Can Energy-Consuming Rights Trading Policies Help to Curb Air Pollution? Evidence from China
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. ECRTP and Air Pollution
2.2. The Conduction Mechanism of ECRTP on Air Pollution
2.2.1. Energy Efficiency Effect
2.2.2. The Industrial Structure Upgrading Effect
2.2.3. Technological Innovation Effect
2.3. The Heterogeneity Analysis of the Effects of ECRTP on Air Pollution
3. Research Design
3.1. Model Construction
3.2. Variable Design
3.2.1. Explained Variable
3.2.2. Core Explanatory Variable
3.2.3. Control Variables
3.2.4. Mechanism Variables
3.3. Data Description
4. Empirical Analysis
4.1. Descriptive Statistics of Variables
4.2. Parallel Trend Test
4.3. Baseline Regression Analysis
4.4. Robustness Test
4.4.1. Placebo Test
4.4.2. Instrumental Variable Test
4.4.3. Estimation of the SC-DID Model
4.4.4. PSM-DID Model Estimation
4.4.5. Consideration of the Impacts of Other Policies during the Same Period
4.4.6. Other Robustness Tests
5. Mechanism Testing
5.1. Path 1: Energy Efficiency
5.2. Path 2: Industrial Structure Upgrading
5.3. Path 3: Technology Innovation
6. Heterogeneity Analysis
6.1. Heterogeneity of Geographic Location
6.2. Heterogeneity of Energy Saving Potentials
6.3. Heterogeneity of Resource Endowment
6.4. Heterogeneity of Environmental Protection Types
7. Discussion
8. Conclusions, Policy Implications, and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akcigit, U.; Baslandze, S.; Stantcheva, S. Taxation and the international mobility of inventors. Am. Econ. Rev. 2016, 106, 2930–2981. [Google Scholar] [CrossRef]
- Kunda, J.J.; Gosling, S.N.; Foody, G.M. The effects of extreme heat on human health in tropical Africa. Int. J. Biometeorol. 2024, 68, 1015–1033. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Br. Ed. 2020, 396, 1223–1249. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.; Wu, S. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality. Sci. Rep. 2016, 6, 23792. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M.; Harari, S.; Martinelli, I.; Franchini, M. Effects on health of air pollution: A narrative review. Intern. Emerg. Med. 2015, 10, 657–662. [Google Scholar] [CrossRef]
- Jiang, X.; Mei, X.; Feng, D. Air pollution and chronic airway diseases: What should people know and do? J. Thorac. Dis. 2016, 8, E31–E40. [Google Scholar]
- Mannucci, P.M.; Franchini, M. Health Effects of Ambient Air Pollution in Developing Countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef]
- Hao, Y.; Peng, H.; Temulun, T.; Liu, L.; Mao, J.; Lu, Z.; Chen, H. How harmful is air pollution to economic development new evidence from PM2.5 concentrations of Chinese cities. J. Clean. Prod. 2018, 172, 743–757. [Google Scholar] [CrossRef]
- Zhu, L.; Hao, Y.; Lu, Z.; Wu, H.; Ran, Q. Do economic activities cause air pollution? Evidence from China’s major cities. Sustain. Cities Soc. 2019, 49, 101593. [Google Scholar] [CrossRef]
- Cole, M.A.; Neumayer, E. Examining the Impact of Demographic Factors on Air Pollution. Popul. Environ. 2004, 26, 5–21. [Google Scholar] [CrossRef]
- Wu, X.; Gao, M. Effects of different environmental regulations and their heterogeneity on air pollution control in China. J. Regul. Econ. 2021, 60, 140–166. [Google Scholar] [CrossRef]
- Georgii, H.W. The effects of air pollution on urban climates. Bull. World Health Organ. 1969, 40, 624–635. [Google Scholar] [PubMed]
- Zhang, K.; Batterman, S. Air pollution and health risks due to vehicle traffic. Sci Total Environ. Sci. Total Environ. 2013, 450–451, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, J. The Dynamic Impact of Digital Economy on Carbon Emission Reduction: Evidence City-level Empirical Data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, X. Digital economy, new-type urbanization, and carbon emissions: Evidence from China. Environ. Prog. Sustain. Energy AIChE 2023, 42, e14045. [Google Scholar] [CrossRef]
