Bibliometric Analysis of Multi-Criteria Decision-Making (MCDM) Methods in Environmental and Energy Engineering Using CiteSpace Software: Identification of Key Research Trends and Patterns of International Cooperation
Abstract
:1. Introduction
2. Methodology
- Database: All publications were downloaded from the Web of Science database, which guarantees their high quality and recognition in the scientific community.
- Time scope: Publications published without time limits were included to provide a complete overview of the evolution of research in this field.
- Language of publication: Only publications written in English were selected to allow for a broad understanding of the results by the international scientific community.
- Types of documents: Scientific articles, reviews, book chapters, and conference proceedings were analyzed, excluding other types of publications such as abstracts or technical notes;
- Scientific discipline: The focus was on publications related to environmental and energy engineering, which was achieved by filtering publications based on the thematic categories assigned to them in the Web of Science database.
- Cooperation between countries: This analysis was conducted to identify the countries that most frequently collaborate in multi-criteria decision-making research. The country network visualization feature was used to see the connections between different countries and identify the main centers of international cooperation.
- Inter-institute collaboration: This identified the most important research institutes and their interconnections, allowing the identification of key research centers.
- Cited journals: Analysis of journal citations made it possible to determine which journals are the most influential and play a key role in the development of the field.
- Identification of key research topics through citation analysis: Co-citation analysis was used to isolate key research topics and determine their importance in the context of the entire field. This feature allowed the identification of key publications that had the greatest impact on the development of individual topics.
- Citation burst analysis: Detection of citation bursts allowed us to identify publications that attracted a lot of attention from the scientific community in a short period of time. This analysis was crucial to understand which research topics and publications gained importance in a short period of time.
- Data import: Publications are imported into CiteSpace in text format. The data includes bibliographic information, such as title, authors, journal, year of publication, and cited references.
- Creating networks: After importing data, CiteSpace creates a network based on co-citations. Each node in the network represents a publication, and the edges between nodes represent the citation relationships between those publications. These networks can include different types of analysis, such as collaborations between authors, institutes, or countries.
- Clustering: CiteSpace uses clustering algorithms, such as pathfinder network scaling, to identify and group related publications. These clusters represent the main research topics in a given area.
- Visualization: The tool generates interactive visualizations that allow you to explore the citation network. Nodes and edges are color-coded, allowing you to easily distinguish between different citation periods and intensities. Additionally, CiteSpace allows you to add cluster labels, making it easier to interpret the results.
- Citation burst detection: CiteSpace has a burst detection feature that identifies publications with sudden increases in citations over a short period of time. This is carried out by analyzing dynamic changes in the number of citations, allowing you to identify publications that have suddenly become very popular.
- Report generation: At the end of the analysis, CiteSpace generates reports containing detailed information on identified clusters, key publications, and research trends. These reports can be exported in various formats, such as PNG, SVG, or GraphML, for further analysis and presentation.
3. Simulations
4. Conclusions and Future Research Directions
4.1. Conclusions
4.2. Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rabczak, S.; Mateichyk, V.; Smieszek, M.; Nowak, K.; Kolomiiets, S. Evaluating the Energy Efficiency of Combining Heat Pumps and Photovoltaic Panels in Eco-Friendly Housing. Appl. Sci. 2024, 14, 5575. [Google Scholar] [CrossRef]
- Kurbatova, T.; Perederii, T. Global Trends in Renewable Energy Development. In Proceedings of the 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 5–10 October 2020; pp. 260–263. [Google Scholar]
- Marcel, C.P. Addressing the Global Energy Problem: Perspectives, Challenges, and Potential Solutions. Nucl. Eng. Des. 2023, 414, 112610. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.J.; Al-Musawi, T.; Mahmood Ali, B.; Algburi, S.; Alzoubi, H.M.; Khudhair Al-Jiboory, A.; Zuhair Sameen, A.; Salman, H.M.; Jaszczur, M. The Renewable Energy Role in the Global Energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Cheba, K.; Bąk, I.; Pietrzak, M.B. Conditions of the green transformation. the case of the European Union. Technol. Econ. Dev. Econ. 2022, 29, 438–467. [Google Scholar] [CrossRef]
- Zhang, Z.; Nuță, F.M.; Dimen, L.; Ullah, I.; Xuanye, S.; Junchen, Y.; Yihan, Z.; Yi, C. Relationship between FDI Inflow, CO2 Emissions, Renewable Energy Consumption, and Population Health Quality in China. Front. Environ. Sci. 2023, 11, 1120970. [Google Scholar] [CrossRef]
- Jermain, D.O.; Pilcher, R.C.; Ren, Z.J.; Berardi, E.J. Coal in the 21st Century: Industry Transformation and Transition Justice in the Phaseout of Coal-as-Fuel and the Phase-in of Coal as Multi-Asset Resource Platforms. Energy Clim. Chang. 2024, 5, 100142. [Google Scholar] [CrossRef]
- Kalaiselvan, N.; Mathimani, T. Solar-Driven Green Hydrogen Generation for Revolutionizing the Future of Zero-Carbon Energy. Fuel 2024, 375, 132538. [Google Scholar] [CrossRef]
- Hachemi, H.; Seladji, C.; Negadi, L.; Bhandari, R.; Aryal, S.; Sacko, B.D.D. Improving Municipal Solid Waste Management in Algeria and Exploring Energy Recovery Options. Renew. Energy 2024, 230, 120861. [Google Scholar] [CrossRef]
- Corigliano, O.; Algieri, A. A Comprehensive Investigation on Energy Consumptions, Impacts, and Challenges of the Food Industry. Energy Convers. Manag. X 2024, 23, 100661. [Google Scholar] [CrossRef]
- Hosseini, F.; Nasimifar, M.; Sivaneswaran, N.; Golalipour, A. Mutual Impacts of Changing Climate and Flexible Pavement Performance Considering Resilience and Sustainable Aspects. J. Clean. Prod. 2024, 460, 142594. [Google Scholar] [CrossRef]
