Evaluating Renewable Energy Sites in the Green Hydrogen Supply Chain with Integrated Multi-Criteria Decision Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Green Hydrogen Supply Chain
2.2. Electrolysis in Green Hydrogen
- Our study evaluates the upstream process of the GHSC to emphasize strategic and potential renewable energy sites for the electrolysis process, which can be further connected to the model and network analysis of the green hydrogen supply chain.
- Rather than simply using a single methodology, our proposed two-phase integrated MCDA framework systematically incorporates both DEA and TOPSIS techniques in the study. Additionally, diverse MCDA tools (i.e., VIKOR and GRA) are further assessed and compared.
- This study also proposes a detailed case study which takes the hierarchical structure of the governmental governance structure linking the provincial alternatives in the realm of sustainability to district areas to evaluate potential renewable energy locations sequentially.
- Rather than focusing on a single case study region with a specific renewable energy type, our study uses real data from the northeastern part of Thailand with varied regional areas and evaluates potential renewable energy locations related to both solar and wind renewable energy types in an integrated way in this study.
3. Multi-Criteria Decision Analysis Framework
3.1. Data Envelopment Analysis (DEA)-Based Efficiency Analysis
- : The set of input criteria; .
- : The set of output criteria; .
- : The set of alternatives or DMUs; .
- : The quantity of input for DMU ; where is the assessed DMU.
- : The quantity of output for DMU ; where is the assessed DMU.
- : The dual variable assigned to DMU .
- : The scalar value for the efficiency score.
3.2. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
4. Case Study and Results
4.1. Provincial-Level Analysis (Phase 1)
4.2. District-Level Analysis (Phase 2)
4.3. Results Verification
5. Managerial Insights
6. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency (IEA). Renewables 2022 Analysis and Forecast to 2027. 2023. Available online: https://www.iea.org/reports/renewables-2022 (accessed on 1 September 2023).
- Hydrogen Insights. The State of the Global Hydrogen Economy, with a Deep Dive into Renewable Hydrogen. 2023. Available online: https://hydrogencouncil.com/ (accessed on 1 September 2023).
- Statista. Forecast Global Hydrogen Sector Demand in Sustainable Development Scenario 2019–2070. 2024. Available online: https://www.statista.com/statistics/760001/global-hydrogen-demand-by-sector-sustainable-scenario (accessed on 1 March 2024).
- Saha, P.; Akash, F.A.; Shovon, S.M.; Monir, M.U.; Ahmed, M.T.; Khan, M.F.H.; Sarkar, S.M.; Islam, M.K.; Hasan, M.M.; Vo, D.V.; et al. Grey, blue, and green hydrogen: A comprehensive review of production methods and prospects for zero-emission energy. Int. J. Green Energy 2024, 21, 1383–1397. [Google Scholar] [CrossRef]
- Zainal, B.S.; Ker, P.J.; Mohamed, H.; Ong, H.C.; Fattah, I.M.R.; Rahman, S.A.; Nghiem, L.D.; Mahlia, T.I. Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 2024, 189, 113941. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. Green hydrogen: A pathway to a sustainable energy future. Int. J. Hydrogen Energy 2024, 50, 310–333. [Google Scholar] [CrossRef]
- Abad, A.V.; Dodds, P.E. Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy 2020, 138, 111300. [Google Scholar] [CrossRef]
- Monteiro, E.; Brito, P.S. Hydrogen supply chain: Current status and prospects. Energy Storage 2023, 5, e466. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Pitakaso, R.; Kim, N.; Ma, J. Multicriteria decision analysis framework for part orientation analysis in additive manufacturing. J. Comput. Des. Eng. 2021, 8, 1141–1157. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Goswami, S.S. A comprehensive review of multiple criteria decision-making (MCDM) Methods: Advancements, applications, and future directions. Decis. Mak. Adv. 2023, 1, 25–48. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Kim, N. Importance of Multi-objective Evaluation in 3D Printing. In Industrial Strategies and Solutions for 3D Printing: Applications and Optimization; Wiley: Hoboken, NJ, USA, 2024. [Google Scholar]
