Experimental Study of Thermal Performance of Pulsating-Heat-Pipe Heat Exchanger with Asymmetric Structure at Different Filling Rates
Abstract
:1. Introduction
2. Experimental Set-Up
2.1. Experimental Device and Experimental System
2.2. Experimental Methods
2.3. Data Processing
2.4. Experimental Error Analysis
3. Results and Analysis
3.1. Start-Up and Operating Characteristics at Different Filling Rates
3.2. Wavelet Frequency Analysis
3.3. Heat-Transfer Performance Indexes at Different Filling Rates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | the total cross-sectional area of the pulsating heat pipe circulation pipeline, [m2] | W | wavelet transform |
a | wavelet scale | y | signal |
i | imaginary part | η | non-dimensional time |
L | the pulsating heat pipe evaporation section and the condensing section of the average distance between the measurement point, [m] | τ | time, s |
Qe | the pulsating heat pipe evaporation section of the heat absorbed, [W] | ψ | wavelet mother |
R | the heat transfer thermal resistance, [K/W] | ω0 | Non-dimensional frequency |
Tc | the average temperature of the condensing section, [K] | k | the equivalent coefficient of thermal conductivity, W/(m·K) |
Te | the average temperature of the evaporation section, [K] |
References
- Ling, Y.; Li, X.; Zhang, X.; Liu, Z.; Zhao, P. Experimental and Theoretical Study on Operation Characteristics of an Oscillating Heat Pipe. Appl. Sci. 2023, 13, 8479. [Google Scholar] [CrossRef]
- Liu, Y.; Bao, K.; Yan, Y.; Ouyang, H.; Han, X. Investigation on the Influence of Different Heat Transmission Distances on Thermo-Hydrodynamic Characteristics of Pulsating Heat Pipes. Appl. Therm. Eng. 2023, 234, 121284. [Google Scholar] [CrossRef]
- Rajale, M.J.; Prasad, P.I.; Rao, B.N. A Review on the Heat Transfer Performance of Pulsating Heat Pipes. Aust. J. Mech. Eng. 2023, 21, 1658–1702. [Google Scholar] [CrossRef]
- Yu, J.; Hong, S.; Koudai, S.; Dang, C.; Wang, S. An Experimental Investigation on the Heat Transfer Characteristics of Pulsating Heat Pipe with Adaptive Structured Channels. Energies 2023, 16, 6988. [Google Scholar] [CrossRef]
- Li, J.; Qiao, L.; Chen, M.; Zeng, X. Research on Performance Test and Evaluation of Thermal Management System of Power Battery Module under Harsh Conditions. Appl. Therm. Eng. 2024, 241, 122406. [Google Scholar] [CrossRef]
- Chung, W.-S.; Lee, J.-S.; Rhi, S.-H. Thermal Management System Using Pulsating Heat Pipe of Cylindrical Battery Cell. J. Mech. Sci. Technol. 2023, 37, 6711–6725. [Google Scholar] [CrossRef]
- Lv, W.; Li, J.; Chen, M. Experimental Study on the Thermal Management Performance of A Power Battery Module with A Pulsating Heat Pipe under Different Thermal Management Strategies. Appl. Therm. Eng. 2023, 227, 120402. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, K.; Song, Q.; Yu, J.; Yang, J.; Qu, J.; Zhu, Y. Performance of Pulsating Heat Pipe with A Stimulus of Auxiliary Heat Load for Battery Thermal Management System. Int. J. Heat Mass Transf. 2024, 223, 125190. [Google Scholar] [CrossRef]
- Pandey, N.; Naresh, Y. A Comprehensive 4E (Energy, Exergy, Economic, Environmental) Analysis of Novel Pyramid Solar Still Coupled with Pulsating Heat Pipe: An Experimental Study. Renew. Energy 2024, 225, 120227. [Google Scholar] [CrossRef]
