development in Iceland 2015–2019. In Proceedings of the World Geothermal Congress, Reykjavik, Iceland, 24–27 October 2021; Volume 1, p. 2021. [Google Scholar]
- Energy—Government of Iceland. Available online: https://www.government.is/topics/business-and-industry/energy/ (accessed on 30 April 2024).
- Loftsdottir, A.S.; Þórarinsdóttir, R.I.; Barðadóttir, H.; Sturludóttir, L.K. Energy in Iceland: Historical Perspective, Present Status, Future Outlook; National Energy Authority: Port Moresby, Papua New Guinea, 2006. [Google Scholar]
- Johannesson, G.; Ketilsson, J.; Ingimarsson, J.; Olafsdottir, R.; Palsson, B.; Thorsteinsson, H.; Sigurdardottir, H.; Matthiasdottir, K.V.; Guttormsdottir, A.B.; Arnalds, S. Development of GSAP-Geothermal Sustainability Assessment Protocol. In Proceedings of the World Geothermal Congress 2020, Reykjavík, Iceland, 24–27 October 2021. [Google Scholar]
- Mikhaylov, A. Geothermal energy development in Iceland. Int. J. Energy Econ. Policy 2020, 10, 31–35. [Google Scholar] [CrossRef]
- Orkustofnun. Natural Resources. Geothermal Energy. Retrieved 20 May 2024. Available online: https://orkustofnun.is/en/natural_resources/geothermal_energy (accessed on 30 April 2024).
- Iceland Renewable Energy Cluster. Geothermal. Retrieved 20 May 2024. Available online: https://energycluster.is/renewable-energy/geothermal/# (accessed on 30 April 2024).
- Hunt, T.M. Five Lectures on Environmental Effects of Geothermal Utilization. 2001. Available online: https://geocom.geonardo.com/assets/elearning/8.10.UNU-GTP-2000-01%20(1).pdf (accessed on 30 April 2024).
- Ármannsson, H.; Fridriksson, T.; Kristjánsson, B.R. CO2 emissions from geothermal power plants and natural geothermal activity in Iceland. Geothermics 2005, 34, 286–296. [Google Scholar] [CrossRef]
- Dereinda, F.H.; Armannsson, H. CO2 emissions from the Krafla geothermal area, Iceland. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–29 April 2010; pp. 25–29. [Google Scholar]
- Paulillo, A.; Striolo, A.; Lettieri, P. The environmental impacts and the carbon intensity of geothermal energy: A case study on the Hellisheiði plant. Environ. Int. 2019, 133, 105226. [Google Scholar] [CrossRef] [PubMed]
- Matter, M.; Snaebjörnsdottir, S.Ó.; Mesfin, K.G.; Alfredsson, H.A.; Hall, J.; Arnarsson, M.T.; Dideriksen, K.; Júliusson, B.M.; Broecker, W.S.; Gunnlaugsson, E. Towards cleaner geothermal energy: Subsurface sequestration of sour gas emissions from geothermal power plants. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Shortall, R. A Sustainability Assessment Framework for Geothermal Energy Developments. Ph.D. Thesis, University of Iceland, Reykjavik, Iceland, 2015. [Google Scholar]
- Guðjónsdóttir, S.R.; Eggertsson, V.; Guðmundsdóttir, M.; Jóhannesson, G.A. Panorama of Sustainability Studies. Available online: https://www.geoenvi.eu/wp-content/uploads/2019/11/Deliverable_3.1_GEOENVI_6.11_FINAL.pdf (accessed on 30 April 2024).
- Broothaers, M.; Lagrou, D.; Laenen, B.; Harcouët-Menou, V.; Vos, D. Deep geothermal energy in the Lower Carboniferous carbonates of the Campine Basin, northern Belgium: An overview from the 1950’s to 2020. Z. Dt. Ges. Geowiss. 2021, 172, 211–225. [Google Scholar] [CrossRef]
- Veldkamp, H.; Arndt, M.; Broothaers, M.; Dezayes, C.; Lacquement, F.; Laurent, A.; Vanbrabant, Y.; ten Veen, J. Report D.T1.1.5 of Interreg project DGE-ROLLOUT: Updated transnational harmonized depth and thickness map of the dinantian in North-West Europe. 2023. Available online: https://vb.nweurope.eu/media/21105/2023_08_dge_rollout_dt115_updated_transnational_harmonized_depth_and_thickness_map_of_deep_geothermal_potential_in_project_area.pdf (accessed on 30 April 2024).