- Wattanasaeng, N.; Ransikarbum, K. Sustainable planning and design for eco-industrial parks using integrated multi-objective optimization and fuzzy analytic hierarchy process. J. Ind. Prod. Eng. 2024, 41, 256–275. [Google Scholar] [CrossRef]
- Yap, J.; McLellan, B. A historical analysis of hydrogen economy research, development, and expectations, 1972 to 2020. Environments 2023, 10, 11. [Google Scholar] [CrossRef]
- Koneczna, R.; Cader, J. Towards effective monitoring of hydrogen economy development: A European perspective. Int. J. Hydrogen Energy 2024, 59, 430–446. [Google Scholar] [CrossRef]
- Le, T.T.; Sharma, P.; Bora, B.J.; Tran, V.D.; Truong, T.H.; Le, H.C.; Nguyen, P.Q.P. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. Int. J. Hydrogen Energy 2023, 54, 791–816. [Google Scholar] [CrossRef]
- Husarek, D.; Schmugge, J.; Niessen, S. Hydrogen supply chain scenarios for the decarbonisation of a German multi-modal energy system. Int. J. Hydrogen Energy 2021, 46, 38008–38025. [Google Scholar] [CrossRef]
- Riera, J.A.; Lima, R.M.; Knio, O.M. A review of hydrogen production and supply chain modeling and optimization. Int. J. Hydrogen Energy 2023, 48, 13731–13755. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Chanthakhot, W.; Glimm, T.; Janmontree, J. Evaluation of sourcing decision for hydrogen supply chain using an integrated multi-criteria decision analysis (MCDA) tool. Resources 2023, 12, 48. [Google Scholar] [CrossRef]
- Li, F.; Liu, D.; Sun, K.; Yang, S.; Peng, F.; Zhang, K.; Guo, G.; Si, Y. Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges. Sustainability 2024, 16, 1890. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Yang, H.; Wu, H. Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis. Appl. Energy 2022, 321, 119312. [Google Scholar] [CrossRef]
- Zhou, Y. Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation. Renew. Sustain. Energy Rev. 2022, 162, 112444. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y. Study on thermo-electric-hydrogen conversion mechanisms and synergistic operation on hydrogen fuel cell and electrochemical battery in energy flexible buildings. Energy Convers. Manag. 2023, 277, 116610. [Google Scholar] [CrossRef]
- Zhou, L.; Song, A.; Zhou, Y. Electrification and hydrogenation on a PV-battery-hydrogen energy flexible community for carbon–neutral transformation with transient aging and collaboration operation. Energy Convers. Manag. 2024, 300, 117984. [Google Scholar] [CrossRef]
- Ikuerowo, T.; Bade, S.O.; Akinmoladun, A.; Oni, B.A. The integration of wind and solar power to water electrolyzer for green hydrogen production. Int. J. Hydrogen Energy 2024, 76, 75–96. [Google Scholar] [CrossRef]
- Kumar, S.S.; Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- Chu, C.; Wu, K.; Luo, B.; Cao, Q.; Zhang, H. Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology–a review. Carbon Resour. Convers. 2023, 6, 334–351. [Google Scholar] [CrossRef]
- Bárkányi, Á.; Tarcsay, B.L.; Lovas, L.; Mérő, T.; Chován, T.; Egedy, A. Future of hydrogen economy: Simulation-based comparison of LOHC systems. Clean Technol. Environ. Policy 2024, 26, 1521–1536. [Google Scholar] [CrossRef]
- Spatolisano, E.; Restelli, F.; Matichecchia, A.; Pellegrini, L.A.; de Angelis, A.R.; Cattaneo, S.; Roccaro, E. Assessing opportunities and weaknesses of green hydrogen transport via LOHC through a detailed techno-economic analysis. Int. J. Hydrogen Energy 2024, 52, 703–717. [Google Scholar] [CrossRef]
- Jiang, Y.; Ren, Z.; Li, W. Committed carbon emission operation region for integrated energy systems: Concepts and analyses. IEEE Trans. Sustain. Energy 2023, 15, 1194–1209. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Y.; Li, Z.; Jiang, T.; Li, X. Two-stage robust operation of electricity-gas-heat integrated multi-energy microgrids considering heterogeneous uncertainties. Appl. Energy 2024, 371, 123690. [Google Scholar] [CrossRef]
- Zheng, X.; Khodayar, M.E.; Wang, J.; Yue, M.; Zhou, A. Distributionally robust multistage dispatch with discrete recourse of energy storage systems. IEEE Trans. Power Syst. 2024. [Google Scholar] [CrossRef]
- Pawelczyk, E.; Łukasik, N.; Wysocka, I.; Rogala, A.; Gębicki, J. Recent progress on hydrogen storage and production using chemical hydrogen carriers. Energies 2022, 15, 4964. [Google Scholar] [CrossRef]
