Sustainable Management and Advanced Nutrient Recovery from Biogas Energy Sector Effluents
Abstract
:1. Introduction
2. Digestate—A By-Product of AD
3. Recovery of Valuable Products from Digestate
3.1. Recovery of Nutrients—Production of Biofertilisers
3.2. Nutrient Recovery Techniques
3.2.1. Drying
3.2.2. Struvite Precipitation: A Sustainable Approach to Nutrient Recovery
3.2.3. Ammonia Stripping: An Efficient Nutrient Recovery Method
3.2.4. Membrane Technology
3.2.5. Ion Exchange and Adsorption
3.3. Recovery of Organic Matter
3.3.1. Composting: Transforming Digestate into a Valuable Soil Amendment
3.3.2. Vermicomposting: Enhancing Soil Fertility through Earthworms
3.3.3. Biochar Production: Converting Digestate into a Carbon-Rich Soil Enhancer
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Raut, N.A.; Kokare, D.M.; Randive, K.R.; Bhanvase, B.A.; Dhoble, S.J. Introduction: Fundamentals of Waste Removal Technologies. In 360-Degree Waste Management; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 1–16. [Google Scholar]
- Chozhavendhan, S.; Karthigadevi, G.; Bharathiraja, B.; Praveen Kumar, R.; Abo, L.D.; Venkatesa Prabhu, S.; Balachandar, R.; Jayakumar, M. Current and Prognostic Overview on the Strategic Exploitation of Anaerobic Digestion and Digestate: A Review. Environ. Res. 2023, 216, 114526. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Kwon, E.E.; Nadagouda, M.N.; Aminabhavi, T.M. Biomass Utilization and Production of Biofuels from Carbon Neutral Materials. Environ. Pollut. 2021, 276, 116731. [Google Scholar] [CrossRef]
- European Biogas Association. European Biogas Association Statistical Report 2021; European Biogas Association: Brussels, Belgium, 2021. [Google Scholar]
- Jurgutis, L.; Šlepetienė, A.; Šlepetys, J.; Cesevičienė, J. Towards a Full Circular Economy in Biogas Plants: Sustainable Management of Digestate for Growing Biomass Feedstocks and Use as Biofertilizer. Energies 2021, 14, 4272. [Google Scholar] [CrossRef]
- European Biogas Association. European Biogas Association Statistical Report 2023; European Biogas Association: Brussels, Belgium, 2023. [Google Scholar]
- Chong, C.C.; Cheng, Y.W.; Ishak, S.; Lam, M.K.; Lim, J.W.; Tan, I.S.; Show, P.L.; Lee, K.T. Anaerobic Digestate as a Low-Cost Nutrient Source for Sustainable Microalgae Cultivation: A Way Forward through Waste Valorization Approach. Sci. Total Environ. 2022, 803, 150070. [Google Scholar] [CrossRef] [PubMed]
- Rizzioli, F.; Bertasini, D.; Bolzonella, D.; Frison, N.; Battista, F. A Critical Review on the Techno-Economic Feasibility of Nutrients Recovery from Anaerobic Digestate in the Agricultural Sector. Sep. Purif. Technol. 2023, 306, 122690. [Google Scholar] [CrossRef]
- Tambone, F.; Orzi, V.; D’Imporzano, G.; Adani, F. Solid and Liquid Fractionation of Digestate: Mass Balance, Chemical Characterization, and Agronomic and Environmental Value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Bano, A.; Verma, K.; Yadav, M.; Varjani, S.; Singh, S.P.; Tong, Y.W. Food Waste Digestate as Biofertilizer and Their Direct Applications in Agriculture. Bioresour. Technol. Rep. 2023, 23, 101515. [Google Scholar] [CrossRef]
- Nosheen, S.; Ajmal, I.; Song, Y. Microbes as Biofertilizers, a Potential Approach for Sustainable Crop Production. Sustainability 2021, 13, 1868. [Google Scholar] [CrossRef]
- Sürmen, M.; Kara, E. High-Quality Fertilizers from Biogas Digestate. Environ. Clim.-Smart Food Prod. 2021, 1, 319–347. [Google Scholar] [CrossRef]
- Rey-Martínez, N.; Torres-Sallan, G.; Morales, N.; Serra, E.; Bisschops, I.; van Eekert, M.H.A.; Borràs, E.; Sanchis, S. Combination of Technologies for Nutrient Recovery from Wastewater: A Review. Clean. Waste Syst. 2024, 7, 100139. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K. Anaerobic Digestate Management for Carbon Neutrality and Fertilizer Use: A Review of Current Practices and Future Opportunities. Biomass Bioenergy 2024, 180, 106991. [Google Scholar] [CrossRef]
- Reuland, G.; Sigurnjak, I.; Dekker, H.; Michels, E.; Meers, E. The Potential of Digestate and the Liquid Fraction of Digestate as Chemical Fertiliser Substitutes under the RENURE Criteria. Agronomy 2021, 11, 1374. [Google Scholar] [CrossRef]
- Maroušek, J.; Minofar, B.; Maroušková, A.; Strunecký, O.; Gavurová, B. Environmental and Economic Advantages of Production and Application of Digestate Biochar. Environ. Technol. Innov. 2023, 30, 103109. [Google Scholar] [CrossRef]
