Properties of Chemically Stabilized Methanol–HVO Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Titration Method to Measure the Needed Amount of Co-Solvents
2.3. Measurement of Density, Kinematic Viscosity, Distillation Properties, and Surface Tension
3. Results and Discussion
3.1. Stabilizing Effect of Co-Solvents
3.2. Distillation Curve Analysis
3.3. Effects of Co-Solvents on Density and Kinematic Viscosity
3.4. Effects of Co-Solvents on Surface Tension
3.5. Comparing the Physicochemical Properties of Blends with Those of HVO
4. Conclusions
- MeOH5 and MeOH10 blends exhibit a singular, clear, and homogeneous phase upon the addition of co-solvents 1-dodecanol, 1-octanol, and methyl butyrate. They remain stable without separation for a duration of at least two weeks;
- Among the investigated co-solvents, 1-dodecanol demonstrated the highest solubilizing capacity for MeOH5 and MeOH10 blends, followed by 1-octanol;
- The addition of each co-solvent led to an increase in the density of MeOH5 and MeOH10. All the blends’ values aligned with the density range of conventional fossil fuels (750–860 kg m−3) suitable for CI engines. Additionally, the density of MeOH–HVO, MeOH–HVO–1-octanol, and MeOH–HVO–methyl butyrate blends increased with greater methanol content in the fuel mixture. However, it is noteworthy that the densities of MeOH5 1-dodecanol and MeOH10 1-dodecanol were the same;
- The kinematic viscosity of MeOH5 and MeOH10 fuels decreased upon the addition of co-solvents 1-dodecanol, 1-octanol, and methyl butyrate. Notably, only the viscosities of MeOH5 methyl butyrate (1.38 mm2 s−1) and MeOH10 methyl butyrate (1.15 mm2 s−1) fell below the specified range for proper operation of standard common-rail direct injection systems (1.90–6.00 mm2 s−1). The viscosities of all other blends remained within this range;
- The introduction of methyl butyrate to MeOH5 and MeOH10 raised the distillation temperature above MeOH10’s within the 10% to 90% range;
- Adding co-solvents to MeOH5 and MeOH10 either increased or decreased surface tension by around 1 mN m−1. Furthermore, the surface tensions of both MeOH10 and MeOH10–co-solvent blends were lower than those of MeOH5 and MeOH5–co-solvents blends;
- MeOH5 1-octanol, MeOH5 1-dodecanol, MeOH10 1-octanol, and MeOH10 1-dodecanol had higher density and lower kinematic viscosity than HVO fuel. Only MeOH5 1-dodecanol’s surface tension was higher than that of HVO: all the other co-solvent blends have lower surface tension than HVO.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bayraktar, H. An Experimental Study on the Performance Parameters of an Experimental CI Engine Fueled with Diesel-Methanol-Dodecanol Blends. Fuel 2008, 87, 158–164. [Google Scholar] [CrossRef]
- Buzikov, S.V.; Buzikova, O.M.; Motovilova, M.V. Reducing the Technosphere Impact of Agricultural Machines by Expanding the Low-Temperature Applicability of Alternative Fuels. IOP Conf. Series Earth Environ. Sci. 2022, 1076, 012012. [Google Scholar] [CrossRef]
- da Silveira, F.; Machado, F.M.; de Farias, M.S.; Schlosser, J.F. Fuel Consumption by Agricultural Machinery: A Review of Pollutant Emission Control Technologies. Ciência Rural. 2023, 53, e20220029. [Google Scholar] [CrossRef]