- Verma, M.; Prem, P.R.; Ren, P.; Liao, H.; Xu, Z. Green Supplier Selection with a Multiple Criteria Decision-Making Method Based on Thermodynamic Features. Environ. Dev. Sustain. 2022, 1, 1–33. [Google Scholar] [CrossRef]
- Romanov, D.; Vershinina, K.; Nyashina, G.; Strizhak, P. Multiple-Criteria Decision Analysis to Substantiate the Prospects of Industrial and Solid Municipal Wastes as Slurry Fuel Components. Waste Manag. Res. 2023, 41, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Liu, Z.; Xu, C.; Chen, Z.; Zhang, X.; Xia, J.; Yu, S.L. Adaptive Pressure-Driven Multi-Criteria Spatial Decision-Making for a Targeted Placement of Green and Grey Runoff Control Infrastructures. Water Res. 2022, 212, 118126. [Google Scholar] [CrossRef] [PubMed]
- Maghribi, A.A.; Dimyati, M.; Supriatna, S. Geographic Information System and Multi-Criteria Decision Analysis for the Determination of Groundwater Recharge Potential: Systematic Review. Water Supply 2022, 22, 7027–7039. [Google Scholar] [CrossRef]
- Jeon, J.; Manirathinam, T.; Geetha, S.; Narayanamoorthy, S.; Salimi, M.; Ahmadian, A. An Identification of Optimal Waste Disposal Method for Dumpsite Remediation Using the Fermatean Fuzzy Multi-Criteria Decision-Making Method. Environ. Sci. Pollut. Res. 2024, 1, 1–22. [Google Scholar] [CrossRef]
- Savun-Hekimoğlu, B.; Erbay, B.; Hekimoğlu, M.; Burak, S. Evaluation of Water Supply Alternatives for Istanbul Using Forecasting and Multi-Criteria Decision Making Methods. J. Clean. Prod. 2021, 287, 125080. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, C.; Yang, Y.; Yang, X. Rapid Reduction of Air Pollution and Short-Term Exposure Risks in China. J. Environ. Sci. 2025, 149, 126–138. [Google Scholar] [CrossRef]
- Jiřík, V.; Machaczka, O.; Riedlová, P.; Kramná, D.; Siemiatkowski, G.; Ośródka, L.; Krajny, E.; Ambrož, A.; Topinka, J.; Rössner, P. The Effect of Air Pollution on Selected Immune System Parameters, 8-Isoprostane, and Alpha-1-Antitrypsin of People Living in Environmentally Distinct Regions. Environ. Sci. Eur. 2024, 36, 125. [Google Scholar] [CrossRef]
- Yoo, E.-H.; Roberts, J.E. Differential Effects of Air Pollution Exposure on Mental Health: Historical Redlining in New York State. Sci. Total Environ. 2024, 948, 174516. [Google Scholar] [CrossRef]
- Zhuo, T.; Yu, K.; Chai, B.; Tang, Q.; Gao, X.; Wang, J.; He, L.; Lei, X.; Li, Y.; Meng, Y.; et al. Microplastics Increase the Microbial Functional Potential of Greenhouse Gas Emissions and Water Pollution in a Freshwater Lake: A Metagenomic Study. Environ. Res. 2024, 257, 119250. [Google Scholar] [CrossRef]
- Asariotis, R.; Monioudi, I.N.; Mohos Naray, V.; Velegrakis, A.F.; Vousdoukas, M.I.; Mentaschi, L.; Feyen, L. Climate Change and Seaports: Hazards, Impacts and Policies and Legislation for Adaptation. Anthr. Coasts 2024, 7. [Google Scholar] [CrossRef]
- Ngubane, Z.; Bergion, V.; Dzwairo, B.; Stenström, T.A.; Sokolova, E. Multi-Criteria Decision Analysis Framework for Engaging Stakeholders in River Pollution Risk Management. Sci. Rep. 2024, 14, 7125. [Google Scholar] [CrossRef]
- Francis, A.; Thomas, A. System Dynamics Modelling Coupled with Multi-Criteria Decision-Making (MCDM) for Sustainability-Related Policy Analysis and Decision-Making in the Built Environment. Smart Sustain. Built Environ. 2023, 12, 534–564. [Google Scholar] [CrossRef]
- Richmond, M.; Balaam, T.; Causon, P.; Cevasco, D.; Leimeister, M.; Kolios, A.; Brennan, F. Multi-Criteria Decision Analysis for Benchmarking Human-Free Lifting Solutions in the Offshorewind Energy Environment. Energies 2018, 11, 1175. [Google Scholar] [CrossRef]
- Guillot, C.; Aenishaenslin, C.; Acheson, E.S.; Koffi, J.; Bouchard, C.; Leighton, P.A. Spatial Multi-Criteria Decision Analysis for the Selection of Sentinel Regions in Tick-Borne Disease Surveillance. BMC Public Health 2024, 24, 294. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Ge, S.; Zhang, B. Multi-Criteria Decision Analysis and Experimental Study on Heat Pipe Thermoelectric Generator for Waste Heat Recovery. Appl. Therm. Eng. 2024, 255, 123930. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, M. A Multi-Criteria Compromise Ranking Decision-Making Approach for Analysis and Evaluation of Community-Integrated Energy Service System. Energy 2024, 306, 132439. [Google Scholar] [CrossRef]
- Aparisi-Cerdá, I.; Ribó-Pérez, D.; García-Melón, M.; D’Este, P.; Poveda-Bautista, R. Drivers and Barriers to the Adoption of Decentralised Renewable Energy Technologies: A Multi-Criteria Decision Analysis. Energy 2024, 305, 132264. [Google Scholar] [CrossRef]
- Sitorus, F.; Brito-Parada, P.R. A Multiple Criteria Decision Making Method to Weight the Sustainability Criteria of Renewable Energy Technologies under Uncertainty. Renew. Sustain. Energy Rev. 2020, 127, 109891. [Google Scholar] [CrossRef]
- Villacreses, G.; Martínez-Gómez, J.; Jijón, D.; Cordovez, M. Geolocation of Photovoltaic Farms Using Geographic Information Systems (GIS) with Multiple-Criteria Decision-Making (MCDM) Methods: Case of the Ecuadorian Energy Regulation. Energy Rep. 2022, 8, 3526–3548. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Xie, J.; Cheng, Y.; Shi, L. Hybrid Multi-Criteria Decision-Making Evaluation of Multiple Renewable Energy Systems Considering the Hysteresis Band Principle. Int. J. Hydrogen Energy 2024, 49, 450–462. [Google Scholar] [CrossRef]
- Shao, M.; Han, Z.; Sun, J.; Xiao, C.; Zhang, S.; Zhao, Y. A Review of Multi-Criteria Decision Making Applications for Renewable Energy Site Selection. Renew. Energy 2020, 157, 377–403. [Google Scholar] [CrossRef]
- Garcia Marrero, L.E.; Arzola Ruíz, J. Web-Based Tool for the Decision Making in Photovoltaic/Wind Farms Planning with Multiple Objectives. Renew. Energy 2021, 179, 2224–2234. [Google Scholar] [CrossRef]
- Tamošiūnas, A. Selecting Rooftop Solar Photovoltaic Modules by Measuring Their Attractiveness by a Categorical-Based Evaluation Technique (MACBETH): The Case of Lithuania. Energies 2023, 16, 2999. [Google Scholar] [CrossRef]
- Boumaiza, A.; Sanfilippo, A.; Mohandes, N. Modeling Multi-Criteria Decision Analysis in Residential PV Adoption. Energy Strategy Rev. 2022, 39, 100789. [Google Scholar] [CrossRef]
- Zhang, M.; Yan, Q.; Li, W.; Tang, G.; Lin, H. Sustainability Performance Assessment of Photovoltaic Coupling Storage Charging Stations with Novel Multi-Criteria Decision-Making Technique. Int. J. Electr. Power Energy Syst. 2022, 142, 108301. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, N.-A.-T.; Dang, T.-T.; Bayer, J. A Two-Stage Multiple Criteria Decision Making for Site Selection of Solar Photovoltaic (PV) Power Plant: A Case Study in Taiwan. IEEE Access 2021, 9, 75509–75525. [Google Scholar] [CrossRef]