- Chen, X.; Teng, L.; Chen, W. How does FinTech affect the development of the digital economy Evidence from China. N. Am. J. Econ. Financ. 2022, 61, 101697. [Google Scholar] [CrossRef]
- Sun, J.; Wu, X. Research on the mechanism and countermeasures of digital economy development promoting carbon emission reduction in jiangxi province. Environ. Res. Commun. 2023, 5, 35002. [Google Scholar] [CrossRef]
- Stede, J. Bridging the industrial energy efficiency gap—Assessing the evidence from the Italian white certificate scheme. Energy Policy 2017, 104, 112–123. [Google Scholar] [CrossRef]
- Fuinhas, J.A.; Marques, A.C.; Koengkan, M. Are renewable energy policies upsetting carbon dioxide emissions? The case of Latin America countries. Environ. Sci. Pollut. Res. Int. 2017, 24, 15044–15054. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, X.; Song, L. The effect of pollution control and carbon reduction of the carbon emission trading system: An empirical analysis based on the Synthetic Control Method. J. Nat. Resour. 2024, 39, 712–730. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, W. Can sustainable operations achieve economic benefit and energy saving for manufacturing industries in China? Ann. Oper. Res. 2020, 290, 145–168. [Google Scholar] [CrossRef]
- Wang, W. The realization of energy using right trading system from the perspective of law and policy. J. Henan Univ. Technol. Soc. Sci. Ed. 2021, 37, 44–51, 93. [Google Scholar]
- Wang, W.; Fu, L. The improvement of the legal system of energy use right transaction supervision in China from the perspective of reflexive Law. Acad. Explor. 2021, 124–133. [Google Scholar]
- Chen, Z. Research on the perfection of China’s energy-consuming right exchange rules under the background of carbon neutrality. North. Leg. Sci. 2022, 16, 37–48. [Google Scholar]
- Yang, M.; Hou, Y.; Fang, C.; Duan, H. Constructing energy-consuming right trading system for China’s manufacturing industry in 2025. Energy Policy 2020, 144, 111602. [Google Scholar] [CrossRef]
- Wang, Y.; Hang, Y.; Wang, Q. Joint or separate? An economic-environmental comparison of energy-consuming and carbon emissions permits trading in China. Energy Econ. 2022, 109, 105949. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y. The economic bonus effect generated by the tradable policy mixes of energy-consuming right and CO2-emission right. China Popul. Resour. Environ. 2019, 29, 1–10. [Google Scholar]
- Li, Y.; Zhu, L. Study on the Synergistic Effects Between Energy—Saving Trading and Carbon Market and the Strategic Choose of Energy—Intensive Industries. J. Ind. Technol. Econ. 2019, 38, 136–142. [Google Scholar]
- Zhang, N.; Zhang, W. Can Energy Quota Trading Achieve WinWin Development for Economic Growth and Energy Savings in China? Econ. Res. J. 2019, 54, 165–181. [Google Scholar]
- Zhang, Q.; Li, J.; Wang, J. Does energy-consuming right trading have double dividend effect on firm’s economic performance and carbon emission? Environ. Sci. Pollut. Res. Int. 2023, 30, 105595–105613. [Google Scholar] [CrossRef]
- Shao, W.; Liu, J. Does the energy-consuming right trading system promote green technology innovation of enterprises? Heliyon 2024, 10, e26458. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Wang, Y.; Jiang, Y. Carbon emission control policy design based on the targets of carbon peak and carbon neutrality. China Popul. Resour. Environ. 2021, 31, 55–63. [Google Scholar]