- Wang, X.; Geng, C.; Dong, J.; Li, X.; Xu, T.; Jin, C.; Liu, H.; Mao, B. Effect of Diesel/PODE/Ethanol Blends Coupled Pilot Injection Strategy on Combustion and Emissions of a Heavy Duty Diesel Engine. Fuel 2023, 335, 127024. [Google Scholar] [CrossRef]
- Mantoam, E.J.; Romanelli, T.L.; Gimenez, L.M. Energy Demand and Greenhouse Gases Emissions in the Life Cycle of Tractors. Biosyst. Eng. 2016, 151, 158–170. [Google Scholar] [CrossRef]
- Jin, C.; Liu, X.; Sun, T.; Dankwa Ampah, J.; Geng, Z.; Ikram, M.; Ji, J.; Wang, G.; Liu, H. Preparation of Ethanol and Palm Oil/Palm Kernel Oil Alternative Biofuels Based on Property Improvement and Particle Size Analysis. Fuel 2021, 305, 121569. [Google Scholar] [CrossRef]
- Bagagiolo, G.; Vigoroso, L.; De Paolis, G.; Caffaro, F.; Cavallo, E.; Pampuro, N. Barriers to Adoption of Alternative Fuels for Agricultural Machinery: A Study on a Group of Italian Farmers. In Proceedings of the SAE Technical Papers, 16 September 2022; SAE International: Warrendale PA, USA, 2022. [Google Scholar]
- Akande, F.B.; Oniya, O.O.; Adgidzi, D. Alternative Fuels and Their Potentials for Tractor Engines. Agric. Eng. Int. CIGR J. 2013, 15, 39–51. [Google Scholar]
- Domínguez, V.M.; Hernández, J.J.; Ramos, Á.; Giménez, B.; Rodríguez-Fernández, J. Exploring the Effect of Methanol and Ethanol on the Overall Performance and Substitution Window of a Dual-Fuel Compression-Ignition Engine Fueled with HVO. Fuel 2024, 359, 130529. [Google Scholar] [CrossRef]
- Liu, M. Methanol as a Marine Fuel-Availability and Pre-Trial; Nanyang Technological University: Singapore, 2020; Available online: https://www.ntu.edu.sg/docs/librariesprovider79/publication/mesd-webinar-2020-methanol-as-a-marine-fuel.pdf (accessed on 12 January 2024).
- Hunicz, J.; Mikulski, M.; Shukla, P.C.; Gęca, M.S. Partially Premixed Combustion of Hydrotreated Vegetable Oil in a Diesel Engine: Sensitivity to Boost and Exhaust Gas Recirculation. Fuel 2022, 307, 121910. [Google Scholar] [CrossRef]
- Niemi, S.; Vauhkonen, V.; Mannonen, S.; Ovaska, T.; Nilsson, O.; Sirviö, K.; Heikkilä, S.; Kiijärvi, J. Effects of Wood-Based Renewable Diesel Fuel Blends on the Performance and Emissions of a Non-Road Diesel Engine. Fuel 2016, 186, 1–10. [Google Scholar] [CrossRef]
- Spoof-Tuomi, K.; Vauhkonen, V.; Niemi, S.; Ovaska, T.; Lehtonen, V.; Heikkilä, S.; Nilsson, O. Effects of Crude Tall Oil Based Renewable Diesel on the Performance and Emissions of a Non-Road Diesel Engine. Proc. SAE Tech. Papers 2021. [Google Scholar] [CrossRef]
- Sondors, K.; Birkavs, A.; Dukulis, I.; Pirs, V.; Jesko, Z. Investigation in tractor claas ares 557atx operating parameters using hydrotreated vegetable oil fuel. Eng. Rural. Dev. 2014, 13, 63–68. [Google Scholar]
- Kumar, N.; Sonthalia, A.; Tomar, M.; Koul, R. An Experimental Investigation on Spray, Performance and Emission of Hydrotreated Waste Cooking Oil Blends in an Agricultural Engine. Int. J. Engine Res. 2021, 22, 2305–2317. [Google Scholar] [CrossRef]
- Smigins, R.; Sondors, K.; Pirs, V.; Dukulis, I.; Birzietis, G. Studies of Engine Performance and Emissions at Full-Load Mode Using HVO, Diesel Fuel, and HVO5. Energies 2023, 16, 4785. [Google Scholar] [CrossRef]