- Cai, C.; Chen, J.; Xi, M.; Tao, Y.; Deng, Z. Multi-Objective Planning of Distributed Photovoltaic Power Generation Based on Multi-Attribute Decision Making Theory. IEEE Access 2020, 8, 223021–223029. [Google Scholar] [CrossRef]
- Marcarelli, G. Multi-Criteria Decision Making for Evaluating Healthcare Policies: The Benefit/Cost Analysis by the Analytic Hierarchy Process. Int. J. Med. Eng. Inform. 2016, 8, 163–181. [Google Scholar] [CrossRef]
- Wangjiraniran, W.; Pongthanaisawan, J.; Nakapreecha, N. Assessment on Energy Technology Toward Carbon Neutrality Policy Using Multi-Criteria Decision Analysis: A Case of Thailand. Int. J. Energy Econ. Policy 2023, 13, 320–328. [Google Scholar] [CrossRef]
- Mewenemesse, H.T.; Yan, Q.; Acouetey, P.F. Policy Analysis of Low-Carbon Energy Transition in Senegal Using a Multi-Criteria Decision Approach Based on Principal Component Analysis. Sustainability 2023, 15, 4299. [Google Scholar] [CrossRef]
- Mrówczyńska, M.; Skiba, M.; Sztubecka, M.; Bazan-Krzywoszańska, A.; Kazak, J.K.; Gajownik, P. Scenarios as a Tool Supporting Decisions in Urban Energy Policy: The Analysis Using Fuzzy Logic, Multi-Criteria Analysis and GIS Tools. Renew. Sustain. Energy Rev. 2021, 137, 110598. [Google Scholar] [CrossRef]
- Stamford, L.; Türkmen, B.A.; Cooper, J.; Azapagic, A. Multi-Criteria Decision Analysis for Energy Policy. In Routledge Handbook of Energy Economics; Routledge: London, UK, 2019; pp. 582–614. [Google Scholar]
- Browne, D.; O’Regan, B.; Moles, R. Use of Multi-Criteria Decision Analysis to Explore Alternative Domestic Energy and Electricity Policy Scenarios in an Irish City-Region. Energy 2010, 35, 518–528. [Google Scholar] [CrossRef]
- Elie, L.; Granier, C.; Rigot, S. The Different Types of Renewable Energy Finance: A Bibliometric Analysis. Energy Econ. 2021, 93, 104997. [Google Scholar] [CrossRef]
- Kemeç, A.; Altınay, A.T. Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools. Sustainability 2023, 15, 3618. [Google Scholar] [CrossRef]
- Wang, D.; Huangfu, Y.; Dong, Z.; Dong, Y. Research Hotspots and Evolution Trends of Carbon Neutrality—Visual Analysis of Bibliometrics Based on CiteSpace. Sustainability 2022, 14, 1078. [Google Scholar] [CrossRef]
- Peng, W.; Haron, N.A.; Alias, A.H.; Law, T.H. Knowledge Map of Climate Change and Transportation: A Bibliometric Analysis Based on CiteSpace. Atmosphere 2023, 14, 434. [Google Scholar] [CrossRef]
- Ziemba, P. Application Framework of Multi-Criteria Methods in Sustainability Assessment. Energies 2022, 15, 9201. [Google Scholar] [CrossRef]
- Dai, C.Y.; Zhang, X.L.; Wang, E.C.; Liu, Z.; Tang, S.L. Multi-Criteria Renewable Energy Planning Decision-Making Model Based on VIKOR. AMR 2012, 512–515, 1174–1180. [Google Scholar] [CrossRef]
- Wang, J.-J.; Jing, Y.-Y.; Zhang, C.-F.; Shi, G.-H.; Zhang, X.-T. A Fuzzy Multi-Criteria Decision-Making Model for Trigeneration System. Energy Policy 2008, 36, 3823–3832. [Google Scholar] [CrossRef]
- Scott, J.A.; Ho, W.; Dey, P.K. A Review of Multi-Criteria Decision-Making Methods for Bioenergy Systems. Energy 2012, 42, 146–156. [Google Scholar] [CrossRef]
- Neves, L.P.; Martins, A.G.; Antunes, C.H.; Dias, L.C. A Multi-Criteria Decision Approach to Sorting Actions for Promoting Energy Efficiency. Energy Policy 2008, 36, 2351–2363. [Google Scholar] [CrossRef]
- Wang, J.-J.; Jing, Y.-Y.; Zhang, C.-F.; Zhao, J.-H. Review on Multi-Criteria Decision Analysis Aid in Sustainable Energy Decision-Making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Danielson, M.; Ekenberg, L. Trade-Offs for Ordinal Ranking Methods in Multi-Criteria Decisions. In Proceedings of the Group Decision and Negotiation. Theory, Empirical Evidence, and Application, Bellingham, WA, USA, 20–24 June 2016; Bajwa, D., Koeszegi, S.T., Vetschera, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 16–27. [Google Scholar]
- Athawale, V.M.; Chakraborty, S. Material Selection Using Multi-Criteria Decision-Making Methods: A Comparative Study. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2012, 226, 266–285. [Google Scholar] [CrossRef]
- Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised Framework for Multi-Criteria Method Selection. Omega 2019, 86, 107–124. [Google Scholar] [CrossRef]
- Yatsalo, B.; Korobov, A.; Martínez, L. Fuzzy Multi-Criteria Acceptability Analysis: A New Approach to Multi-Criteria Decision Analysis under Fuzzy Environment. Expert Syst. Appl. 2017, 84, 262–271. [Google Scholar] [CrossRef]
- Raos, S.; Hranić, J.; Rajšl, I. Multi-Criteria Decision-Making Method for Evaluation of Investment in Enhanced Geothermal Systems Projects. Energy AI 2024, 17, 100390. [Google Scholar] [CrossRef]
- Akash, B.; Saad, A.H.; El-Saadawi, M. Multi-Criteria Decision Making Analysis of Optimal Service Delivery Technique Using AHP. TEM J. 2023, 12, 208–213. [Google Scholar] [CrossRef]
- Cahill, P.T.; Reitzel, M.; Anaby, D.R.; Camden, C.; Phoenix, M.; Romoff, S.; Campbell, W.N. Supporting Rehabilitation Stakeholders in Making Service Delivery Decisions: A Rapid Review of Multi-Criteria Decision Analysis Methods. Disabil. Rehabil. 2023, 45, 1933–1946. [Google Scholar] [CrossRef]
- Dean, M. Including Multiple Perspectives in Participatory Multi-Criteria Analysis: A Framework for Investigation. Evaluation 2022, 28, 505–539. [Google Scholar] [CrossRef]
- Sharma, T.; Kumar, A.; Pant, S.; Kotecha, K. Wastewater Treatment and Multi-Criteria Decision-Making Methods: A Review. IEEE Access 2023, 11, 143704–143720. [Google Scholar] [CrossRef]
- Akburak, D. Review of Fuzzy Multi-Criteria Decision Making Methods for Intelligent Supplier Selection. In Proceedings of the Intelligent and Fuzzy Systems; Kahraman, C., Tolga, A.C., Cevik Onar, S., Cebi, S., Oztaysi, B., Sari, I.U., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 655–663. [Google Scholar]
- Dagtekin, Y.; Kaya, S.; Besli, N. Distributed Energy System Selection for a Commercial Building by Using Multi Criteria Decision Making Methods. Int. J. Hydrogen Energy 2022, 47, 36672–36692. [Google Scholar] [CrossRef]
- Pinto-DelaCadena, P.A.; Liern, V.; Vinueza-Cabezas, A. A Comparative Analysis of Multi-Criteria Decision Methods for Personnel Selection: A Practical Approach. Mathematics 2024, 12, 324. [Google Scholar] [CrossRef]
- Li, Y.; He, X.; Martínez, L.; Zhang, J.; Wang, D.; Liu, X.A. Comparative Analysis of Three Categories of Multi-Criteria Decision-Making Methods. Expert Syst. Appl. 2024, 238, 121824. [Google Scholar] [CrossRef]
- Wątróbski, J.; Bączkiewicz, A.; Sałabun, W. New Multi-Criteria Method for Evaluation of Sustainable RES Management. Appl. Energy 2022, 324, 119695. [Google Scholar] [CrossRef]