- Li, S.; Bi, Z. How does the energy-consuming rights trading policy impact the total factor productivity of enterprises? Res. Financ. Econ. Issues 2022, 35–43. [Google Scholar]
- Zhang, Y.; Zhou, L. Impact of energy-consuming right trading policy on the optimization and upgrading of regional industrial structure. China Popul. Resour. Environ. 2024, 34, 71–83. [Google Scholar]
- Feng, C. Research on the impact of energy trading system on regional energy consumption intensity. West Forum Econ. Manag. 2023, 34, 71–79. [Google Scholar]
- Xue, F.; Zhou, M. Can the energy-consuming right transaction system improve energy utilization efficiency? China Popul. Resour. Environ. 2022, 23, 54–65. [Google Scholar]
- Lu, H.; Wu, Z. Relationship between Energy-consuming Right Trading System and low-carbon transformation of energy consumption structure. Resour. Sci. 2023, 45, 1181–1195. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, F.; Xue, D. Does China’s carbon emission trading policy improve regional energy efficiency?—An analysis based on quasi-experimental and policy spillover effects. Environ. Sci. Pollut. Res. 2022, 29, 21166–21183. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, H.; Zhang, X.; Ding, C.; Gong, Y. Can the energy quota trading system achieve the double environmental benefits of reducing pollution and carbon emissions? Ind. Econ. Res. 2023, 125, 15–26. [Google Scholar]
- Wang, M.; Wang, Y.; Yang, Z.; Guo, B. Does energy-consuming rights trading policy achieve urban pollution and carbon reduction? A quasi-natural experiment from China. Front. Environ. Sci. 2024, 12, 1430031. [Google Scholar] [CrossRef]
- Han, D.; Bi, C.; Wu, H.; Hao, P. Energy and environment: How could energy-consuming transition promote the synergy of pollution reduction and carbon emission reduction in China? Urban Clim. 2024, 55, 101931. [Google Scholar] [CrossRef]
- Song, D.; Chen, M.; Zhu, W. Has the energy-consuming right trading system achieved win-win development for China’s environment and economy? China Popul. Resour. Environ. 2022, 32, 134–145. [Google Scholar]
- Wang, H.; Liu, C.; Shi, P.; Wang, Y. The social effects of energy regulation: Energy-consuming rights trading system and corporate labor demand. J. Environ. Manag. 2024, 366, 121842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Chen, Q. Research on the effect and transmission mechanism of energy-consuming right trading system on green technological innovation. Sci. Technol. Prog. Policy 2023, 40, 93–103. [Google Scholar]
- Pei, Q. Comparative Study on China Energy Consumption Allowance trading system with other resources and environment related rights allowance trading system. Ind. Econ. Rev. 2017, 4, 39–44. [Google Scholar]
- Gong, P.; Xin, S. Progress in the Use of the Energy-Consuming Right and Transaction Pilot. Energy China 2019, 41, 4–8. [Google Scholar]
- Xu, Y.; Liu, X. Can the energy-consuming right transaction system alleviate air pollution. J. Cent. South Univ. For. Technol. Soc. Sci. 2023, 17, 47–58. [Google Scholar]
- Meng, Z. Whether the Pilot Policy of “Trading with Energy Rights” Can Promote Regional Industrial Transformation and Upgrading: Evidence from 282 prefecture-level cities in China. Sci. Technol. Ind. 2023, 23, 40–46. [Google Scholar]
- Porter, M.E.; Linde, C.V.D. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Li, W.; Bai, Y. Can Environmental Regulation Lead to “Innovative Offsets” Effect? Game Analysis Based on “Potter Hypothesis”. J. Audit. Econ. 2018, 33, 103–111. [Google Scholar]
- Wu, X.; Qiu, W. Analysis of the Synergistic Effects of Energy Consumption Permit Trading Scheme on Pollution Reduction and Carbon Abatement. Environ. Sci. 2023, 1–11. [Google Scholar] [CrossRef]