- Hassan, Q.H.; Shaker Abdul Ridha, G.; Hafedh, K.A.H.; Alalwan, H.A. The Impact of Methanol-Diesel Compound on the Performance of a Four-Stroke CI Engine. Mater. Today Proc. 2021, 42, 1993–1999. [Google Scholar] [CrossRef]
- Wang-Alho, H.; Sirviö, K.; Hissa, M.; Mikulski, M.; Niemi, S. Methanol-HVO Blends for Efficient Low-Temperature Combustion: Analytical Research on Fuel Properties. Agron. Res. 2023, 21, 994–1005. [Google Scholar] [CrossRef]
- Gao, Z.; Wu, S.; Luo, J.; Zhang, B.; Zhang, H.; Xiao, R. Optimize the Co-Solvent for Methanol in Diesel with Group of Oxygen-Containing Reagents: Molecular Structure and Intermolecular Forces Analysis. Fuel Process. Technol. 2021, 222, 106980. [Google Scholar] [CrossRef]
- Jin, C.; Zhang, X.; Geng, Z.; Pang, X.; Wang, X.; Ji, J.; Wang, G.; Liu, H. Effects of Various Co-Solvents on the Solubility between Blends of Soybean Oil with Either Methanol or Ethanol. Fuel 2019, 244, 461–471. [Google Scholar] [CrossRef]
- Jin, C.; Zhang, X.; Han, W.; Geng, Z.; Tessa Margaret Thomas, M.; Dankwa Jeffrey, A.; Wang, G.; Ji, J.; Liu, H. Macro and Micro Solubility between Low-Carbon Alcohols and Rapeseed Oil Using Different Co-Solvents. Fuel 2020, 270, 117511. [Google Scholar] [CrossRef]
- Murayama, T.; Miyamoto, N.; Yamada, T.; Kawashima, J.-I.; Itow, K. A Method to Improve the Solubility and Combustion Characteristics of Alcohol-Diesel Fuel Blends; SAE International: Warrendale, PA, USA, 1982; Volume 91. [Google Scholar]
- Agarwal, A.K.; Sharma, N.; Singh, A.P.; Kumar, V.; Satsangi, D.P.; Patel, C. Adaptation of Methanol-Dodecanol-Diesel Blend in Diesel Genset Engine. J. Energy Resour. Technol. Trans. ASME 2019, 141, 102203. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wu, Y.; Zhang, X.; Jin, C.; Zheng, Z. Effect of Diesel/PODE/Ethanol Blends on Combustion and Emissions of a Heavy Duty Diesel Engine. Fuel 2019, 257, 116064. [Google Scholar] [CrossRef]
- Patiño-Camino, R.; Cova-Bonillo, A.; Lapuerta, M.; Rodríguez-Fernández, J.; Segade, L. Surface Tension of Diesel-Alcohol Blends: Selection among Fundamental and Empirical Models. Fluid. Phase Equilib. 2022, 555, 113363. [Google Scholar] [CrossRef]
- Neste Renewable Diesel Handbook, Neste Corporation 2020 Oct. Available online: https://www.sustainable-ships.org/stories/2023/neste-renewable-diesel-handbook (accessed on 12 January 2024).
- Lampinen, A. Uusiutuvan Liikenne-Energian Tiekartta; Karelia University of Applied Sciences: Joensuu, Finland, 2009; ISBN 9789516041004. Available online: https://www.theseus.fi/handle/10024/127014 (accessed on 2 January 2024). (In Finnish)
- ASTM D7042-21a; Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity). ASTM International: West Conshohocken, PA, USA, 2021.
- Novotny-Farkas, F.; Böhme, W.; Stabinger, H.; Belitsch, W. Customer Portrait. In The Stabinger Viscometer: A New and Unique Instrument for Oil Service Laboratories; Anton Paar: Vienna, Austria, 2010; p. 4. [Google Scholar]
- ASTM D7345-17; Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure (Micro Distillation Method). ASTM International: West Conshohocken, PA, USA, 2024.