- Hemmatian, A.; Kargarsharifabad, H.; Esfahlani, A.A.; Rahbar, N.; Shoeibi, S. Improving Solar Still Performance with Heat Pipe/Pulsating Heat Pipe Evacuated Tube Solar Collectors and PCM: An Experimental and Environmental Analysis. Sol. Energy 2024, 269, 112371. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Ma, K.; Jin, H.; Jin, X. Experimental Study of Pulsating Heat Pipes Filled with Nanofluids under the Irradiation of Solar Simulator. Energies 2022, 15, 9153. [Google Scholar] [CrossRef]
- Mahajan, G.; Thompson, S.M.; Cho, H. Energy and Cost Savings Potential of Oscillating Heat Pipes for Waste Heat Recovery Ventilation. Energy Rep. 2017, 3, 46–53. [Google Scholar] [CrossRef]
- Yang, H.; Wang, J.; Wang, N.; Yang, F. Experimental Study on A Pulsating Heat Pipe Heat Exchanger for Energy Saving in Air-Conditioning System in Summer. Energy Build. 2019, 197, 1–6. [Google Scholar] [CrossRef]
- Deng, Z.; Zheng, Y.; Liu, X.; Zhu, B.; Chen, Y. Experimental Study on Thermal Performance of an Anti-Gravity Pulsating Heat Pipe and Its Application on Heat Recovery Utilization. Appl. Therm. Eng. 2017, 125, 1368–1378. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, Y.; Cai, W.; Qi, H.; Li, Q. Experimental Study on Performances of Flat-Plate Pulsating Heat Pipes without and with Thermoelectric Generators for Low-Grade Waste Heat Recovery. Appl. Therm. Eng. 2023, 225, 120156. [Google Scholar] [CrossRef]
- Qu, J.; Wu, H.-Y.; Wang, Q. Experimental Investigation of Silicon-Based Micro-Pulsating Heat Pipe for Cooling Electronics. Nanoscale Microscale Thermophys. Eng. 2012, 16, 37–49. [Google Scholar] [CrossRef]
- Dang, C.; Jia, L.; Lu, Q. Investigation on Thermal Design of A Rack with the Pulsating Heat Pipe for Cooling CPUs. Appl. Therm. Eng. 2017, 110, 390–398. [Google Scholar] [CrossRef]
- Mito, T.; Natsume, K.; Yanagi, N.; Tamura, H.; Tamada, T.; Shikimachi, K.; Hirano, N.; Nagaya, S. Development of Highly Effective Cooling Technology for A Superconducting Magnet Using Cryogenic OHP. IEEE Trans. Appl. Supercond. 2010, 20, 2023–2026. [Google Scholar] [CrossRef]
- Hosseini, S.M.J.; Ranjbar, A.A.; Sedighi, K.; Rahimi, M. Melting of Nanoprticle-Enhanced Phase Change Material Inside Shell and Tube Heat Exchanger. J. Eng. 2013, 2013, 784681. [Google Scholar] [CrossRef]
- Kammuang-Lue, N.; Patanathabutr, C.; Sakulchangsatjatai, P.; Terdtoon, P. Thermal Characteristics of Rotating Closed-Loop Pulsating Heat Pipe Designed for Rotating-Type Energy Storage Devices. Energy Rep. 2022, 8, 302–308. [Google Scholar] [CrossRef]
- Charoensawan, P.; Wilaipon, P.; Seehawong, N. Flat Plate Solar Water Heater with Closed-Loop Oscillating Heat Pipes. Therm. Sci. 2021, 25 Pt A, 3607–3614. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Hormozi, F. Experimental Study on the Thermal Performance and Efficiency of a Copper Made Thermosyphon Heat Pipe Charged with Alumina–Glycol Based Nanofluids. Powder Technol. 2014, 266, 378–387. [Google Scholar] [CrossRef]