- Liu, W. The digital economy and environmental pollution: New evidence based on the support of logistics development. J. Clean. Prod. 2023, 427, 139210. [Google Scholar] [CrossRef]
- Shao, S.; Li, X.; Cao, J.; Yang, L. Economic policy choice of haze pollution control in China: Based on the perspective of spatial spillover effect. Econ. Res. J. 2016, 51, 73–88. [Google Scholar]
- Luo, Z.; Wan, G.; Wang, C.; Zhang, X. Urban pollution and road infrastructure: A case study of China. China Econ. Rev. 2018, 49, 171–183. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. R. 2021, 28, 64606–64629. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Zhang, A. Research on the Impact of Urban Digital Economy Development on Environmental Pollution and Its Mechanism. South China J. Econ. 2022, 18–37. [Google Scholar] [CrossRef]
- Liang, W.; Yang, M.; Li, X. The interactive effects of agglomeration and urban haze pollution. Urban Probl. 2017, 83–93. [Google Scholar] [CrossRef]
- He, X.; Yu, Y.; Jiang, S. City centrality, population density and energy efficiency. Energy Econ. 2023, 117, 106436. [Google Scholar] [CrossRef]
- Xie, Z.; Jing, Z.; Yang, M. Water Constraint Mitigation and Regional Economic Growth: Evidence from the South-to-north Water Diversion Project. J. Quant. Technol. Econ. 2023, 40, 93–115. [Google Scholar]
- Arkhangelsky, D.; Susan, A.; Hirshberg, D.A.; Imbens, G.W.; Wager, S.; Wager, S. Synthetic Difference-in-Differences. Am. Econ. Rev. 2021, 111, 4088–4118. [Google Scholar] [CrossRef]
- Hu, J.; Fang, Q.; Wu, H. Environmental tax and highly polluting firms’ green transformation: Evidence from green mergers and acquisitions. Energy Econ. 2023, 127, 107046. [Google Scholar] [CrossRef]
- Ma, G.; Qin, J.; Zhang, Y. Does the carbon emissions trading system reduce carbon emissions by promoting two-way FDI in developing countries? Evidence From Chinese Listed Companies and Cities. Energy Econ. 2023, 120, 106581. [Google Scholar] [CrossRef]
- Du, M.; Wu, F.; Ye, D.; Zhao, Y.; Liao, L. Exploring the effects of energy quota trading policy on carbon emission efficiency: Quasi-experimental evidence from China. Energy Econ. 2023, 124, 106791. [Google Scholar] [CrossRef]
- Shen, H.; Xiong, P.; Zhou, L. The impact of the energy-consuming right trading system on corporate environmental performance: Based on empirical evidence from panel data of industrial enterprises listed in pilot regions. Heliyon 2024, 10, e29628. [Google Scholar] [CrossRef]
Variable Type | Variable Name | Variable Symbol | Variable Description |
---|---|---|---|
Explained variable | Air pollution | lnpoll | PM2.5 concentration |
Core explanatory variable | Energy-consuming rights trading policies | ECRTP | The interaction term between pilot city dummy variable and pilot implementation time dummy variable. |
Control variable | Economic development | lngdp | The ratio of gross domestic product (GDP) to the total population. |
Population density | lnpop | The ratio of the total urban population to the area of the administrative division. | |
Openness to foreign | lnfdi | The actual utilized foreign investment amount. | |
Financial development | lnfin | The year-end balance of various RMB loans from financial institutions. | |
Urbanization | lnurb | The ratio of the urban population to the total population. | |
Government support | lngov | The ratio of government public fiscal expenditure to GDP. | |
Mechanism Variable | Energy efficiency | lnene | The reciprocal of energy intensity. |
Industry structure | lnind | The ratio of the output value of the tertiary industry to the regional gross domestic product (GDP). | |
Technological innovation | lnpat | The number of invention patent applications. |
Variables | N | Mean | SD | Min | Max |