- Rashidi, F.; Sharifian, S. A Comparative Analysis of Three Multi-Criteria Decision-Making Methods for Land Suitability Assessment. Environ. Monit. Assess 2022, 194, 657. [Google Scholar] [CrossRef]
- Di Grazia, S.; Tina, G.M. Optimal Site Selection for Floating Photovoltaic Systems Based on Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA): A Case Study. Int. J. Sustain. Energy 2024, 43, 2167999. [Google Scholar] [CrossRef]
- Hani, H.M.; Nour El Din, M.M.; Khalifa, A.; Elalfy, E. Sensitivity Analysis for Multi-Criteria Decision Analysis Framework for Site Selection of Aquifer Recharge with Reclaimed Water. Sustainability 2023, 15, 5399. [Google Scholar] [CrossRef]
- Şimşek, K.; Alp, S. Evaluation of Landfill Site Selection by Combining Fuzzy Tools in GIS-Based Multi-Criteria Decision Analysis: A Case Study in Diyarbakır, Turkey. Sustainability 2022, 14, 9810. [Google Scholar] [CrossRef]
- Iweh, C.D.; Semassou, G.C.; Ahouansou, R.H. Optimum Site Selection of Hybrid Solar Photovoltaic (PV)—Hydro Power Plants in off Grid Locations in Cameroon Using the Multi-Criteria Decision Analysis (MCDA). Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 8076–8091. [Google Scholar] [CrossRef]
- Lim, Y.J.; Afifah Basri, N. Sites Selection for a Potential Radioactive Waste Repository in Peninsular Malaysia: GIS-Based Weight Linear Combination and Multi-Criteria Decision-Making Analysis. Prog. Nucl. Energy 2022, 149, 104252. [Google Scholar] [CrossRef]
- Vasileiou, M.; Loukogeorgaki, E.; Vagiona, D.G. GIS-Based Multi-Criteria Decision Analysis for Site Selection of Hybrid Offshore Wind and Wave Energy Systems in Greece. Renew. Sustain. Energy Rev. 2017, 73, 745–757. [Google Scholar] [CrossRef]
- Elmahmoudi, F.; Abra, O.E.; Serrar, O.; Raihani, A.; Bahatti, L.; Rafik, M. GIS Based Multi-Criteria Decision Analysis for Renewable Energy Sites Selection: Comparative Study. In Proceedings of the 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 5–8 December 2018. [Google Scholar]
- Shorabeh, S.N.; Firozjaei, M.K.; Nematollahi, O.; Firozjaei, H.K.; Jelokhani-Niaraki, M. A Risk-Based Multi-Criteria Spatial Decision Analysis for Solar Power Plant Site Selection in Different Climates: A Case Study in Iran. Renew. Energy 2019, 143, 958–973. [Google Scholar] [CrossRef]
- Tian, Z.; Liang, H.; Nie, R.; Wang, X.; Wang, J. Data-Driven Multi-Criteria Decision Support Method for Electric Vehicle Selection. Comput. Ind. Eng. 2023, 177, 109061. [Google Scholar] [CrossRef]
- Potomkin, M.M.; Sedliar, A.A.; Sirchenko, R.S.; Ishchenko, O.M. Fuzzy Complex Ranking Method and Its Use for Multi-Criteria Comparison of Alternatives. Cybern. Syst. Anal. 2022, 58, 392–398. [Google Scholar] [CrossRef]
- Xu, Y.-Q.; Jin, L.-S.; Chen, Z.-S.; Yager, R.R.; Špirková, J.; Kalina, M.; Borkotokey, S. Weight Vector Generation in Multi-Criteria Decision-Making with Basic Uncertain Information. Mathematics 2022, 10, 572. [Google Scholar] [CrossRef]
- Ponce, D.; Aguila Téllez, A.; Krishnan, N. Optimal Selection of Conductors in Distribution System Designs Using Multi-Criteria Decision. Energies 2023, 16, 7167. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill International Book Company: New York, NY, USA, 1980; ISBN 978-0-07-054371-3. [Google Scholar]
- Dhurkari, R.K. Strategic Pricing Decision Using the Analytic Hierarchy Process. J. Revenue Pricing Manag. 2023, 22, 85–100. [Google Scholar] [CrossRef]
- Tu, J.; Wu, Z. Analytic Hierarchy Process Rank Reversals: Causes and Solutions. Ann. Oper. Res. 2023, 1–25. [Google Scholar] [CrossRef]
- Ge, W.; Wei, Q.; Hong, W.; Wu, Y.; Li, C. Communication Network Selection for Distribution Network Based on Analytic Hierarchy Process. In Proceedings of the 2023 IEEE 3rd International Conference in Power Engineering Applications (ICPEA), Putrajaya, Malaysia, 6–7 March 2023; pp. 151–155. [Google Scholar]
- Zhang, L.; Li, D.; Chen, L.; Ma, Y. Power Transformer Overload Risk Evaluation Based on Temperature Rise Simulation and Fuzzy Analytic Hierarchy Process. J. Phys. Conf. Ser. 2023, 2422, 012012. [Google Scholar] [CrossRef]
- de Alcântara Dias, B.M.; da Silva, C.T.; Araújo, R.E.; de Castro, R.; Pellini, E.L.; Pinto, C.; Laganá, A.A.M. An Analytic Hierarchy Process for Selecting Battery Equalization Methods. Energies 2022, 15, 2439. [Google Scholar] [CrossRef]
- Han, Z.; Ge, Y.; Dong, H.; Wang, L.; Sun, T. Multi-Dimensional Value Evaluation for Power-to-Hydrogen Technology Based on Fuzzy Analytic Hierarchy Process. Energy Rep. 2023, 9, 478–484. [Google Scholar] [CrossRef]
- Ahadi, P.; Fakhrabadi, F.; Pourshaghaghy, A.; Kowsary, F. Optimal Site Selection for a Solar Power Plant in Iran via the Analytic Hierarchy Process (AHP). Renew. Energy 2023, 215, 118944. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Zhang, X.; Zhao, J.; Huang, Y.; Wang, Z.; Yi, Y. Distribution of Geothermal Resources in Eryuan County Based on Entropy Weight TOPSIS and AHP-TOPSIS Methods. Nat. Gas Ind. B 2024, 11, 213–226. [Google Scholar] [CrossRef]
- Kalita, K.; Pal, S.; Haldar, S.; Chakraborty, S. A Hybrid TOPSIS-PR-GWO Approach for Multi-Objective Process Parameter Optimization. Process. Integr. Optim. Sustain. 2022, 6, 1011–1026. [Google Scholar] [CrossRef]
- Tan, W.; Ge, Y.; Chen, B.; Ding, J.; Luo, X.; Lin, Z.; Qiu, W.; Lin, Z. Gaussian Cloud and TOPSIS Based Power Supply Quality Evaluation Method. Energy Rep. 2022, 8, 377–384. [Google Scholar] [CrossRef]
- Ilham, N.I.; Dahlan, N.Y.; Hussin, M.Z. Optimizing Solar PV Investments: A Comprehensive Decision-Making Index Using CRITIC and TOPSIS. Renew. Energy Focus 2024, 49, 100551. [Google Scholar] [CrossRef]
- Xing, Y.; Lien, F.-S.; Melek, W.; Yee, E. A Multi-Hour Ahead Wind Power Forecasting System Based on a WRF-TOPSIS-ANFIS Model. Energies 2022, 15, 5472. [Google Scholar] [CrossRef]
- Du, X.; Wang, Y.; Chen, F. Evaluation of Coal-Resource-Based Cities Transformation Based on CRITIC-TOPSIS Model. Sustain. Cities Soc. 2024, 103, 105271. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Liu, H.; Chen, X.; Yan, Z.; Li, D.; Liu, C.; Wang, J. Evaluation of the Maturity of Urban Energy Internet Development Based on AHP-Entropy Weight Method and Improved TOPSIS. Energies 2023, 16, 5151. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Z.; Wang, Y.; Fan, G.; Zhang, J. Suitability Evaluation System for the Shallow Geothermal Energy Implementation in Region by Entropy Weight Method and TOPSIS Method. Renew. Energy 2022, 184, 564–576. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Zhao, S.; Fan, L.; Xin, C.; Jiang, X.; Yao, F. Benefit Evaluation of Carbon Reduction in Power Transmission and Transformation Projects Based on the Modified TOPSIS-RSR Method. Energies 2024, 17, 2988. [Google Scholar] [CrossRef]