- Slobodeniuk, M.; Bertossi, R.; Ayel, V.; Ravichandran, R.; Thyagarajan, K.; Romestant, C.; Bertin, Y. Experimental Study of the Flat Plate Pulsating Heat Pipe Operation During Dry-Out and Flow Re-Activation Periods under Microgravity Conditions. Int. J. Multiph. Flow 2022, 147, 103888. [Google Scholar] [CrossRef]
- Zhao, X.; Su, L.; Jiang, J.; Deng, W.; Zhao, D. A Review Of Working Fluids and Flow State Effects on Thermal Performance of Micro-Channel Oscillating Heat Pipe for Aerospace Heat Dissipation. Aerospace 2023, 10, 179. [Google Scholar] [CrossRef]
- Ayel, V.; Pagliarini, L.; Veer, T.V.; Slobodeniuk, M.; Bozzoli, F.; Romestant, C.; Bertin, Y. Experimental Analyses of Temperature and Pressure Oscillation Frequencies of a Flat Plate Pulsating Heat Pipe Tested under Various Edge Orientation Angles and Heat Loads. Exp. Comput. Multiph. Flow 2024, 6, 253–264. [Google Scholar] [CrossRef]
- Wu, M.; Ji, Y.; Feng, Y.; Liu, H.; Yang, X. Experimental Study on the Effects of Filling Ratios on Heat Transfer Characteristics of Liquid Metal High-Temperature Oscillating Heat Pipes. Int. J. Heat Mass Transf. 2023, 209, 124153. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, Z.; Guo, J.; Ma, D.; Yang, W. Capture of Kinetic Behavior of Ethanol-Based Copper Oxides in Pulsating Heat Pipe. Int. J. Heat Mass Transf. 2024, 225, 125392. [Google Scholar] [CrossRef]
- Jang, D.S.; Lee, J.S.; Ahn, J.H.; Kim, D.; Kim, Y. Flow Patterns and Heat Transfer Characteristics of Flat Plate Pulsating Heat Pipes with Various Asymmetric and Aspect Ratios of the Channels. Appl. Therm. Eng. 2017, 114, 211–220. [Google Scholar] [CrossRef]
- Patel, E.D.; Kumar, S. Thermal Performance of a Single Loop Pulsating Heat Pipe with Asymmetric Adiabatic Channel. Appl. Therm. Eng. 2023, 219, 119541. [Google Scholar] [CrossRef]
- Shukla, A.K.; Patel, E.D.; Kumar, S. Study of an Asymmetric Dual Loop Pulsating Heat Pipe: Visualization and Parametric Analysis. Appl. Therm. Eng. 2024, 245, 122842. [Google Scholar] [CrossRef]
- Cattani, L.; Vocale, P.; Bozzoli, F.; Malavasi, M.; Pagliarini, L.; Iwata, N. Global and Local Performances of a Tubular Micro-Pulsating Heat Pipe: Experimental Investigation. Heat Mass Transf. 2022, 58, 2009–2027. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, D.; Shang, F.; Yang, K.; Zheng, C.; Cao, X. Experimental Study of Thermal Performance of Pulsating-Heat-Pipe Heat Exchanger with Asymmetric Structure at Different Filling Rates. Energies 2024, 17, 3725. https://doi.org/10.3390/en17153725
Liu J, Liu D, Shang F, Yang K, Zheng C, Cao X. Experimental Study of Thermal Performance of Pulsating-Heat-Pipe Heat Exchanger with Asymmetric Structure at Different Filling Rates. Energies. 2024; 17(15):3725. https://doi.org/10.3390/en17153725
Chicago/Turabian StyleLiu, Jianhong, Dong Liu, Fumin Shang, Kai Yang, Chaofan Zheng, and Xin Cao. 2024. "Experimental Study of Thermal Performance of Pulsating-Heat-Pipe Heat Exchanger with Asymmetric Structure at Different Filling Rates" Energies 17, no. 15: 3725. https://doi.org/10.3390/en17153725
APA StyleLiu, J., Liu, D., Shang, F., Yang, K., Zheng, C., & Cao, X. (2024). Experimental Study of Thermal Performance of Pulsating-Heat-Pipe Heat Exchanger with Asymmetric Structure at Different Filling Rates. Energies, 17(15), 3725. https://doi.org/10.3390/en17153725