Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy
Abstract
:1. Introduction
2. Geothermal Outlook of Italy, Iceland, and Belgium
2.1. Italian Case
2.2. Icelandic Case
2.3. Belgian Case
3. Methodology: Semi-Structured Interviews
4. Interview Results
4.1. Italy: Interview Results
4.2. Belgium: Interview Results
4.3. Iceland: Interview Results
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IRENA. Renewable Power Generation Costs in 2022, International Renewable Energy Agency, Abu Dhabi. 2023. Available online: https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Aug/IRENA_Renewable_power_generation_costs_in_2022.pdf?rev=1ae772b0f1ef4c2580bfe4bc620973b9 (accessed on 30 April 2024).
- Zuffi, C.; Manfrida, G.; Asdrubali, F.; Talluri, L. Life cycle assessment of geothermal power plants: A comparison with other energy conversion technologies. Geothermics 2022, 104, 102434. [Google Scholar] [CrossRef]
- Basosi, R.; Bonciani, R.; Frosali, D.; Manfrida, G.; Parisi, M.L.; Sansone, F. Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems. Sustainability 2020, 12, 2786. [Google Scholar] [CrossRef]
- Horton, J.; Macve, R.; Struyven, G. Qualitative research: Experiences in using semi-structured interviews. In Real Life Guide to Accounting Research; Elsevier: Amsterdam, The Netherlands, 2004; pp. 339–357. [Google Scholar] [CrossRef]
- Hoes, H.; Dupont, N.; Lagrou, D.; Petitclerc, E. Status and development on deep geothermal energy use in Belgium, a new momentum for deep geothermal energy production growth. In Proceedings of the World Geothermal Congress 2020, Reykjavik, Iceland, 24–27 October 2021; p. 8. [Google Scholar]
- Pellizzone, A.; Allansdottir, A.; Manzella, A. Geothermal Resources in Italy: Tracing a Path Towards Public Engagement. In Geothermal Energy and Society. Lecture Notes in Energy; Manzella, A., Allansdottir, A., Pellizzone, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 67. [Google Scholar] [CrossRef]
- Manzella, A.; Serra, D.; Cesari, G.; Bargiacchi, E.; Cei, M.; Cerutti, P.; Conti, P.; Giudetti, G.; Lupi, M.; Vaccaro, M. Geothermal Energy Use, Country Update for Italy. In Proceedings of the European Geothermal Congress 2019 Proceedings, Den Haag, The Netherlands, 11–14 June 2019. [Google Scholar]
- Della Vedova, B.; Bottio, I.; Cei, M.; Conti, P.; Giudetti, G.; Gola, G.; Spadoni, S.; Vaccaro, M.; Xodo, L. Geothermal Energy Use, Country Update for Italy. In Proceedings of the European Geothermal Congress 2022, Berlin, Germany, 17–21 October 2022. [Google Scholar]
- Barbier, E.; Buonasorte, G.; Dialuce, G.; Martini, A.; Squarci, P. The Italian geothermal inventory: A valid tool for energy strategy. In Proceedings of the World Geothermal Congress 1995, Florence, Italy, 18–31 May 1995. [Google Scholar]
- Pasquale, V.; Verdoya, M.; Chiozzi, P. Groundwater flow analysis using different geothermal constraints: The case study of Acqui Terme area, northwestern Italy. J. Volcanol. Geotherm. Res. 2011, 199, 38–46. [Google Scholar] [CrossRef]
- Calore, C.; Ghezzi, G.; Ghezzi, R.; Squarci, P.; Taffi, L. Po River plain. In Atlas of Geothermal Resources in Europe; Hurter, S., Haenel, R., Eds.; European Commission, Directorate-General for Research and Innovation: Brussels, Belgium, 2002; p. 39. [Google Scholar]
- Pasquale, V.; Chiozzi, P.; Verdoya, M. Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po Plain, Italy. Tectonophysics 2013, 594, 1–12. [Google Scholar] [CrossRef]
- Montanari, D.; Bertini, G.; Botteghi, S.; Caielli, G.; Caiozzi, F.; Catalano, R.; de Franco, R.; Doveri, M.; Gianelli, G.; Gola, G.; et al. Medium enthalpy geothermal systems in carbonate reservoirs, the Western Sicily example. In Proceedings of the European Geothermal Congress 2013, Pisa, Italy, 3–7 June 2013. [Google Scholar]
- Montanari, D.; Minissale, A.; Doveri, M.; Gola, G.; Trumpy, E.; Santilano, A.; Manzella, A. Geothermal resources within carbonate reservoirs in western Sicily (Italy): A review. Earth-Sci. Rev. 2017, 169, 180–201. [Google Scholar] [CrossRef]
- UGI. Growth Forecast of Geothermal Energy in Italy 2016–2030, with Projections to 2050. Unione Geothermica Italiana (ed.). 2017. Available online: https://www.unionegeotermica.it/pdfiles/STIME%20DI%20CRESCITA%20DELLA%20GEOTERMIA%20IN%20ITALIA%202016.pdf (accessed on 30 April 2024).