---|---|---|---|---|---|
lnpoll | 3047 | 3.6049 | 0.3445 | 2.3812 | 4.5227 |
ECRTP | 3047 | 0.0903 | 0.2866 | 0 | 1 |
lngdp | 3047 | 10.7762 | 0.5772 | 8.7729 | 15.6752 |
lnpop | 3047 | 5.7621 | 0.9799 | 1.7077 | 9.0886 |
lnfdi | 3047 | 11.8305 | 2.0291 | −5.0146 | 16.8344 |
lnfin | 3047 | 16.5767 | 1.1650 | 13.7234 | 20.5984 |
lnurb | 3047 | 3.9993 | 0.2659 | 3.0445 | 4.6052 |
lngov | 3047 | 2.9734 | 0.5299 | 1.4789 | 6.4037 |
lnene | 3047 | 2.7388 | 0.8526 | −1.1305 | 5.4134 |
lnind | 3047 | 3.7314 | 0.2472 | 2.6644 | 4.4293 |
lnpat | 3047 | 6.4445 | 1.7031 | 1.9459 | 11.6865 |
Variables | Treatment Group | Control Group | Comparison of Mean Differences | ||||
---|---|---|---|---|---|---|---|
N | Mean | SD | N | Mean | SD | ||
lnpoll | 605 | 3.6451 | 0.3948 | 2442 | 3.5950 | 0.3303 | −0.0501 *** |
lngdp | 605 | 10.8195 | 0.5626 | 2442 | 10.7655 | 0.5803 | −0.0540 ** |
lnpop | 605 | 6.1490 | 0.7089 | 2442 | 5.6662 | 1.0137 | −0.4828 *** |
lnfdi | 605 | 12.1581 | 1.6371 | 2442 | 11.7494 | 2.1075 | −0.4087 *** |
lnfin | 605 | 16.7012 | 1.1093 | 2442 | 16.5458 | 1.1766 | −0.1554 *** |
lnurb | 605 | 3.9551 | 0.2281 | 2442 | 4.0102 | 0.2734 | 0.0551 *** |
lngov | 605 | 2.8456 | 0.4744 | 2442 | 3.0050 | 0.5382 | 0.1594 *** |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
ECRTP | −0.0577 *** | −0.0483 *** | −0.0433 *** | −0.0415 *** | −0.0455 *** | −0.0460 *** | −0.0461 *** |
(0.0112) | (0.0112) | (0.0114) | (0.0110) | (0.0103) | (0.0104) | (0.0103) | |
lngdp | −0.0667 *** | −0.0638 *** | −0.0571 *** | −0.0435 *** | −0.0443 *** | −0.0480 *** | |
(0.0144) | (0.0137) | (0.0130) | (0.0113) | (0.0114) | (0.0119) | ||
lnpop | −0.1762 *** | −0.1543 *** | −0.1378 *** | −0.1335 *** | −0.1393 *** | ||
(0.0395) | (0.0370) | (0.0355) | (0.0347) | (0.0348) | |||
lnfdi | −0.0080 *** | −0.0063 *** | −0.0062 *** | −0.0062 *** | |||
(0.0024) | (0.0023) | (0.0023) | (0.0023) | ||||
lnfin | −0.0828 *** | −0.0842 *** | −0.0849 *** | ||||
(0.0225) | (0.0230) | (0.0230) | |||||
lnurb | 0.0332 | 0.0327 | |||||
(0.0435) | (0.0437) | ||||||
lngov | −0.0149 | ||||||
(0.0095) | |||||||
Constant | 3.6101 *** | 4.3275 *** | 5.3119 *** | 5.2069 *** | 6.3189 *** | 6.1918 *** | 6.3234 *** |
(0.0010) | (0.1555) | (0.2496) | (0.2305) | (0.3759) | (0.3894) | (0.3942) | |
City effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 3047 | 3047 | 3047 | 3047 | 3047 | 3047 | 3047 |
Adj. R2 | 0.9389 | 0.9404 | 0.9404 | 0.9420 | 0.9433 | 0.9433 | 0.9434 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
The First Stage | The Second Stage | The First Stage | The Second Stage | |
IV | 0.6325 *** | 0.6272 *** | ||
(0.1266) | (0.1228) | |||
ECRTP | −0.0349 *** | −0.0323 *** | ||
(0.0100) | (0.0096) | |||
Constant | 0.0495 *** | 3.7030 *** | −2.7300 *** | 6.1827 *** |
(0.0082) | (0.0272) | (0.7877) | (0.2428) | |
Controls | No | No | Yes | Yes |
City effects | Yes | Yes | Yes | Yes |
Year effects | Yes | Yes | Yes | Yes |
N | 3047 | 3047 | 3047 | 3047 |
Adj. R2 | 0.7091 | 0.9387 | 0.7158 | 0.9431 |
Kleibergen–Paap rk LM statistic | 360.3470 [0.0000] | 372.4150 [0.0000] | ||
Kleibergen–Paap rk Wald F statistic | 242.1170 {16.38} | 252.5380 {16.38} |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
SC-DID | PSM-DID | Entropy Balancing | Environmental Protection Tax | Carbon Emission Rights | Joint Policy | |
ECRTP | −0.0362 *** | −0.0402 *** | −0.0366 *** | −0.0467 *** | −0.0536 *** | −0.0536 *** |
(0.0088) | (0.0119) | (0.0103) | (0.0095) | (0.0102) | (0.0096) | |
EPT | −0.0407 *** | −0.0339 *** | ||||
(0.0097) | (0.0096) | |||||
CER | −0.1052 *** | −0.0987 *** | ||||
(0.0147) | (0.0148) | |||||
Constant | 5.8094 *** | 5.8799 *** | 6.1559 *** | 6.2729 *** | 6.1363 *** | |