- Bosu, S.; Rajamohan, N. Recent advancements in hydrogen storage-Comparative review on methods, operating conditions and challenges. Int. J. Hydrogen Energy 2024, 52, 352–370. [Google Scholar] [CrossRef]
- Kim, C.; Cho, S.H.; Cho, S.M.; Na, Y.; Kim, S.; Kim, D.K. Review of hydrogen infrastructure: The current status and roll-out strategy. Int. J. Hydrogen Energy 2023, 48, 1701–1716. [Google Scholar] [CrossRef]
- Lundblad, T.; Taljegard, M.; Johnsson, F. Centralized and decentralized electrolysis-based hydrogen supply systems for road transportation–A modeling study of current and future costs. Int. J. Hydrogen Energy 2023, 48, 4830–4844. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Rezayat, H.; Rezaei, M. A thorough investigation of solar-powered hydrogen potential and accurate location planning for big cities: A case study. Int. J. Hydrogen Energy 2020, 45, 31599–31611. [Google Scholar] [CrossRef]
- Lin, R.H.; Ye, Z.Z.; Wu, B.D. A review of hydrogen station location models. Int. J. Hydrogen Energy 2020, 45, 20176–20183. [Google Scholar] [CrossRef]
- Almutairi, K.; Dehshiri, S.S.H.; Dehshiri, S.J.H.; Mostafaeipour, A.; Techato, K. An economic investigation of the wind-hydrogen projects: A case study. Int. J. Hydrogen Energy 2022, 47, 25880–25898. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Mahmoud, M.S.; Elsaid, K.; Obaideen, K.; Rezk, H.; Wilberforce, T.; Eisa, T.; Chae, K.-J.; Sayed, E.T. Green hydrogen: Pathways, roadmap, and role in achieving sustainable development goals. Process Saf. Environ. Prot. 2023, 177, 664–687. [Google Scholar] [CrossRef]
- Gyanwali, K.; Bhattarai, A.; Bajracharya, T.R.; Komiyama, R.; Fujii, Y. Assessing green energy growth in Nepal with a hydropower-hydrogen integrated power grid model. Int. J. Hydrogen Energy 2022, 47, 15133–15148. [Google Scholar] [CrossRef]
- Rabiee, A.; Keane, A.; Soroudi, A. Technical barriers for harnessing the green hydrogen: A power system perspective. Renew. Energy 2021, 163, 1580–1587. [Google Scholar] [CrossRef]
- Eicke, L.; De Blasio, N. Green hydrogen value chains in the industrial sector—Geopolitical and market implications. Energy Res. Soc. Sci. 2022, 93, 102847. [Google Scholar] [CrossRef]
- Kar, S.K.; Harichandan, S.; Roy, B. Bibliometric analysis of the research on hydrogen economy: An analysis of current findings and roadmap ahead. Int. J. Hydrogen Energy 2022, 47, 10803–10824. [Google Scholar] [CrossRef]
- Scheller, F.; Wald, S.; Kondziella, H.; Gunkel, P.A.; Bruckner, T.; Keles, D. Future role and economic benefits of hydrogen and synthetic energy carriers in Germany: A review of long-term energy scenarios. Sustain. Energy Technol. Assess. 2023, 56, 103037. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IREC). Making the Breakthrough: Green Hydrogen Policies and Technology Costs. 2021. Available online: https://www.irena.org/ (accessed on 1 September 2023).
- Blohm, M.; Dettner, F. Green hydrogen production: Integrating environmental and social criteria to ensure sustainability. Smart Energy 2023, 11, 100112. [Google Scholar] [CrossRef]
- Ren, J.T.; Chen, L.; Wang, H.Y.; Tian, W.W.; Yuan, Z.Y. Water electrolysis for hydrogen production: From hybrid systems to self-powered/catalyzed devices. Energy Environ. Sci. 2024, 17, 49–113. [Google Scholar] [CrossRef]
- Trattner, A.; Höglinger, M.; Macherhammer, M.G.; Sartory, M. Renewable hydrogen: Modular concepts from production over storage to the consumer. Chem. Ing. Tech. 2021, 93, 706–716. [Google Scholar] [CrossRef]
- Panigrahy, B.; Narayan, K.; Rao, B.R. Green hydrogen production by water electrolysis: A renewable energy perspective. Mater. Today Proc. 2022, 67, 1310–1314. [Google Scholar] [CrossRef]
- Arsad, A.Z.; Hannan, M.A.; Al-Shetwi, A.Q.; Begum, R.A.; Hossain, M.J.; Ker, P.J.; Mahlia, T.I. Hydrogen electrolyser technologies and their modelling for sustainable energy production: A comprehensive review and suggestions. Int. J. Hydrogen Energy 2023, 48, 27841–27871. [Google Scholar] [CrossRef]
- Samal, S.; Dash, R. An empirical comparison of TOPSIS and VIKOR for ranking decision-making models. In Intelligent and Cloud Computing: Proceedings of ICICC 2021; Springer Nature: Singapore, 2022; pp. 429–437. [Google Scholar]