- Kalghatgi, G.; Kalghatgi, G. FuelEngine Interactions; SAE International: Warrendale, PA, USA, 2014; p. 255. [Google Scholar]
- Esteban, B.; Riba, J.R.; Baquero, G.; Puig, R.; Rius, A. Characterization of the Surface Tension of Vegetable Oils to Be Used as Fuel in Diesel Engines. Fuel 2012, 102, 231–238. [Google Scholar] [CrossRef]
- Liu, J.; Feng, L.; Wang, H.; Zheng, Z.; Chen, B.; Zhang, D.; Yao, M. Spray Characteristics of Gasoline/PODE and Diesel/PODE Blends in a Constant Volume Chamber. Appl. Therm. Eng. 2019, 159, 113850. [Google Scholar] [CrossRef]
- Krishnamoorthi, M.; Malayalamurthi, R.; He, Z.; Kandasamy, S. A Review on Low Temperature Combustion Engines: Performance, Combustion and Emission Characteristics. Renew. Sustain. Energy Rev. 2019, 116, 109404. [Google Scholar] [CrossRef]
- Gülüm, M.; Bilgin, A. Density, Flash Point and Heating Value Variations of Corn Oil Biodiesel-Diesel Fuel Blends. Fuel Process. Technol. 2015, 134, 456–464. [Google Scholar] [CrossRef]
- Barabás, I.; Todoru, A.; Bldean, D. Performance and Emission Characteristics of an CI Engine Fueled with Diesel-Biodiesel-Bioethanol Blends. Fuel 2010, 89, 3827–3832. [Google Scholar] [CrossRef]
- Bietresato, M.; Bolla, A.; Caligiuri, C.; Renzi, M.; Mazzetto, F. The Kinematic Viscosity of Conventional and Bio-Based Fuel Blends as a Key Parameter to Indirectly Estimate the Performance of Compression-Ignition Engines for Agricultural Purposes. Fuel 2021, 298, 120817. [Google Scholar] [CrossRef]
- Hoang, A.T. Prediction of the Density and Viscosity of Biodiesel and the Influence of Biodiesel Properties on a Diesel Engine Fuel Supply System. J. Mar. Eng. Technol. 2021, 20, 299–311. [Google Scholar] [CrossRef]
- Vallinayagam, R.; Vedharaj, S.; Yang, W.M.; Roberts, W.L.; Dibble, R.W. Feasibility of Using Less Viscous and Lower Cetane (LVLC) Fuels in a Diesel Engine: A Review. Renew. Sustain. Energy Rev. 2015, 51, 1166–1190. [Google Scholar] [CrossRef]
- Yahya, S.I.; Aghel, B. Estimation of Kinematic Viscosity of Biodiesel-Diesel Blends: Comparison among Accuracy of Intelligent and Empirical Paradigms. Renew. Energy 2021, 177, 318–326. [Google Scholar] [CrossRef]
- Mousavi, N.S.; Romero-Martínez, A.; Ramírez-Verduzco, L.F. Predicting the Surface Tension of Mixtures of Fatty Acid Ethyl Esters and Biodiesel Fuels Using UNIFAC Activity Coefficients. Fluid. Phase Equilib. 2020, 507, 112430. [Google Scholar] [CrossRef]
- Preuß, J.; Munch, K.; Denbratt, I. Performance and Emissions of Long-Chain Alcohols as Drop-in Fuels for Heavy Duty Compression Ignition Engines. Fuel 2018, 216, 890–897. [Google Scholar] [CrossRef]