- Ponce, P.; Pérez, C.; Fayek, A.R.; Molina, A. Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework. Energies 2022, 15, 8838. [Google Scholar] [CrossRef]
- Shafiee, M. Wind Energy Development Site Selection Using an Integrated Fuzzy ANP-TOPSIS Decision Model. Energies 2022, 15, 4289. [Google Scholar] [CrossRef]
- Arredondo-Galeana, A.; Yeter, B.; Abad, F.; Ordóñez-Sánchez, S.; Lotfian, S.; Brennan, F. Material Selection Framework for Lift-Based Wave Energy Converters Using Fuzzy TOPSIS. Energies 2023, 16, 7324. [Google Scholar] [CrossRef]
- Baseer, M.; Ghiaus, C.; Viala, R.; Gauthier, N.; Daniel, S. pELECTRE-Tri: Probabilistic ELECTRE-Tri Method—Application for the Energy Renovation of Buildings. Energies 2023, 16, 5296. [Google Scholar] [CrossRef]
- Seyed Alavi, S.M.; Maleki, A.; Noroozian, A.; Khaleghi, A. Simultaneous Optimal Site Selection and Sizing of a Grid-Independent Hybrid Wind/Hydrogen System Using a Hybrid Optimization Method Based on ELECTRE: A Case Study in Iran. Int. J. Hydrogen Energy 2024, 55, 970–983. [Google Scholar] [CrossRef]
- Mao, Q.; Fan, J.; Lv, J.; Gao, Y.; Chen, J.; Guo, M. A Decision Framework of Offshore Photovoltaic Power Station Site Selection Based on Pythagorean Fuzzy ELECTRE-III Method. J. Renew. Sustain. Energy 2024, 16, 023502. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Hung, K.-C.; Lin, K.-P.; Hon, J.-S.; Chiu, A.S.F. Improved ELECTRE II Sustainability Assessment Framework in Power Generation Technological Evaluation. IFS 2022, 43, 6405–6418. [Google Scholar] [CrossRef]
- Akram, M.; Zahid, K.; Deveci, M. Multi-Criteria Group Decision-Making for Optimal Management of Water Supply with Fuzzy ELECTRE-Based Outranking Method. Appl. Soft Comput. 2023, 143, 110403. [Google Scholar] [CrossRef]
- Milojkovic, I.; Prascevic, N. Project Management Using the Developed AHP–VIKOR Method with the Fuzzy Approach. Water Sci. Technol. 2024, 90, wst2024204. [Google Scholar] [CrossRef]
- Tian, S.; Zhou, Y.; Fu, Y.; Ji, L.; Li, Z. Comprehensive Cost-Benefit Assessment of Offshore Wind Power Based on Improved VIKOR Method. In Proceedings of the 2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Chongqing, China, 7–9 July 2023; pp. 1268–1273. [Google Scholar]
- Sotoudeh-Anvari, A.; Sadi-Nezhad, S. A Hybrid Model Based on Fuzzy VIKOR and the Classical Optimal Search to Detect Illegal Chemical Warehouses. J. Environ. Sci. Health Part A 2022, 57, 229–241. [Google Scholar] [CrossRef]
- ul Amin, F.; Dong, Q.-L.; Grzybowska, K.; Ahmed, Z.; Yan, B.-R. A Novel Fuzzy-Based VIKOR–CRITIC Soft Computing Method for Evaluation of Sustainable Supply Chain Risk Management. Sustainability 2022, 14, 2827. [Google Scholar] [CrossRef]
- Ren, D.; Liu, L.; Gong, X.; Jiang, P.; Liu, S.; Yang, Y.; Jin, R. Effect Evaluation of Ecological Compensation for Strategic Mineral Resources Exploitation Based on VIKOR-AISM Model. Sustainability 2022, 14, 15969. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Fu, K.; Sun, X.; Hou, S.; Tan, Y. Comprehensive Evaluation of Urban Water Supply Security Based on the VIKOR-TOPSIS Method. Environ. Sci. Pollut. Res. 2023, 30, 8363–8375. [Google Scholar] [CrossRef] [PubMed]
- Mahmudah, R.S.N.; Putri, D.I.; Abdullah, A.G.; Shafii, M.A.; Hakim, D.L.; Setiadipura, T. Developing a Multi-Criteria Decision-Making Model for Nuclear Power Plant Location Selection Using Fuzzy Analytic Hierarchy Process and Fuzzy VIKOR Methods Focused on Socio-Economic Factors. Clean. Eng. Technol. 2024, 19, 100737. [Google Scholar] [CrossRef]
- Peleckis, K. Application of the Fuzzy VIKOR Method to Assess Concentration and Its Effects on Competition in the Energy Sector. Energies 2022, 15, 1349. [Google Scholar] [CrossRef]
- Chaube, S.; Pant, S.; Kumar, A.; Uniyal, S.; Singh, M.K.; Kotecha, K.; Kumar, A. An Overview of Multi-Criteria Decision Analysis and the Applications of AHP and TOPSIS Methods. Int. J. Math. Eng. Manag. Sci. 2024, 9, 581–615. [Google Scholar] [CrossRef]
- Liao, H.; Wang, J.; Tang, M.; Al-Barakati, A. An Overview of Interval Analysis Techniques and Their Fuzzy Extensions in Multi-Criteria Decision-Making: What’s Going on and What’s Next? Int. J. Fuzzy Syst. 2023, 25, 2081–2108. [Google Scholar] [CrossRef]
- Lin, R.; Ren, J. Overview of Multi-Criteria Decision Analysis and Its Applications on Energy Systems. Green Energy Technol. 2021, 2, 1–26. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, F.; Zhang, F.; Jiang, C.; Lin, J.; Xie, S.; Jing, R.; Zhao, Y. An Integrated Multi-Objective Optimization, Evaluation, and Decision-Making Method for Ship Energy System. Appl. Energy 2024, 373, 123917. [Google Scholar] [CrossRef]
- Wu, L.; Hou, Z.; Luo, Z.; Fang, Y.; Mao, J.; Qin, N.; Guo, Y.; Zhang, T.; Cai, N. Site Selection for Underground Bio-Methanation of Hydrogen and Carbon Dioxide Using an Integrated Multi-Criteria Decision-Making (MCDM) Approach. Energy 2024, 306, 132437. [Google Scholar] [CrossRef]
- Gurusamy, A.; Ashok, B.; Alsaif, F.; Suresh, V. Multifaceted Multi-Criteria Decision Making Framework to Prioritise the Electric Two-Wheelers Based on Standard and Regional Driving Cycles. Energy 2024, 305, 132401. [Google Scholar] [CrossRef]
- Desouki, M.; Madkour, M.; Abdeen, A.; Elboshy, B. Multicriteria Decision-Making Tool for Investigating the Feasibility of the Green Roof Systems in Egypt. Sustain. Environ. Res. 2024, 34, 2. [Google Scholar] [CrossRef]
- Lv, H.; Wu, Q.; Ren, H.; Li, Q.; Zhou, W. A Two-Stage Decision-Making Approach for Optimal Design and Operation of Integrated Energy Systems Considering Multiple Uncertainties and Diverse Resilience Needs. Energy 2024, 305, 132375. [Google Scholar] [CrossRef]
- Nooman AlMallahi, M.; Al Abdallah, H.; Abu-Jdayil, B.; Elgendi, M. Enhancing Evaporation Using Proposed Biomass-Derived Insulation with Holistic Decision-Making. Appl. Therm. Eng. 2024, 253, 123662. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, X. Sustainability Assessment of Cities Using Multicriteria Decision-Making Combined with Deep Learning Methods. Sustain. Cities Soc. 2024, 111, 105571. [Google Scholar] [CrossRef]
- Lin, L.; Ou, K.; Lin, Q.; Xing, J.; Wang, Y.-X. Two-Stage Multi-Strategy Decision-Making Framework for Capacity Configuration Optimization of Grid-Connected PV/Battery/Hydrogen Integrated Energy System. J. Energy Storage 2024, 97, 112862. [Google Scholar] [CrossRef]