- Demir, G.; Chatterjee, P.; Pamucar, D. Sensitivity analysis in multi-criteria decision making: A state-of-the-art research perspective using bibliometric analysis. Expert Syst. Appl. 2024, 237, 121660. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Chaiyaphan, C.; Suksee, S.; Sinthuchao, S. Efficiency optimization for operational performance in green supply chain sourcing using data envelopment analysis: An empirical study. In Proceedings of the 18th International Conference on Computing and Information Technology (IC2IT 2022), Kanchanaburi, Thailand, 19–20 May 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 152–162. [Google Scholar]
- Nannar, S.; Sindhuchao, S.; Chaiyaphan, C.; Ransikarbum, K. Optimization of the sustainable food supply chain with integrative data envelopment analysis approach. Int. J. Manag. Sci. Eng. Manag. 2024, 1–16. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Pitakaso, R. Multi-objective optimization design of sustainable biofuel network with integrated fuzzy analytic hierarchy process. Expert Syst. Appl. 2024, 240, 122586. [Google Scholar] [CrossRef]
- Amirteimoori, A.; Sahoo, B.K.; Charles, V.; Mehdizadeh, S. An introduction to data envelopment analysis. In Stochastic Benchmarking: Theory and Applications; Springer: Cham, Switzerland, 2022; pp. 13–29. [Google Scholar]
- Chanthakhot, W.; Ransikarbum, K. Integrated IEW-TOPSIS and fire dynamics simulation for agent-based evacuation modeling in industrial safety. Safety 2021, 7, 47. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Khamhong, P. Integrated fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution for additive manufacturing printer selection. J. Mater. Eng. Perform. 2021, 30, 6481–6492. [Google Scholar] [CrossRef]
- Shih, H.S.; Olson, D.L. TOPSIS and Its Extensions: A Distance-Based MCDM Approach; Springer: Cham, Switzerland, 2022; Volume 447, pp. 1–215. [Google Scholar]
- Pandey, V.; Komal; Dincer, H. A review on TOPSIS method and its extensions for different applications with recent development. Soft Comput. 2023, 27, 18011–18039. [Google Scholar] [CrossRef]
- Office of the National Economic and Social Development Council, Thailand. Indicators for Provincial and Regional Development. 2023. Available online: https://sdgs.nesdc.go.th/wp-content/ (accessed on 1 September 2023). (In Thai).
- Pizzi, S.; Caputo, A.; Corvino, A.; Venturelli, A. Management research and the UN sustainable development goals (SDGs): A bibliometric investigation and systematic review. J. Clean. Prod. 2020, 276, 124033. [Google Scholar] [CrossRef]
- United Nations: The Sustainable Development Goals Report 2023: Special Edition. 2023. Available online: https://unstats.un.org/sdgs/report/2023/ (accessed on 1 September 2023).
- Ahmad, L.; Khordehgah, N.; Malinauskaite, J.; Jouhara, H. Recent advances and applications of solar photovoltaics and thermal technologies. Energy 2020, 207, 118254. [Google Scholar] [CrossRef]
- Kotowicz, J.; Jurczyk, M.; Węcel, D. The possibilities of cooperation between a hydrogen generator and a wind farm. Int. J. Hydrogen Energy 2021, 46, 7047–7059. [Google Scholar] [CrossRef]
- Hasan, K.; Yousuf, S.B.; Tushar, M.S.H.K.; Das, B.K.; Das, P.; Islam, M.S. Effects of different environmental and operational factors on the PV performance: A comprehensive review. Energy Sci. Eng. 2022, 10, 656–675. [Google Scholar] [CrossRef]
- Parthiban, R.; Ponnambalam, P. An enhancement of the solar panel efficiency: A comprehensive review. Front. Energy Res. 2022, 10, 937155. [Google Scholar] [CrossRef]
- Kamil, K.R.; Samuel, B.O.; Khan, U. Green hydrogen production from photovoltaic power station as a road map to climate change mitigation. Clean Energy 2024, 8, 156–167. [Google Scholar] [CrossRef]
- Temiz, M.; Dincer, I. Development of solar and wind based hydrogen energy systems for sustainable communities. Energy Convers. Manag. 2022, 269, 116090. [Google Scholar] [CrossRef]
- Uchman, W.; Kotowicz, J.; Sekret, R. Investigation on green hydrogen generation devices dedicated for integrated renewable energy farm: Solar and wind. Appl. Energy 2022, 328, 120170. [Google Scholar] [CrossRef]
- Global Solar Atlas. Available online: https://globalsolaratlas.info/map (accessed on 1 March 2024).
- Global Wind Atlas. Available online: https://globalwindatlas.info/en (accessed on 1 March 2024).