- Bellani, S.; Calore, C.; Grassi, S.; Squarci, P. Pantelleria Island. In Atlas of geothermal Resources in Europe; Hurter, S., Haenel, R., Eds.; European Commission, Directorate-General for Research and Innovation: Brussels, Belgium, 2002; p. 41. [Google Scholar]
- Trumpy, E.; Botteghi, S.; Caiozzi, F.; Donato, A.; Gianluca, G.; Montanari, D.; Pluymaekers, M.P.D.; Santilano, A.; Van Wees, J.; Manzella, A. Geothermal potential assessment for a low carbon strategy: A new systematic approach applied in southern Italy. Energy 2016, 103, 167–181. [Google Scholar] [CrossRef]
- Cataldi, R.; Mongelli, F.; Squarci, P.; Taffi, L.; Zito, G.; Calore, C. Geothermal ranking of the Italian territory. Geothermics 1995, 24, 115–129. [Google Scholar] [CrossRef]
- Bargiacchi, E.; Conti, P.; Manzella, A.; Vaccaro, M.; Cerutti, P.; Cesari, G. Thermal Uses of Geothermal Energy, Country Update for Italy. In Proceedings of the World Geothermal Congress 2020, Reykjavik, Iceland, 26 April–2 May 2020. [Google Scholar]
- Björgvinsson, S.T.; Bonciani, D.; Torsello, L. Reports on Market Actors Mapping and Engagement Strategies. Horizon 2020 GEOENVI Project Deliverable 5.1. 2020. Available online: https://www.geoenvi.eu/wp-content/uploads/2020/04/D5.1-Reports-on-market-actors-mapping-and-engagement-strategies.pdf (accessed on 30 April 2024).
- Magagna, D.; Shortall, R.; Telsnig, T.; Uihlein, A.; Vazquez Hernandez, C. Supply Chain of Renewable Energy Technologies in Europe—An Analysis for Wind, Geothermal and Ocean Energy; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-74281-1. Available online: https://data.europa.eu/doi/10.2760/271949 (accessed on 30 April 2024).
- Pellizzone, A.; Allansdottir, A.; De Franco, R.; Muttoni, G. Exploring public engagement with geothermal energy in southern Italy: A case study. Energy Policy 2015, 85, 1–11. [Google Scholar] [CrossRef]
- Bravi, M.; Basosi, R. Environmental impact of electricity from selected geothermal power plants in Italy. J. Clean. Prod. 2014, 66, 301–308. [Google Scholar] [CrossRef]
- Parisi, M.L.; Ferrara, N.; Torsello, L.; Basosi, R. Life cycle assessment of atmospheric emission profiles of the Italian geothermal power plants. J. Clean. Prod. 2019, 234, 881894. [Google Scholar] [CrossRef]
- Sbrana, A.; Lenzi, A.; Paci, M.; Gambini, R.; Sbrana, M.; Ciani, V.; Marianelli, P. Analysis of Natural and Power Plant CO2 Emissions in the Mount Amiata (Italy) Volcanic–Geothermal Area Reveals Sustainable Electricity Production at Zero Emissions. Energies 2021, 14, 4692. [Google Scholar] [CrossRef]
- Mayalla, J.W. Geothermal Mapping in the Hromundartindur Area, SW-Iceland; United Nations University: Tokyo, Japan, 2006. [Google Scholar]
- Ragnarsson, Á.; Steingrímsson, B.; Thorhallsson, S. Geothermal development in Iceland 2015–2019. In Proceedings of the World Geothermal Congress, Reykjavik, Iceland, 24–27 October 2021; Volume 1, p. 2021. [Google Scholar]
- Energy—Government of Iceland. Available online: https://www.government.is/topics/business-and-industry/energy/ (accessed on 30 April 2024).