(0.6265) | (0.5174) | (0.3878) | (0.3828) | (0.3802) | ||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
City effects | Yes | Yes | Yes | Yes | Yes | Yes |
Year effects | Yes | Yes | Yes | Yes | Yes | Yes |
N | 3047 | 1346 | 3047 | 3047 | 3047 | 3047 |
Adj. R2 | 0.9578 | 0.9633 | 0.9442 | 0.9453 | 0.9458 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Replaced Explained Variable | lnSO2 | Adjusted Standard Error | Controlled Province Time Trends | Winsorization | |
ECRTP | −0.0347 *** | −0.2235 * | −0.0461 *** | −0.0299 * | −0.0480 *** |
(0.0090) | (0.1140) | (0.0104) | (0.0177) | (0.0105) | |
Constant | 5.3759 *** | 11.2545 *** | 6.3234 *** | 4.2214 *** | 6.1509 *** |
(0.2841) | (3.2798) | (0.3961) | (0.3045) | (0.3948) | |
Controls | Yes | Yes | Yes | Yes | Yes |
City effects | Yes | Yes | Yes | Yes | Yes |
Year effects | Yes | Yes | Yes | Yes | Yes |
N | 3047 | 3047 | 3047 | 3047 | 3047 |
Adj. R2 | 0.9713 | 0.8733 | 0.9428 | 0.9809 | 0.9413 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
lnene | lnpoll | lnind | lnpoll | lnpat | lnpoll | |
ECRTP | 0.1314 * | −0.0451 *** | 0.0865 *** | −0.0429 *** | 0.0881 * | −0.0451 *** |
(0.0788) | (0.0106) | (0.0211) | (0.0106) | (0.0500) | (0.0103) | |
lnene | −0.0203 *** | |||||
(0.0059) | ||||||
lnind | −0.0560 ** | |||||
(0.0275) | ||||||
lnpat | −0.0104 ** | |||||
(0.0041) | ||||||
Constant | 12.0083 *** | 6.7394 *** | 3.7624 *** | 6.7066 *** | 0.2815 | 6.3264 *** |
(2.3564) | (0.4242) | (0.5725) | (0.3905) | (2.2274) | (0.3970) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
City effects | Yes | Yes | Yes | Yes | Yes | Yes |
Year effects | Yes | Yes | Yes | Yes | Yes | Yes |
N | 3047 | 3047 | 3047 | 3047 | 3047 | 3047 |
Adj. R2 | 0.7962 | 0.9437 | 0.8601 | 0.9434 | 0.9340 | 0.9435 |
Paths | Sobel Test | Bootstrap Test: 95% Conf. Interval | |||||
---|---|---|---|---|---|---|---|
Indirect Effect | Z | p > |z| | Bias-Corrected | Percentile | |||
ECRTP→lnene→lnpoll | −0.0027 | −2.9649 | 0.0030 | −0.0049 | −0.0011 | −0.0050 | −0.0010 |
ECRTP→lnind→lnpoll | −0.0048 | −3.1489 | 0.0016 | −0.0085 | −0.0016 | −0.0085 | −0.0016 |
ECRTP→lnpat→lnpoll | −0.0009 | −1.7068 | 0.0879 | −0.0021 | −0.0002 | −0.0020 | −0.0001 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | Geographical Location | Energy-Saving Potential | Resource Endowment | Environmental Protection Types |
Treat × Time × Geo | −0.0461 *** | |||
(0.0103) | ||||
Treat × Time × Sav | −0.0273 ** | |||
(0.0133) | ||||
Treat × Time × Res | −0.0546 *** | |||
(0.0143) | ||||
Treat × Time × Env | −0.0382 *** | |||
(0.0125) | ||||
Constant | 6.3234 *** | 6.3949 *** | 6.4078 *** | 6.3859 *** |
(0.3942) | (0.3879) | (0.3947) | (0.3899) | |
Controls | Yes | Yes | Yes | Yes |
City effects | Yes | Yes | Yes | Yes |
Year effects | Yes | Yes | Yes | Yes |
N | 3047 | 3047 | 3047 | 3047 |
Adj. R2 | 0.9434 | 0.9428 | 0.9431 | 0.9428 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhang, J.; Li, G. Can Energy-Consuming Rights Trading Policies Help to Curb Air Pollution? Evidence from China. Energies 2024, 17, 3860. https://doi.org/10.3390/en17153860
Liu M, Zhang J, Li G. Can Energy-Consuming Rights Trading Policies Help to Curb Air Pollution? Evidence from China. Energies. 2024; 17(15):3860. https://doi.org/10.3390/en17153860
Chicago/Turabian StyleLiu, Mingguang, Jue Zhang, and Gaoyang Li. 2024. "Can Energy-Consuming Rights Trading Policies Help to Curb Air Pollution? Evidence from China" Energies 17, no. 15: 3860. https://doi.org/10.3390/en17153860
APA StyleLiu, M., Zhang, J., & Li, G. (2024). Can Energy-Consuming Rights Trading Policies Help to Curb Air Pollution? Evidence from China. Energies, 17(15), 3860. https://doi.org/10.3390/en17153860