- Sałabun, W.; Wątróbski, J.; Shekhovtsov, A. Are mcda methods benchmarkable? A comparative study of topsis, vikor, copras, and promethee ii methods. Symmetry 2020, 12, 1549. [Google Scholar] [CrossRef]
- Rane, N.; Achari, A.; Choudhary, S. Multi-Criteria Decision-Making (MCDM) as a powerful tool for sustainable development: Effective applications of AHP, FAHP, TOPSIS, ELECTRE, and VIKOR in sustainability. Int. Res. J. Mod. Eng. Technol. Sci. 2023, 5, 2654–2670. [Google Scholar]
- Jain, P.; Abhishek, K.; Chatterjee, P. (Eds.) Decision-Making Models and Applications in Manufacturing Environments; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Javed, S.A.; Gunasekaran, A.; Mahmoudi, A. DGRA: Multi-sourcing and supplier classification through Dynamic Grey Relational Analysis method. Comput. Ind. Eng. 2022, 173, 108674. [Google Scholar] [CrossRef]
- Khan, T.; Yu, M.; Waseem, M. Review on recent optimization strategies for hybrid renewable energy system with hydrogen technologies: State of the art, trends and future directions. Int. J. Hydrogen Energy 2022, 47, 25155–25201. [Google Scholar] [CrossRef]
- Gorji, S.A. Challenges and opportunities in green hydrogen supply chain through metaheuristic optimization. J. Comput. Des. Eng. 2023, 10, 1143–1157. [Google Scholar] [CrossRef]
- Özbek, B.T.; Güler, M.G. A multi period and multi objective stochastic hydrogen supply chain for Turkey. Int. J. Hydrogen Energy 2024. [Google Scholar] [CrossRef]
- Sahabuddin, M.; Khan, I. Multi-criteria decision analysis methods for energy sector’s sustainability assessment: Robustness analysis through criteria weight change. Sustain. Energy Technol. Assess. 2021, 47, 101380. [Google Scholar] [CrossRef]
- Nabavi, S.R.; Wang, Z.; Rangaiah, G.P. Sensitivity analysis of multi-criteria decision-making methods for engineering applications. Ind. Eng. Chem. Res. 2023, 62, 6707–6722. [Google Scholar] [CrossRef]
- Wiȩckowski, J.; Sałabun, W. Sensitivity analysis approaches in multi-criteria decision analysis: A systematic review. Appl. Soft Comput. 2023, 148, 110915. [Google Scholar] [CrossRef]
- Więckowski, J.; Sałabun, W.; Kizielewicz, B.; Bączkiewicz, A.; Shekhovtsov, A.; Paradowski, B.; Wątróbski, J. Recent advances in multi-criteria decision analysis: A comprehensive review of applications and trends. Int. J. Knowl.-Based Intell. Eng. Syst. 2023, 27, 367–393. [Google Scholar] [CrossRef]
DMUs | Description | Latitude, Longitude |
---|---|---|
DMU1 | Bueng Kan province | 18.3254, 103.6704 |
DMU2 | Nong Khai province | 17.8815, 102.7416 |
DMU3 | Loei province | 17.4866, 101.7194 |
DMU4 | Nongbua Lamphu province | 17.2041, 102.4444 |
DMU5 | Udon Thani province | 17.4166, 102.7515 |
DMU6 | Sakon Nakhon province | 17.1563, 104.1455 |
DMU7 | Nakhon Phanom province | 17.4069, 104.7808 |
DMU8 | Mukdahan province | 16.5430, 104.7227 |
DMU9 | Kalasin province | 16.4325, 103.5069 |
DMU10 | Chaiyaphum province | 15.8055, 102.0311 |
DMU11 | Khon Kaen province | 16.4333, 102.8333 |