- Loftsdottir, A.S.; Þórarinsdóttir, R.I.; Barðadóttir, H.; Sturludóttir, L.K. Energy in Iceland: Historical Perspective, Present Status, Future Outlook; National Energy Authority: Port Moresby, Papua New Guinea, 2006. [Google Scholar]
- Johannesson, G.; Ketilsson, J.; Ingimarsson, J.; Olafsdottir, R.; Palsson, B.; Thorsteinsson, H.; Sigurdardottir, H.; Matthiasdottir, K.V.; Guttormsdottir, A.B.; Arnalds, S. Development of GSAP-Geothermal Sustainability Assessment Protocol. In Proceedings of the World Geothermal Congress 2020, Reykjavík, Iceland, 24–27 October 2021. [Google Scholar]
- Mikhaylov, A. Geothermal energy development in Iceland. Int. J. Energy Econ. Policy 2020, 10, 31–35. [Google Scholar] [CrossRef]
- Orkustofnun. Natural Resources. Geothermal Energy. Retrieved 20 May 2024. Available online: https://orkustofnun.is/en/natural_resources/geothermal_energy (accessed on 30 April 2024).
- Iceland Renewable Energy Cluster. Geothermal. Retrieved 20 May 2024. Available online: https://energycluster.is/renewable-energy/geothermal/# (accessed on 30 April 2024).
- Hunt, T.M. Five Lectures on Environmental Effects of Geothermal Utilization. 2001. Available online: https://geocom.geonardo.com/assets/elearning/8.10.UNU-GTP-2000-01%20(1).pdf (accessed on 30 April 2024).
- Ármannsson, H.; Fridriksson, T.; Kristjánsson, B.R. CO2 emissions from geothermal power plants and natural geothermal activity in Iceland. Geothermics 2005, 34, 286–296. [Google Scholar] [CrossRef]
- Dereinda, F.H.; Armannsson, H. CO2 emissions from the Krafla geothermal area, Iceland. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–29 April 2010; pp. 25–29. [Google Scholar]
- Paulillo, A.; Striolo, A.; Lettieri, P. The environmental impacts and the carbon intensity of geothermal energy: A case study on the Hellisheiði plant. Environ. Int. 2019, 133, 105226. [Google Scholar] [CrossRef] [PubMed]
- Matter, M.; Snaebjörnsdottir, S.Ó.; Mesfin, K.G.; Alfredsson, H.A.; Hall, J.; Arnarsson, M.T.; Dideriksen, K.; Júliusson, B.M.; Broecker, W.S.; Gunnlaugsson, E. Towards cleaner geothermal energy: Subsurface sequestration of sour gas emissions from geothermal power plants. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Shortall, R. A Sustainability Assessment Framework for Geothermal Energy Developments. Ph.D. Thesis, University of Iceland, Reykjavik, Iceland, 2015. [Google Scholar]
- Guðjónsdóttir, S.R.; Eggertsson, V.; Guðmundsdóttir, M.; Jóhannesson, G.A. Panorama of Sustainability Studies. Available online: https://www.geoenvi.eu/wp-content/uploads/2019/11/Deliverable_3.1_GEOENVI_6.11_FINAL.pdf (accessed on 30 April 2024).
- Broothaers, M.; Lagrou, D.; Laenen, B.; Harcouët-Menou, V.; Vos, D. Deep geothermal energy in the Lower Carboniferous carbonates of the Campine Basin, northern Belgium: An overview from the 1950’s to 2020. Z. Dt. Ges. Geowiss. 2021, 172, 211–225. [Google Scholar] [CrossRef]
- Veldkamp, H.; Arndt, M.; Broothaers, M.; Dezayes, C.; Lacquement, F.; Laurent, A.; Vanbrabant, Y.; ten Veen, J. Report D.T1.1.5 of Interreg project DGE-ROLLOUT: Updated transnational harmonized depth and thickness map of the dinantian in North-West Europe. 2023. Available online: https://vb.nweurope.eu/media/21105/2023_08_dge_rollout_dt115_updated_transnational_harmonized_depth_and_thickness_map_of_deep_geothermal_potential_in_project_area.pdf (accessed on 30 April 2024).