- Atmanli, A. Comparative Analyses of Diesel-Waste Oil Biodiesel and Propanol, n-Butanol or 1-Pentanol Blends in a Diesel Engine. Fuel 2016, 176, 209–215. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Zhang, Z.; Wang, X.; Geng, Z.; Jin, C.; Liu, H.; Yao, M. Effects of Diesel-Ethanol-THF Blend Fuel on the Performance and Exhaust Emissions on a Heavy-Duty Diesel Engine. Fuel 2020, 271, 117633. [Google Scholar] [CrossRef]
- Sirviö, K.; Niemi, S.; Help, R.; Heikkilä, S.; Hiltunen, E. Kinematic Viscosity Studies for Medium-Speed CI Engine Fuel Blends. Agron. Res. 2018, 16, 1247–1256. [Google Scholar] [CrossRef]
Methanol 1 | HVO 1 | 1-Octanol 2 | 1-Dodecanol 2 | Methyl Butyrate 2 | |
---|---|---|---|---|---|
Chemical formula | CH4O | – | C8H18O | C12H26O | C5H10O2 |
Density at 15 °C (kg m−3) | 795 | 782 | 830 | 820 | 897 |
Kinematic viscosity at 40 °C mm2 s−1 | 0.55 | 3.14 | 5.6 | – | – |
Cetane index | n/a | 93 | – | – | – |
Oxygen content (Ox) * | 49.9% | – | 12.3% | 8.6% | 31.4% |
Flash point (°C) | 9 | 82 | 86 | 119 | 12 |
Boiling point (°C) | 65 | 217 | 195 | 260 | 102 |
Lower heating value (MJ kg−1) | 20 (Lampinen, 2009 [27]) | 44 (Neste, 2023 [26]) | – | – | – |
Samples | Density at 15 °C (kg m−3) (RSD < 1.0%) | Kinematic Viscosity at 40 °C (mm2 s−1) (RSD < 1.0%) | IBP (°C) (RSD < 1.1%) | Surface Tension (mN m−1) |
---|---|---|---|---|
HVO | 780 | 3.05 | 220 | 26.1 |
MeOH | 795 | 0.55 | 65 | 22.6 |
MeOH5 | 780 | 3.08 | n/a | 26.2 |
MeOH5 1-octanol | 787 | 2.63 | n/a | 26.0 |
MeOH5 methyl butyrate | 807 | 1.38 | 66 | 24.9 |
MeOH5 1-dodecanol | 787 | 2.84 | n/a | 26.4 |
MeOH10 | 782 | 2.73 | 68 | 24.4 |
MeOH10 1-octanol | 787 | 2.50 | n/a | 24.7 |
MeOH10 methyl butyrate | 815 | 1.15 | 67 | 24.7 |
MeOH10 1-dodecanol | 787 | 2.72 | n/a | 25.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang-Alho, H.; Sirviö, K.; Balogun, F.; Kaivosoja, J.; Nuortila, C.; Mikulski, M.; Niemi, S. Properties of Chemically Stabilized Methanol–HVO Blends. Energies 2024, 17, 3724. https://doi.org/10.3390/en17153724
Wang-Alho H, Sirviö K, Balogun F, Kaivosoja J, Nuortila C, Mikulski M, Niemi S. Properties of Chemically Stabilized Methanol–HVO Blends. Energies. 2024; 17(15):3724. https://doi.org/10.3390/en17153724
Chicago/Turabian StyleWang-Alho, Huaying, Katriina Sirviö, Fatimoh Balogun, Jonna Kaivosoja, Carolin Nuortila, Maciej Mikulski, and Seppo Niemi. 2024. "Properties of Chemically Stabilized Methanol–HVO Blends" Energies 17, no. 15: 3724. https://doi.org/10.3390/en17153724
APA StyleWang-Alho, H., Sirviö, K., Balogun, F., Kaivosoja, J., Nuortila, C., Mikulski, M., & Niemi, S. (2024). Properties of Chemically Stabilized Methanol–HVO Blends. Energies, 17(15), 3724. https://doi.org/10.3390/en17153724