- Deckers, J.; De Koninck, R.; Bos, S.; Broothaers, M.; Dirix, K.; Hambsch, L.; Lagrou, D.; Lanckacker, T.; Matthijs, J.; Rombaut, B.; et al. Geologisch (G3Dv3) en Hydrogeologisch (H3D) 3D-Lagenmodel van Vlaanderen; VITO Report 2018/RMA/R/1569; Study Carried out for Vlaams Planbureau voor Omgeving (Departement Omgeving) and Vlaamse Milieumaatschappij. 2019. Available online: https://archief.onderzoek.omgeving.vlaanderen.be/Onderzoek-1999911 (accessed on 30 April 2024).
- Perez-Arriaga, I.J.; Batlle, C. Impacts of intermittent renewables on electricity generation system operation. Econ. Energy Environ. Policy 2012, 1, 3–18. Available online: https://www.jstor.org/stable/26189488 (accessed on 30 April 2024). [CrossRef]
- Li, K.; Bian, H.; Liu, C.; Zhang, D.; Yang, Y. Comparison of geothermal with solar and wind power generation systems. Renew. Sustain. Energy Rev. 2015, 42, 1464–1474. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2020. 2021. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jun/IRENA_Power_Generation_Costs_2020.pdf (accessed on 30 April 2024).
- Karytsas, S.; Mendrinos, D.; Oikonomou, T.I.; Choropanitis, I.; Kujbus, A.; Karytsas, C. Examining the development of a geothermal risk mitigation scheme in Greece. Clean Technol. 2022, 4, 356–376. [Google Scholar] [CrossRef]
- Korucan, A.; Derin-Gure, P.; Celebi, B.; Baker, D.; Vander Velde, M. Opportunities and challenges of geothermal energy in Turkiye. Energy Sustain. Dev. 2024, 79, 101417. [Google Scholar] [CrossRef]
- Puppala, H.; Jha, S.K.; Singh, A.P.; Elavarasan, R.M.; Campana, P.E. Identification and analysis of barriers for harnessing geothermal energy in India. Renew. Energy 2022, 186, 327–340. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Solangi, Y.A.; Ikram, M. Analysis of barriers to the adoption of cleaner energy technologies in Pakistan using Modified Delphi and Fuzzy Analytical Hierarchy Process. J. Clean. Prod. 2019, 235, 1037–1050. [Google Scholar] [CrossRef]
- Sanchez-Alfaro, P.; Sielfeld, G.; Van Campen, B.; Dobson, P.; Fuentes, V.; Reed, A.; Palma-Behnke, R.; Morata, D. Geothermal barriers, policies and economics in Chile–Lessons for the Andes. Renew. Sustain. Energy Rev. 2015, 51, 1390–1401. [Google Scholar] [CrossRef]
- Rosso-Cerón, A.M.; Kafarov, V. Barriers to social acceptance of renewable energy systems in Colombia. Curr. Opin. Chem. Eng. 2015, 10, 103–110. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Gou, Y.; Li, M. Investigation on social acceptance of the geothermal energy utilization in China. Trans.—Geotherm. Resour. Counc. 2018, 42, 812–824. [Google Scholar]
- Payera, S.V. Understanding social acceptance of geothermal energy: Case study for Araucanía region, Chile. Geothermics 2018, 72, 138–144. [Google Scholar] [CrossRef]
- Im, D.H.; Chung, J.B.; Kim, E.S.; Moon, J.W. Public perception of geothermal power plants in Korea following the Pohang earthquake: A social representation theory study. Public Underst. Sci. 2021, 30, 724–739. [Google Scholar] [CrossRef]
- Tunçbilek, Ö.F.; Yılmaz, M. Jeotermal enerjinin çevresel etkileri ve sosyal kabul: Efeler ilçesi örneği. Ank. Üniversitesi Sos. Bilim. Derg. 2022, 13, 154–169. [Google Scholar] [CrossRef]
- Barriball, K.L.; While, A. Collecting data using a semi-structured interview: A discussion paper. J. Adv. Nurs.-Institutional Subscr. 1994, 19, 328–335. [Google Scholar] [CrossRef]
- Hellisheiði Geothermal Project. Geothermal Sustainability Assessment Protocol, ON Power. 2018. Available online: https://www.on.is/wp-content/uploads/2021/03/hellisheidi-assessment-report_final_22-june-2018.pdf (accessed on 30 April 2024).