DMU12 | Maha Sarakham province | 16.1772, 103.3008 |
DMU13 | Roi Et province | 16.0530, 103.6511 |
DMU14 | Yasothon province | 15.7972, 104.1430 |
DMU15 | Amnat Charoen province | 15.8526, 104.6333 |
DMU16 | Ubon Ratchathani province | 15.2288, 104.8541 |
DMU17 | Sisaket province | 15.1069, 104.3294 |
DMU18 | Surin province | 14.8851, 103.4882 |
DMU19 | Buriram province | 14.9941, 103.10222 |
DMU20 | Nakhon Ratchasima province | 14.9805, 102.1013 |
Criteria | Details | |
---|---|---|
I1 | Provincial areas (km2) | |
I2 | Population density (people/km2) | |
I3 | GDP value (billion Baht) | |
I4 | Minimum land cost (Baht) | |
I5 | Maximum land cost (Baht) | |
O1 | People score |
|
O2 | Prosperity score |
|
O3 | Planet score |
|
O4 | Peace score |
|
O5 | Partnership score |
|
DMUs | I1 | I2 | I3 | I4 | I5 | O1 | O2 | O3 | O4 | O5 |
---|---|---|---|---|---|---|---|---|---|---|
DMU1 | 4003 | 106 | 27 | 200 | 17,500 | 46.81 | 49.91 | 44.83 | 63.27 | 51.24 |
DMU2 | 3275 | 160 | 40 | 200 | 45,000 | 57.36 | 52.39 | 51.24 | 71.65 | 50.44 |
DMU3 | 10,500 | 61 | 53 | 150 | 55,000 | 54.64 | 54.53 | 45.27 | 62.34 | 36.93 |
DMU4 | 4099 | 125 | 25 | 200 | 35,000 | 50.72 | 42.84 | 46.64 | 60.84 | 49.73 |
DMU5 | 11,072 | 143 | 111 | 250 | 180,000 | 60.42 | 56.02 | 54.51 | 64.82 | 52.5 |
DMU6 | 9580 | 121 | 56 | 230 | 75,000 | 53.72 | 51.54 | 37.81 | 69.18 | 44.3 |
DMU7 | 5637 | 127 | 43 | 200 | 50,000 | 51.44 | 49.43 | 45.8 | 64.23 | 50.39 |
DMU8 | 4126 | 87 | 26 | 210 | 35,000 | 52.52 | 54.27 | 41.37 | 67.43 | 47.75 |
DMU9 | 6936 | 142 | 56 | 250 | 33,500 | 47.35 | 52.68 | 46.26 | 63.72 | 36.43 |
DMU10 | 12,698 | 91 | 60 | 75 | 53,500 | 56.53 | 48.1 | 50.67 | 65.93 | 51.71 |
DMU11 | 10,659 | 169 | 204 | 110 | 200,000 | 67.77 | 50.59 | 58.89 | 62.32 | 35.77 |
DMU12 | 5607 | 172 | 56 | 250 | 60,000 | 62.05 | 49.14 | 45.56 | 67.45 | 39.87 |
DMU13 | 7873 | 166 | 73 | 100 | 80,000 | 59.24 | 51.18 | 46.52 | 63.93 | 45.21 |
DMU14 | 4131 | 130 | 26 | 200 | 44,000 | 59.37 | 52.77 | 43.53 | 69.17 | 51.44 |
DMU15 | 3290 | 115 | 18 | 230 | 20,000 | 51.89 | 53.06 | 47.44 | 66.11 | 54.99 |
DMU16 | 15,626 | 120 | 120 | 50 | 110,000 | 50.43 | 47.64 | 49.16 | 65.18 | 44.69 |
DMU17 | 8936 | 165 | 70 | 130 | 40,000 | 51.76 | 51.35 | 45.29 | 61.11 | 31.32 |
DMU18 | 8854 | 157 | 73 | 130 | 60,000 | 43.90 | 49.13 | 46.41 | 69.84 | 39.79 |
DMU19 | 10,080 | 159 | 84 | 150 | 50,000 | 49.74 | 48.4 | 47.62 | 61.19 | 46.92 |
DMU20 | 20,736 | 127 | 275 | 100 | 130,000 | 56.23 | 47.13 | 48.24 | 66.43 | 38.23 |
DMU1 | DMU2 | DMU3 | DMU4 | DMU5 | DMU6 | DMU7 | DMU8 | DMU9 | DMU10 | |
---|---|---|---|---|---|---|---|---|---|---|
CRS | 1.000 | 1.000 | 1.000 | 1.000 | 0.945 | 0.752 | 0.910 | 1.000 | 0.775 | 1.000 |
VRS | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.969 | 0.923 | 1.000 | 0.775 | 1.000 |
SE | 1.000 | 1.000 | 1.000 | 1.000 | 0.945 | 0.776 | 0.986 | 1.000 | 1.000 | 1.000 |
DMU11 | DMU12 | DMU13 | DMU14 | DMU15 | DMU16 | DMU17 | DMU18 | DMU19 | DMU20 | |