- Biju, H.; Mukthar, K.P.J.; Dhia, A.; Selvaratnam, D.P.; Singh, S.K.; Singh, J.K. A Bibliometric Analysis of Financial Technology: Unveiling the Landscape of a Rapidly Evolving Field. Discov. Sustain. 2024, 5, 72. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, H.; Kong, J.; Wang, J.; Ji, W.; Wei, Z.; Yao, X.; Wang, X. Exploring Hydrogen Storage Safety Research by Bibliometric Analysis. Int. J. Hydrogen Energy 2024, 81, 27–39. [Google Scholar] [CrossRef]
- Zhang, Y.; You, X.; Huang, S.; Wang, M.; Dong, J. Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands—A Bibliometric Analysis Based on CiteSpace. Sustainability 2022, 14, 8288. [Google Scholar] [CrossRef]
- Singh, A.; Kanaujia, A.; Singh, V.K.; Vinuesa, R. Artificial Intelligence for Sustainable Development Goals: Bibliometric Patterns and Concept Evolution Trajectories. Sustain. Dev. 2024, 32, 724–754. [Google Scholar] [CrossRef]
- Kut, P.; Pietrucha-Urbanik, K. Most Searched Topics in the Scientific Literature on Failures in Photovoltaic Installations. Energies 2022, 15, 8108. [Google Scholar] [CrossRef]
- Buri, Z.; Sipos, C.; Szűcs, E.; Máté, D. Smart and Sustainable Energy Consumption: A Bibliometric Review and Visualization. Energies 2024, 17, 3336. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J.; Nazarko, Ł.; Rabayah, H.S. Solar Radiation Forecasting: A Systematic Meta-Review of Current Methods and Emerging Trends. Energies 2024, 17, 3156. [Google Scholar] [CrossRef]
- Ahlborg, H.; Michael, K.; Unsworth, S.J.; Hategekimana, S.; Osunmuyiwa, O.; Åberg, A.; Hultman, M. Thirty-Five Years of Research on Energy and Power: A Landscape Analysis. Renew. Sustain. Energy Rev. 2024, 199, 114542. [Google Scholar] [CrossRef]
- Yan, K.; Gao, H.; Liu, R.; Lyu, Y.; Wan, M.; Tian, J.; Chen, L. Review on Low-Carbon Development in Chinese Industrial Parks Driven by Bioeconomy Strategies. Renew. Sustain. Energy Rev. 2024, 199, 114541. [Google Scholar] [CrossRef]
- Parra, J.F.; Olaya, Y.; Arango-Aramburo, S. Perspective on the Human Dimension in Energy Modelling: Structural Analysis. Renew. Sustain. Energy Rev. 2024, 199, 114526. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Odoi-Yorke, F.; Abbey, A.A.; Ayetor, G.K. A Review of the Trends, Evolution, and Future Research Prospects of Hydrogen Fuel Cells—A Focus on Vehicles. Int. J. Hydrogen Energy 2024, 72, 918–939. [Google Scholar] [CrossRef]
- Goncharova, M.; Sokolova, E. Scientific Review of Climate Science: A Bibliometric Analysis of Trends. E3S Web Conf. 2024, 542, 04008. [Google Scholar] [CrossRef]
- Oommen, J.G.; Roy, N.S.; Brittoraj, R.D. Exploring the Landscape of Energy Audits: A Bibliometric Analysis. Int. J. Energy Econ. Policy 2024, 14, 31–36. [Google Scholar] [CrossRef]
- García-Lillo, F.; Sánchez-García, E.; Marco-Lajara, B.; Seva-Larrosa, P. Renewable Energies and Sustainable Development: A Bibliometric Overview. Energies 2023, 16, 1211. [Google Scholar] [CrossRef]
- Özköse, H. Bibliometric Analysis and Scientific Mapping of IoT. J. Comput. Inf. Syst. 2023, 63, 1438–1459. [Google Scholar] [CrossRef]
- Mehraj, N.; Mateu, C.; Cabeza, L.F. Use of Artificial Intelligence Methods in Designing Thermal Energy Storage Tanks: A Bibliometric Analysis. J. Energy Storage 2024, 97, 112794. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Amin, M.B. Circular Economy and Sustainable Practices in the Food Industry: A Comprehensive Bibliometric Analysis. Clean. Responsible Consum. 2024, 14, 100206. [Google Scholar] [CrossRef]
- Favacho, V.S.S.; Melo, D.M.A.; Costa, J.E.L.; Silva, Y.K.R.O.; Braga, R.M.; Medeiros, R.L.B.A. Perovskites Synthesized by Soft Template-Assisted Hydrothermal Method: A Bibliometric Analysis and New Insights. Int. J. Hydrogen Energy 2024, 78, 1391–1428. [Google Scholar] [CrossRef]
- Silva, T.C.; Braz, T.; Tabak, B.M. Mapping the Landscape of Energy Markets Research: A Bibliometric Analysis and Predictive Assessment Using Machine Learning. Energy Econ. 2024, 136, 107698. [Google Scholar] [CrossRef]
- Tripathy, P.; Jena, P.K.; Mishra, B.R. Systematic Literature Review and Bibliometric Analysis of Energy Efficiency. Renew. Sustain. Energy Rev. 2024, 200, 114583. [Google Scholar] [CrossRef]
- Tahir, H. Optimization of Energy Storage Systems for Integration of Renewable Energy Sources—A Bibliometric Analysis. J. Energy Storage 2024, 94, 112497. [Google Scholar] [CrossRef]
- Demarema, S.; Nasr, M.; Ookawara, S.; Abdelhaleem, A. New Insights into Green Synthesis of Metal Oxide Based Photocatalysts for Photodegradation of Organic Pollutants: A Bibliometric Analysis and Techno-Economic Evaluation. J. Clean. Prod. 2024, 463, 142679. [Google Scholar] [CrossRef]
- Tan, L.; Liu, F.; Dai, S.; Yao, J. A Bibliometric Analysis of Two-Decade Research Efforts in Turning Natural Gas Hydrates into Energy. Energy 2024, 299, 131440. [Google Scholar] [CrossRef]
- Tanrivermis, H.; Salami, M.A.; Tanrivermis, Y. Technological Advancement Applications in the Real Estate and Construction Industry: Bibliometric Analysis. E3S Web Conf. 2024, 535, 01011. [Google Scholar] [CrossRef]
- Wiecek, M.M.; Ehrgott, M.; Fadel, G.; Rui Figueira, J. Multiple Criteria Decision Making for Engineering. Omega 2008, 36, 337–339. [Google Scholar] [CrossRef]
- Gatdula, N.; Blanco, A. Assessment of the Vulnerability of Coastal Agriculture to Seawater Intrusion Using Remote Sensing, GIS, and Multi-Criteria Decision Analysis. Int. J. Digit. Earth 2024, 17, 2367733. [Google Scholar] [CrossRef]
- Can, G.; Kocabaldır, C.; Yücel, M.A. Spatial Multi-Criteria Decision Analysis for Site Selection of Wind Power Plants: A Case Study. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 4012–4028. [Google Scholar] [CrossRef]
- Liu, B.; Fang, H.; Qin, X.; Zhang, F.; Li, J. An Integrated Multi-Criteria Analysis Framework of Built Reservoir with Dam-Heightening-Based Decision: China’s Largest Water Transfer Programs for Sustainable Development. Sustain. Dev. 2023, 31, 540–554. [Google Scholar] [CrossRef]
- Pinto, M.C.; Crespi, G.; Dell’Anna, F.; Becchio, C. Combining Energy Dynamic Simulation and Multi-Criteria Analysis for Supporting Investment Decisions on Smart Shading Devices in Office Buildings. Appl. Energy 2023, 332, 120470. [Google Scholar] [CrossRef]
- Zheng, T.; Jiang, T.; Huang, Z.; Wang, M. Knowledge Domain and Trend of Disease-Modifying Therapies for Multiple Sclerosis: A Study Based on CiteSpace. Heliyon 2024, 10, e26173. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Searching for Intellectual Turning Points: Progressive Knowledge Domain Visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The Structure and Dynamics of Cocitation Clusters: A Multiple-Perspective Cocitation Analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef]
- Chen, C. Predictive Effects of Structural Variation on Citation Counts. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 431–449. [Google Scholar] [CrossRef]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef]