- Ketilsson, J.; Petursdottir, H.; Gudmundsdottir, M.; Johannesson, J.; Gudmundsson, J.; Oddsdottir, A.; Eggertsson, V.; Stefansdottir, D.; Johannesson, G. Legal framework and national policy for geothermal development in Iceland. In Proceedings of the Proceedings World Geothermal Congress, Reykjavík, Iceland, 24–27 October 2021; Volume 25, pp. 1–6. [Google Scholar]
- Bjarnadóttir, R. Sustainability Evaluation of Geothermal Systems in Iceland. Indicators for Sustainable Production. Ph.D. Thesis, University of Iceland, Reykjavik, Iceland, 2010. [Google Scholar]
Classification | Characteristics | Authority in Charge |
---|---|---|
Resources of national interest (considered as mining resources) | Fluids > 150 °C Deliverable power > 20 MWth | Regions or delegated authorities |
Geothermal resources in the sea | The State | |
Fluids > 90 °C Used in < 5 MW zero-emission pilot plants | The State | |
Resources of local interest (considered as mining resources) | Fluids < 150 °C Deliverable power < 20 MWth | Regions or delegated authorities |
Small local utilisations (not considered as mining resources) | Deliverable power < 2 MWth Resources from <400 m deep wells | Regions or delegated authorities |
Power Plant | Capacity (MW) | Start of Operation | Owner |
---|---|---|---|
Hellisheiði | 303 | 2011 | ON Power |
Nesjavellir | 120 | 1990 | ON Power |
Reykjanes | 100 | 2006 | HS Orka |
Theistareykir | 90 | 2017 | Landsvirkjun |
Svartsengi | 75 | 1977 | HS Orka |
Krafla | 60 | 1978 | Landsvirkjun |
Group | Group Categorization | No of Italian Stakeholders | No of Icelandic Stakeholders | No of Belgian Stakeholders |
---|---|---|---|---|
Group 1 | Ultimate end users and beneficiaries: geothermal power operators, project developers, and engineering contractors | 8 | 9 | 3 |
Group 2 | Optional end users: solar thermal power sector | 0 | 1 | 0 |
Group 3 | Manufacturers | 3 | 1 | 0 |
Group 4 | Primary influential bodies/industry association | 5 | 1 | 2 |
Group 5 | Investors | 0 | 2 | 0 |
Group 6 | Others: academia and public | 3 | 3 | 2 |
Group 7 | Grid operators | 0 | 1 | 0 |
Total | 19 | 18 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meirbekova, R.; Bonciani, D.; Olafsson, D.I.; Korucan, A.; Derin-Güre, P.; Harcouët-Menou, V.; Bero, W. Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy. Energies 2024, 17, 4134. https://doi.org/10.3390/en17164134
Meirbekova R, Bonciani D, Olafsson DI, Korucan A, Derin-Güre P, Harcouët-Menou V, Bero W. Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy. Energies. 2024; 17(16):4134. https://doi.org/10.3390/en17164134
Chicago/Turabian StyleMeirbekova, Rauan, Dario Bonciani, Dagur Ingi Olafsson, Aysun Korucan, Pinar Derin-Güre, Virginie Harcouët-Menou, and Wilfried Bero. 2024. "Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy" Energies 17, no. 16: 4134. https://doi.org/10.3390/en17164134
APA StyleMeirbekova, R., Bonciani, D., Olafsson, D. I., Korucan, A., Derin-Güre, P., Harcouët-Menou, V., & Bero, W. (2024). Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy. Energies, 17(16), 4134. https://doi.org/10.3390/en17164134