CRS | 1.000 | 0.828 | 1.000 | 1.000 | 1.000 | 1.000 | 0.895 | 0.963 | 1.000 | 0.842 |
VRS | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.897 | 1.000 | 1.000 | 0.871 |
SE | 1.000 | 0.828 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.963 | 1.000 | 0.967 |
Alternatives | Description | Latitude, Longitude |
---|---|---|
A1 | Mueang Ubon Ratchathani District | 15.3188, 105.4955 |
A2 | Si Mueang Mai District | 15.3894, 104.5513 |
A3 | Khong Chiam District | 16.0421, 105.2235 |
A4 | Khueang Nai District | 14.9030, 105.0763 |
A5 | Khemarat District | 14.5213, 105.2461 |
A6 | Det Udom District | 14.4891, 105.0008 |
A7 | Na Chaluai District | 14.7566, 105.4113 |
A8 | Nam Yuen District | 15.6122, 105.0219 |
A9 | Buntharik District | 15.7916, 104.9966 |
A10 | Trakan Phuet Phon District | 15.5108, 104.7263 |
A11 | Kut Khaopun District | 15.2025, 104.8675 |
A12 | Muang Sam Sip District | 15.2444, 105.2288 |
A13 | Warin Chamrap District | 15.3155, 105.1552 |
A14 | Phibun Mangsahan District | 15.8258, 105.2608 |
A15 | Tan Sum District | 15.0083, 104.7822 |
A16 | Pho Sai District | 15.3790, 105.0278 |
A17 | Samrong District | 15.2016, 105.3983 |
A18 | Don Mot Daeng District | 14.7333, 104.9122 |
A19 | Sirindhorn District | 15.0594, 105.0602 |
A20 | Thung Si Udom District | 15.8974, 105.2931 |
A21 | Na Yia District | 15.4066, 104.9233 |
A22 | Na Tan District | 15.2413, 105.0922 |
A23 | Lao Suea Kok District | 14.5833, 104.9253 |
A24 | Sawang Wirawong District | 15.3188, 105.4955 |
A25 | Nam Khun District | 15.3894, 104.5513 |
Alternatives | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
A1 | 27.3 | 125 | 1539.6 | 1394.3 | 242 | 5.89 |
A2 | 27 | 146 | 1520.1 | 1370.2 | 347 | 6.55 |
A3 | 27.3 | 114 | 1471.6 | 1298.1 | 304 | 6.13 |
A4 | 27.3 | 127 | 1549.2 | 1406.1 | 239 | 5.86 |
A5 | 26.7 | 138 | 1506.5 | 1367.8 | 357 | 6.95 |
A6 | 27.3 | 137 | 1529.6 | 1376.5 | 160 | 5.21 |
A7 | 26.6 | 196 | 1488.9 | 1308.1 | 113 | 4.58 |
A8 | 26.8 | 186 | 1503.3 | 1338.6 | 184 | 5.37 |
A9 | 27 | 159 | 1506.7 | 1344.7 | 155 | 4.99 |
A10 | 27 | 135 | 1533.5 | 1392.7 | 359 | 6.66 |
A11 | 26.8 | 154 | 1534.6 | 1394.1 | 360 | 6.84 |
A12 | 27.1 | 142 | 1540.6 | 1392.3 | 262 | 6.01 |
A13 | 27.3 | 133 | 1535.4 | 1392.8 | 206 | 5.54 |
A14 | 27.3 | 128 | 1527.5 | 1383.5 | 196 | 5.43 |
A15 | 27.3 | 128 | 1520.8 | 1364.7 | 247 | 5.82 |
A16 | 26.7 | 160 | 1525 | 1387.7 | 335 | 6.77 |
A17 | 27.3 | 138 | 1541.1 | 1393.4 | 171 | 5.34 |
A18 | 27.2 | 126 | 1533.6 | 1388 | 229 | 5.79 |
A19 | 27.1 | 154 | 1518.6 | 1368.7 | 208 | 5.48 |
A20 | 27.1 | 162 | 1522.9 | 1363.7 | 148 | 5.09 |
A21 | 27.3 | 138 | 1524.4 | 1365 | 179 | 5.33 |
A22 | 26.6 | 147 | 1523.2 | 1390.1 | 352 | 6.84 |
A23 | 27.1 | 147 | 1539.5 | 1393.1 | 252 | 5.95 |
A24 | 27.2 | 138 | 1524.5 | 1369.1 | 214 | 5.59 |
A25 | 26.9 | 183 | 1507.8 | 1339 | 134 | 4.98 |
Alternatives | Separation Measure from the PIS | Separation Measure from the NIS | Relative Closeness Score | Ranking list |
---|---|---|---|---|
A1 | 0.02333 | 0.01912 | 0.450 | 11 |