- Deckers, J.; De Koninck, R.; Bos, S.; Broothaers, M.; Dirix, K.; Hambsch, L.; Lagrou, D.; Lanckacker, T.; Matthijs, J.; Rombaut, B.; et al. Geologisch (G3Dv3) en Hydrogeologisch (H3D) 3D-Lagenmodel van Vlaanderen; VITO Report 2018/RMA/R/1569; Study Carried out for Vlaams Planbureau voor Omgeving (Departement Omgeving) and Vlaamse Milieumaatschappij. 2019. Available online: https://archief.onderzoek.omgeving.vlaanderen.be/Onderzoek-1999911 (accessed on 30 April 2024).
- Perez-Arriaga, I.J.; Batlle, C. Impacts of intermittent renewables on electricity generation system operation. Econ. Energy Environ. Policy 2012, 1, 3–18. Available online: https://www.jstor.org/stable/26189488 (accessed on 30 April 2024). [CrossRef]
- Li, K.; Bian, H.; Liu, C.; Zhang, D.; Yang, Y. Comparison of geothermal with solar and wind power generation systems. Renew. Sustain. Energy Rev. 2015, 42, 1464–1474. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2020. 2021. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jun/IRENA_Power_Generation_Costs_2020.pdf (accessed on 30 April 2024).
- Karytsas, S.; Mendrinos, D.; Oikonomou, T.I.; Choropanitis, I.; Kujbus, A.; Karytsas, C. Examining the development of a geothermal risk mitigation scheme in Greece. Clean Technol. 2022, 4, 356–376. [Google Scholar] [CrossRef]
- Korucan, A.; Derin-Gure, P.; Celebi, B.; Baker, D.; Vander Velde, M. Opportunities and challenges of geothermal energy in Turkiye. Energy Sustain. Dev. 2024, 79, 101417. [Google Scholar] [CrossRef]
- Puppala, H.; Jha, S.K.; Singh, A.P.; Elavarasan, R.M.; Campana, P.E. Identification and analysis of barriers for harnessing geothermal energy in India. Renew. Energy 2022, 186, 327–340. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Solangi, Y.A.; Ikram, M. Analysis of barriers to the adoption of cleaner energy technologies in Pakistan using Modified Delphi and Fuzzy Analytical Hierarchy Process. J. Clean. Prod. 2019, 235, 1037–1050. [Google Scholar] [CrossRef]
- Sanchez-Alfaro, P.; Sielfeld, G.; Van Campen, B.; Dobson, P.; Fuentes, V.; Reed, A.; Palma-Behnke, R.; Morata, D. Geothermal barriers, policies and economics in Chile–Lessons for the Andes. Renew. Sustain. Energy Rev. 2015, 51, 1390–1401. [Google Scholar] [CrossRef]
- Rosso-Cerón, A.M.; Kafarov, V. Barriers to social acceptance of renewable energy systems in Colombia. Curr. Opin. Chem. Eng. 2015, 10, 103–110. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Gou, Y.; Li, M. Investigation on social acceptance of the geothermal energy utilization in China. Trans.—Geotherm. Resour. Counc. 2018, 42, 812–824. [Google Scholar]
- Payera, S.V. Understanding social acceptance of geothermal energy: Case study for Araucanía region, Chile. Geothermics 2018, 72, 138–144. [Google Scholar] [CrossRef]
- Im, D.H.; Chung, J.B.; Kim, E.S.; Moon, J.W. Public perception of geothermal power plants in Korea following the Pohang earthquake: A social representation theory study. Public Underst. Sci. 2021, 30, 724–739. [Google Scholar] [CrossRef]
- Tunçbilek, Ö.F.; Yılmaz, M. Jeotermal enerjinin çevresel etkileri ve sosyal kabul: Efeler ilçesi örneği. Ank. Üniversitesi Sos. Bilim. Derg. 2022, 13, 154–169. [Google Scholar] [CrossRef]
- Barriball, K.L.; While, A. Collecting data using a semi-structured interview: A discussion paper. J. Adv. Nurs.-Institutional Subscr. 1994, 19, 328–335. [Google Scholar] [CrossRef]
- Hellisheiði Geothermal Project. Geothermal Sustainability Assessment Protocol, ON Power. 2018. Available online: https://www.on.is/wp-content/uploads/2021/03/hellisheidi-assessment-report_final_22-june-2018.pdf (accessed on 30 April 2024).