- Chen, C.; Song, M. Visualizing a Field of Research: A Methodology of Systematic Scientometric Reviews. PLoS ONE 2019, 14, e0223994. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, Y.; Li, J.; Ali Asad, M.W.; Chang, P. A Visual Knowledge Map Analysis of Coal Mine Intensity Based on CiteSpace Software and Web of Science Core Database. Int. J. Min. Reclam. Environ. 2024, 1–18. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Chen, K.; Liu, M. Research Progress and Hotspot Analysis of Residential Carbon Emissions Based on CiteSpace Software. Int. J. Environ. Res. Public Health 2023, 20, 1706. [Google Scholar] [CrossRef]
- Zhu, A.; Yang, X.; Cui, D. Using CiteSpace Knowledge Information Visualization Software in the Visual Analysis of the Law Research: Set Juvenile Sexual Assault as an Example. IOP Conf. Ser. Earth Environ. Sci. 2021, 742, 012008. [Google Scholar] [CrossRef]
- Cao, M.; Li, Y.; Gou, Y.-X.; Huang, Y.-F. Knowledge Mapping Analysis of Antibiotics in Soil Research Based on the CiteSpace Software. J. Agric. Resour. Environ. 2020, 37, 627–635. [Google Scholar] [CrossRef]
- Chen, C. Visualizing and Exploring Scientific Literature with CiteSpace: An Introduction. In Proceedings of the 2018 Conference on Human Information Interaction&Retrieval—CHIIR ’18, New Brunswick, NJ, USA, 11–15 March 2018; ACM Press: New Brunswick, NJ, USA, 2018; pp. 369–370. [Google Scholar]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging Trends in Regenerative Medicine: A Scientometric Analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef]
- Geng, Y.; Zhu, R.; Maimaituerxun, M. Bibliometric Review of Carbon Neutrality with CiteSpace: Evolution, Trends, and Framework. Environ. Sci. Pollut. Res. 2022, 29, 76668–76686. [Google Scholar] [CrossRef]
- Kut, P.; Pietrucha-Urbanik, K.; Zeleňáková, M. Assessing the Role of Hydrogen in Sustainable Energy Futures: A Comprehensive Bibliometric Analysis of Research and International Collaborations in Energy and Environmental Engineering. Energies 2024, 17, 1862. [Google Scholar] [CrossRef]
- Rezaei, J. Best-Worst Multi-Criteria Decision-Making Method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A. Solar PV Power Plant Site Selection Using a GIS-AHP Based Approach with Application in Saudi Arabia. Appl. Energy 2017, 206, 1225–1240. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Odigie, O.; Munda, J.L. A Multi-Criteria GIS Based Model for Wind Farm Site Selection Using Interval Type-2 Fuzzy Analytic Hierarchy Process: The Case Study of Nigeria. Appl. Energy 2018, 228, 1853–1869. [Google Scholar] [CrossRef]
- Ali, S.; Taweekun, J.; Techato, K.; Waewsak, J.; Gyawali, S. GIS Based Site Suitability Assessment for Wind and Solar Farms in Songkhla, Thailand. Renew. Energy 2019, 132, 1360–1372. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; Volume 186, ISBN 978-3-540-10558-9. [Google Scholar]
- Colak, H.E.; Memisoglu, T.; Gercek, Y. Optimal Site Selection for Solar Photovoltaic (PV) Power Plants Using GIS and AHP: A Case Study of Malatya Province, Turkey. Renew. Energy 2020, 149, 565–576. [Google Scholar] [CrossRef]
- Kahraman, C.; Kaya, İ.; Cebi, S. A Comparative Analysis for Multiattribute Selection among Renewable Energy Alternatives Using Fuzzy Axiomatic Design and Fuzzy Analytic Hierarchy Process. Energy 2009, 34, 1603–1616. [Google Scholar] [CrossRef]
- Lee, H.-C.; Chang, C.-T. Comparative Analysis of MCDM Methods for Ranking Renewable Energy Sources in Taiwan. Renew. Sustain. Energy Rev. 2018, 92, 883–896. [Google Scholar] [CrossRef]
- Karbasi Ahvazi, A.; Ebadi, T.; Zarghami, M.; Hashemi, S.H. Application of Multi-Criteria Group Decision-Making for Water Quality Management. Environ. Monit. Assess. 2024, 196. [Google Scholar] [CrossRef] [PubMed]
- Hokkanen, J.; Salminen, P. Choosing a Solid Waste Management System Using Multicriteria Decision Analysis. Eur. J. Oper. Res. 1997, 98, 19–36. [Google Scholar] [CrossRef]
- Jatin; Kaur, S.; Goel, P.; Randhawa, K.S.; Channi, H.K. Selection of Water Purifier with TOPSIS Using Impartial Preferences by Entropy Technique. Mater. Today Proc. 2022, 50, 1389–1396. [Google Scholar] [CrossRef]
- Demir, G.; Riaz, M.; Deveci, M. Wind Farm Site Selection Using Geographic Information System and Fuzzy Decision Making Model. Expert Syst. Appl. 2024, 255, 124772. [Google Scholar] [CrossRef]
- Li, X.; Xu, L.; Cai, J.; Peng, C.; Bian, X. Offshore Wind Turbine Selection with Multi-Criteria Decision-Making Techniques Involving D Numbers and Squeeze Adversarial Interpretive Structural Modeling Method. Appl. Energy 2024, 368, 123381. [Google Scholar] [CrossRef]
- Yousefi, H.; Moradi, S.; Zahedi, R.; Ranjbar, Z. Developed Analytic Hierarchy Process and Multi Criteria Decision Support System for Wind Farm Site Selection Using GIS: A Regional-Scale Application with Environmental Responsibility. Energy Convers. Manag. X 2024, 22, 100594. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, N.-A.-T.; Dang, T.-T. Offshore Wind Power Station (OWPS) Site Selection Using a Two-Stage MCDM-Based Spherical Fuzzy Set Approach. Sci. Rep. 2022, 12, 4260. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.N.; Ly, T.T.B.; Do, H.T.T. A Hybrid Approach of Wind Farm Site Selection Using Group Best-Worst Method and GIS-Based Fuzzy Logic Relations. A Case Study in Vietnam. Environ. Qual. Manag. 2022, 32, 251–267. [Google Scholar] [CrossRef]
- Rekik, S.; Alimi, S.E. Land Suitability Mapping for Large-Scale Solar PV Farms in Tunisia Using GIS-Based MCDM Approach. In Proceedings of the 2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE), Sousse, Tunisia, 12–14 October 2023. [Google Scholar]
- Bandira, P.N.A.; Tan, M.L.; Teh, S.Y.; Samat, N.; Shaharudin, S.M.; Mahamud, M.A.; Tangang, F.; Juneng, L.; Chung, J.X.; Samsudin, M.S. Optimal Solar Farm Site Selection in the George Town Conurbation Using GIS-Based Multi-Criteria Decision Making (MCDM) and NASA POWER Data. Atmosphere 2022, 13, 2105. [Google Scholar] [CrossRef]
- Rahimi, M.; Thanh, H.V.; Ebrahimzade, I.; Abbaspour-Fard, M.H.; Rohani, A. A Multi-Criteria Decision-Making (MCDM) Approach to Determine the Synthesizing Routes of Biomass-Based Carbon Electrode Material in Supercapacitors. J. Clean. Prod. 2023, 397, 136606. [Google Scholar] [CrossRef]
- Díaz-Cuevas, P.; Domínguez-Bravo, J.; Prieto-Campos, A. Integrating MCDM and GIS for Renewable Energy Spatial Models: Assessing the Individual and Combined Potential for Wind, Solar and Biomass Energy in Southern Spain. Clean Technol. Environ. Policy 2019, 21, 1855–1869. [Google Scholar] [CrossRef]