A2 | 0.01176 | 0.03401 | 0.743 | 4 |
A3 | 0.02083 | 0.02695 | 0.564 | 7 |
A4 | 0.02334 | 0.01881 | 0.446 | 12 |
A5 | 0.01323 | 0.03570 | 0.730 | 5 |
A6 | 0.03146 | 0.00920 | 0.226 | 25 |
A7 | 0.03570 | 0.01862 | 0.343 | 18 |
A8 | 0.02531 | 0.01945 | 0.435 | 13 |
A9 | 0.03075 | 0.01196 | 0.280 | 23 |
A10 | 0.01395 | 0.03530 | 0.717 | 6 |
A11 | 0.00956 | 0.03661 | 0.793 | 1 |
A12 | 0.01871 | 0.02256 | 0.547 | 8 |
A13 | 0.02629 | 0.01448 | 0.355 | 17 |
A14 | 0.02815 | 0.01272 | 0.311 | 20 |
A15 | 0.02255 | 0.01957 | 0.465 | 10 |
A16 | 0.00891 | 0.03388 | 0.792 | 2 |
A17 | 0.02989 | 0.01077 | 0.265 | 24 |
A18 | 0.02453 | 0.01735 | 0.414 | 14 |
A19 | 0.02395 | 0.01653 | 0.408 | 15 |
A20 | 0.03119 | 0.01235 | 0.284 | 21 |
A21 | 0.02903 | 0.01137 | 0.281 | 22 |
A22 | 0.01120 | 0.03528 | 0.759 | 3 |
A23 | 0.01908 | 0.02164 | 0.531 | 9 |
A24 | 0.02477 | 0.01576 | 0.389 | 16 |
A25 | 0.03235 | 0.01612 | 0.333 | 19 |
Alternatives | TOPSIS Ranking | VIKOR Index | VIKOR Ranking | GRA Index | GRA Ranking |
---|---|---|---|---|---|
A1 | 11 | 0.77415 | 17 | 0.56015 | 11 |
A2 | 4 | 0.29308 | 4 | 0.62361 | 6 |
A3 | 7 | 1.00000 | 25 | 0.43539 | 25 |
A4 | 12 | 0.74024 | 15 | 0.62200 | 7 |
A5 | 5 | 0.33006 | 5 | 0.70488 | 4 |
A6 | 25 | 0.88588 | 23 | 0.47342 | 22 |
A7 | 18 | 0.87048 | 22 | 0.56890 | 10 |
A8 | 13 | 0.51497 | 9 | 0.53062 | 14 |
A9 | 23 | 0.73516 | 14 | 0.44837 | 24 |
A10 | 6 | 0.36280 | 6 | 0.69618 | 5 |
A11 | 1 | 0.06521 | 2 | 0.76502 | 2 |
A12 | 8 | 0.42924 | 7 | 0.59559 | 8 |
A13 | 17 | 0.81263 | 18 | 0.52821 | 15 |
A14 | 20 | 0.86159 | 21 | 0.48723 | 18 |
A15 | 10 | 0.84546 | 20 | 0.48116 | 20 |
A16 | 2 | 0.01424 | 1 | 0.72862 | 3 |
A17 | 24 | 0.82518 | 19 | 0.53392 | 12 |
A18 | 14 | 0.65782 | 11 | 0.53176 | 13 |
A19 | 15 | 0.54558 | 10 | 0.49170 | 17 |
A20 | 21 | 0.71780 | 13 | 0.47864 | 21 |
A21 | 22 | 0.89080 | 24 | 0.45890 | 23 |
A22 | 3 | 0.14363 | 3 | 0.77999 | 1 |
A23 | 9 | 0.43093 | 8 | 0.59151 | 9 |
A24 | 16 | 0.70026 | 12 | 0.48514 | 19 |
A25 | 19 | 0.76607 | 16 | 0.49273 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ransikarbum, K.; Zadek, H.; Janmontree, J. Evaluating Renewable Energy Sites in the Green Hydrogen Supply Chain with Integrated Multi-Criteria Decision Analysis. Energies 2024, 17, 4073. https://doi.org/10.3390/en17164073
Ransikarbum K, Zadek H, Janmontree J. Evaluating Renewable Energy Sites in the Green Hydrogen Supply Chain with Integrated Multi-Criteria Decision Analysis. Energies. 2024; 17(16):4073. https://doi.org/10.3390/en17164073
Chicago/Turabian StyleRansikarbum, Kasin, Hartmut Zadek, and Jettarat Janmontree. 2024. "Evaluating Renewable Energy Sites in the Green Hydrogen Supply Chain with Integrated Multi-Criteria Decision Analysis" Energies 17, no. 16: 4073. https://doi.org/10.3390/en17164073
APA StyleRansikarbum, K., Zadek, H., & Janmontree, J. (2024). Evaluating Renewable Energy Sites in the Green Hydrogen Supply Chain with Integrated Multi-Criteria Decision Analysis. Energies, 17(16), 4073. https://doi.org/10.3390/en17164073