- Ketilsson, J.; Petursdottir, H.; Gudmundsdottir, M.; Johannesson, J.; Gudmundsson, J.; Oddsdottir, A.; Eggertsson, V.; Stefansdottir, D.; Johannesson, G. Legal framework and national policy for geothermal development in Iceland. In Proceedings of the Proceedings World Geothermal Congress, Reykjavík, Iceland, 24–27 October 2021; Volume 25, pp. 1–6. [Google Scholar]
- Bjarnadóttir, R. Sustainability Evaluation of Geothermal Systems in Iceland. Indicators for Sustainable Production. Ph.D. Thesis, University of Iceland, Reykjavik, Iceland, 2010. [Google Scholar]
Classification | Characteristics | Authority in Charge |
---|---|---|
Resources of national interest (considered as mining resources) | Fluids > 150 °C Deliverable power > 20 MWth | Regions or delegated authorities |
Geothermal resources in the sea | The State | |
Fluids > 90 °C Used in < 5 MW zero-emission pilot plants | The State | |
Resources of local interest (considered as mining resources) | Fluids < 150 °C Deliverable power < 20 MWth | Regions or delegated authorities |
Small local utilisations (not considered as mining resources) | Deliverable power < 2 MWth Resources from <400 m deep wells | Regions or delegated authorities |
Power Plant | Capacity (MW) | Start of Operation | Owner |
---|---|---|---|
Hellisheiði | 303 | 2011 | ON Power |
Nesjavellir | 120 | 1990 | ON Power |
Reykjanes | 100 | 2006 | HS Orka |
Theistareykir | 90 | 2017 | Landsvirkjun |
Svartsengi | 75 | 1977 | HS Orka |
Krafla | 60 | 1978 | Landsvirkjun |
Group | Group Categorization | No of Italian Stakeholders | No of Icelandic Stakeholders | No of Belgian Stakeholders |
---|---|---|---|---|
Group 1 | Ultimate end users and beneficiaries: geothermal power operators, project developers, and engineering contractors | 8 | 9 | 3 |
Group 2 | Optional end users: solar thermal power sector | 0 | 1 | 0 |
Group 3 | Manufacturers | 3 | 1 | 0 |
Group 4 | Primary influential bodies/industry association | 5 | 1 | 2 |
Group 5 | Investors | 0 | 2 | 0 |
Group 6 | Others: academia and public | 3 | 3 | 2 |
Group 7 | Grid operators | 0 | 1 | 0 |
Total | 19 | 18 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meirbekova, R.; Bonciani, D.; Olafsson, D.I.; Korucan, A.; Derin-Güre, P.; Harcouët-Menou, V.; Bero, W. Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy. Energies 2024, 17, 4134. https://doi.org/10.3390/en17164134
Meirbekova R, Bonciani D, Olafsson DI, Korucan A, Derin-Güre P, Harcouët-Menou V, Bero W. Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy. Energies. 2024; 17(16):4134. https://doi.org/10.3390/en17164134
Chicago/Turabian StyleMeirbekova, Rauan, Dario Bonciani, Dagur Ingi Olafsson, Aysun Korucan, Pinar Derin-Güre, Virginie Harcouët-Menou, and Wilfried Bero. 2024. "Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy" Energies 17, no. 16: 4134. https://doi.org/10.3390/en17164134
APA StyleMeirbekova, R., Bonciani, D., Olafsson, D. I., Korucan, A., Derin-Güre, P., Harcouët-Menou, V., & Bero, W. (2024). Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy. Energies, 17(16), 4134. https://doi.org/10.3390/en17164134