- Ali, S.; Waewsak, J. GIS-MCDM Approach to Scrutinize the Suitable Sites for a Biomass Power Plant in Southernmost Provinces of Thailand. IOP Conf. Ser. Earth Environ. Sci. 2019, 265, 012021. [Google Scholar] [CrossRef]
- Chen, C.-T.; Ova, A.; Hung, W.-Z. An MCDM Method with Dynamic Weights for Investment Project Selection. Econ. Comput. Econ. Cybern. Stud. Res. 2024, 58, 116–131. [Google Scholar] [CrossRef]
- Santos, P.A.S.; Cortez, B.; Carvalho, M.T.M. Integrating GIS and BIM with MCDM for Infrastructure Planning: A Comprehensive Framework. Eng. Constr. Archit. Manag. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Gebre, S.L.; Cattrysse, D.; Van Orshoven, J. Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic Review. Water 2021, 13, 125. [Google Scholar] [CrossRef]
- Lim, F.H.; Lee, W.K.; Ishak, A.M.; Hasan, A.A.; Khor, J.W.S.; Ahmad Sulaiman, M.N.I.; Ishak, A.F.; Liew, J. Multi-Criteria Evaluation for Long-Term Water Resources Augmentation Planning with Consideration of Global Change. Environ. Adv. 2023, 12, 100375. [Google Scholar] [CrossRef]
- Cetinkaya, C.P.; Gunacti, M.C. Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin. Water Resour Manag. 2018, 32, 2867–2884. [Google Scholar] [CrossRef]
- Paul, A.; Shukla, N.; Paul, S.K.; Trianni, A. Sustainable Supply Chain Management and Multi-Criteria Decision-Making Methods: A Systematic Review. Sustainability 2021, 13, 7104. [Google Scholar] [CrossRef]
- Mazumdar, N.; Kumar Sharma, J.; Navruzbek Shavkatovich, S.; Uike, D.; Kadam, S.; Verma, M.; Jaber Alam, M.; sharma, A.; Thakur, A.; Saleh Al Ansari, M. Application of Distinct Multi Criteria Decision Analysis Techniques in the Manufacturing Sector: A Comprehensive Review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Wang, C.-N.; Tsai, H.-T.; Ho, T.-P.; Nguyen, V.-T.; Huang, Y.-F. Multi-Criteria Decision Making (MCDM) Model for Supplier Evaluation and Selection for Oil Production Projects in Vietnam. Processes 2020, 8, 134. [Google Scholar] [CrossRef]
- Dziadosz, A.; Rejment, M. Risk Analysis in Construction Project—Chosen Methods. Procedia Eng. 2015, 122, 258–265. [Google Scholar] [CrossRef]
- Yazdani Chamzini, A.; Haji Yakhchali, S.; Mahmoodian, M. Risk Ranking of Tunnel Construction Projects by Using the ELECTRE Technique under a Fuzzy Environment. Int. J. Manag. Sci. Eng. Manag. 2013, 8, 783185. [Google Scholar] [CrossRef]
Country | Number of Publications | Centrality |
---|---|---|
England | 249 | 0.22 |
USA | 494 | 0.18 |
China | 1825 | 0.11 |
India | 389 | 0.09 |
Germany | 145 | 0.08 |
Spain | 159 | 0.07 |
Japan | 94 | 0.07 |
Iran | 467 | 0.06 |
Turkey | 252 | 0.06 |
Italy | 195 | 0.06 |
Country | Number of Publications | Centrality |
---|---|---|
Azad University | 107 | 0.10 |
Chinese Academy of Sciences | 92 | 0.09 |
Indian Institute of Technology | 104 | 0.08 |
Centre National de la Recherche Scientifique | 48 | 0.08 |
University of Teheran | 101 | 0.07 |
Hong Kong Polytechnic University | 69 | 0.07 |
United States Department of Energy | 41 | 0.07 |
Aalborg University | 40 | 0.07 |
North China Electric Power University | 219 | 0.05 |
Chongqing University | 57 | 0.05 |
Cluster ID | Silhouette Value | Cluster Label | Most Cited Members |
---|---|---|---|
#0 | 0.829 | Economic analysis | Islamic Azad University, University of Tehran, Delft University of Technology |
#1 | 0.759 | Hydrogen energy technologies | State Grid Corporation of China, Tianjin University, China University of Petroleum |
#2 | 0.860 | Sustainable power heat | National Institute of Technology (NIT System), Egyptian Knowledge Bank (EKB), Aalborg University |
#3 | 0.844 | Life cycle perspective | Chinese Academy of Sciences, Hong Kong Polytechnic University, Chongqing University |
#4 | 0.958 | Pyrolytic decomposition | Centre National de la Recherche Scientifique (CNRS) Shanghai Jiao Tong University, Shandong University |
#5 | 0.909 | Hydrocarbon fuel releases | Indian Institute of Technology System (IIT System), China University of Mining & Technology, University of British Columbia |
#6 | 0.928 | Three-way decision approach | North China Electric Power University, Huazhong University of Science & Technology, Beijing Institute of Technology |
#7 | 0.985 | Polycyclic aromatic hydrocarbon formation | United States Department of Energy (DOE), University of California System, State University System of Florida |
#8 | 0.959 | Sustainable energy optimization | Universidade de Lisboa, Polytechnic University of Milan, Helmholtz Association |
#9 | 0.996 | Electric car | University of Szczecin, West Pomeranian University of Technology, National Institute of Telecommunications–Poland |
#11 | 0.983 | Intuitionistic fuzzy MCDM-based CODAS approach | Istanbul Technical University, Yildiz Technical University, Galatasaray University |
#13 | 0.938 | Support tool | Universitat Politecnica de Valencia, Consejo Superior de Investigaciones Cientificas (CSIC), Cranfield University |
Journal | Journal Impact Factor | Centrality |
---|---|---|
Fuel | 7.4 | 0.12 |
European Journal of Operational Research | 6.4 | 0.07 |
Energy | 9.0 | 0.06 |
Energy & Fuels | 5.3 | 0.05 |
Renewable and Sustainable Energy Reviews | 15.9 | 0.04 |
Journal of Cleaner Production | 11.1 | 0.04 |
Energy Conversion and Management | 10.4 | 0.04 |
Energy Policy | 9.0 | 0.04 |
Progress in Energy and Combustion Science | 29.5 | 0.04 |
Applied Energy | 11.2 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kut, P.; Pietrucha-Urbanik, K. Bibliometric Analysis of Multi-Criteria Decision-Making (MCDM) Methods in Environmental and Energy Engineering Using CiteSpace Software: Identification of Key Research Trends and Patterns of International Cooperation. Energies 2024, 17, 3941. https://doi.org/10.3390/en17163941
Kut P, Pietrucha-Urbanik K. Bibliometric Analysis of Multi-Criteria Decision-Making (MCDM) Methods in Environmental and Energy Engineering Using CiteSpace Software: Identification of Key Research Trends and Patterns of International Cooperation. Energies. 2024; 17(16):3941. https://doi.org/10.3390/en17163941
Chicago/Turabian StyleKut, Paweł, and Katarzyna Pietrucha-Urbanik. 2024. "Bibliometric Analysis of Multi-Criteria Decision-Making (MCDM) Methods in Environmental and Energy Engineering Using CiteSpace Software: Identification of Key Research Trends and Patterns of International Cooperation" Energies 17, no. 16: 3941. https://doi.org/10.3390/en17163941
APA StyleKut, P., & Pietrucha-Urbanik, K. (2024). Bibliometric Analysis of Multi-Criteria Decision-Making (MCDM) Methods in Environmental and Energy Engineering Using CiteSpace Software: Identification of Key Research Trends and Patterns of International Cooperation. Energies, 17(16), 3941. https://doi.org/10.3390/en17163941