- Barampouti, E.M.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M. Exploring Technological Alternatives of Nutrient Recovery from Digestate as a Secondary Resource. Renew. Sustain. Energy Rev. 2020, 134, 110379. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Lebuf, V.; Michels, E.; Belia, E.; Vanrolleghem, P.A.; Tack, F.M.G.; Meers, E. Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste Biomass Valori. 2017, 8, 21–40. [Google Scholar] [CrossRef]
- Parra-Orobio, B.A.; Rotavisky-Sinisterra, M.P.; Pérez-Vidal, A.; Marmolejo-Rebellón, L.F.; Torres-Lozada, P. Physicochemical, Microbiological Characterization and Phytotoxicity of Digestates Produced on Single-Stage and Two-Stage Anaerobic Digestion of Food Waste. Sustain. Environ. Res. 2021, 31, 11. [Google Scholar] [CrossRef]
- Zeshan; Visvanathan, C. Evaluation of Anaerobic Digestate for Greenhouse Gas Emissions at Various Stages of Its Management. Int. Biodeterior. 2014, 95, 167–175. [Google Scholar] [CrossRef]
- Brienza, C.; Sigurnjak, I.; Meier, T.; Michels, E.; Adani, F.; Schoumans, O.; Vaneeckhaute, C.; Meers, E. Techno-Economic Assessment at Full Scale of a Biogas Refinery Plant Receiving Nitrogen Rich Feedstock and Producing Renewable Energy and Biobased Fertilisers. J. Clean. Prod. 2021, 308, 127408. [Google Scholar] [CrossRef] [PubMed]
- Cerda, A.; Mejias, L.; Rodríguez, P.; Rodríguez, A.; Artola, A.; Font, X.; Gea, T.; Sánchez, A. Valorisation of Digestate from Biowaste through Solid-State Fermentation to Obtain Value Added Bioproducts: A First Approach. Bioresour. Technol. 2019, 271, 409–416. [Google Scholar] [CrossRef]
- Parmar, K.R.; Ross, A.B. Integration of Hydrothermal Carbonisation with Anaerobic Digestion; Opportunities for Valorisation of Digestate. Energies 2019, 12, 1586. [Google Scholar] [CrossRef]
- Hidaka, T.; Suzuki, S.; Nishimura, F. Growth Characteristics of Photosynthetic Bacteria Cultured in Anaerobic Digestate of Sewage Sludge to Be Used as Fertilizer. Waste Biomass Valori. 2022, 13, 1579–1588. [Google Scholar] [CrossRef]
- Johnravindar, D.; Wong, J.W.C.; Dharma Patria, R.; Uisan, K.; Kumar, R.; Kaur, G. Bioreactor-Scale Production of Rhamnolipids from Food Waste Digestate and Its Recirculation into Anaerobic Digestion for Enhanced Process Performance: Creating Closed-Loop Integrated Biorefinery Framework. Bioresour. Technol. 2022, 360, 127578. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, S.; Chen, K.; Wang, T.; Mei, M.; Li, J. Preparation of Biochar from Food Waste Digestate: Pyrolysis Behavior and Product Properties. Bioresour. Technol. 2020, 302, 122841. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Becker, G.C.; Faweya, N.; Rodriguez Correa, C.; Yang, S.; Xie, X.; Kruse, A. Fertilizer and Activated Carbon Production by Hydrothermal Carbonization of Digestate. Biomass Convers. Biorefin. 2018, 8, 423–436. [Google Scholar] [CrossRef]
- Wang, W.; Chang, J.-S.; Lee, D.-J. Anaerobic Digestate Valorization beyond Agricultural Application: Current Status and Prospects. Bioresour. Technol. 2023, 373, 128742. [Google Scholar] [CrossRef] [PubMed]
- Ablieieva, I.; Geletukha, G.; Kucheruk, P.; Enrich-Prast, A.; Carraro, G.; Berezhna, I.; Berezhnyi, D. Digestate Potential to Substitute Mineral Fertilizers: Engineering Approaches. J. Eng. Sci. 2022, 9, H1–H10. [Google Scholar] [CrossRef]
- Cesaro, A. The Valorization of the Anaerobic Digestate from the Organic Fractions of Municipal Solid Waste: Challenges and Perspectives. J. Environ. Manag. 2021, 280, 111742. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Fan, S.; Tang, X.; Qi, B.; Deng, L.; Wang, W.; Liu, J.; Wang, Y.; Xiao, Z. Simultaneous Recovery of Phosphorus and Nitrogen from Liquid Digestate by Vacuum Membrane Distillation with Permeate Fractional Condensation. Chin. J. Chem. Eng. 2020, 28, 1558–1565. [Google Scholar] [CrossRef]
- Bolzonella, D.; Fatone, F.; Gottardo, M.; Frison, N. Nutrients Recovery from Anaerobic Digestate of Agro-Waste: Techno-Economic Assessment of Full Scale Applications. J. Environ. Manag. 2018, 216, 111–119. [Google Scholar] [CrossRef]
- Akhiar, A.; Battimelli, A.; Torrijos, M.; Carrere, H. Comprehensive Characterization of the Liquid Fraction of Digestates from Full-Scale Anaerobic Co-Digestion. Waste Manag. 2017, 59, 118–128. [Google Scholar] [CrossRef]
- Micolucci, F.; Gottardo, M.; Cavinato, C.; Pavan, P.; Bolzonella, D. Mesophilic and Thermophilic Anaerobic Digestion of the Liquid Fraction of Pressed Biowaste for High Energy Yields Recovery. Waste Manag. 2016, 48, 227–235. [Google Scholar] [CrossRef]
- Leite, W.R.M.; Gottardo, M.; Pavan, P.; Belli Filho, P.; Bolzonella, D. Performance and Energy Aspects of Single and Two Phase Thermophilic Anaerobic Digestion of Waste Activated Sludge. Renew. Energy 2016, 86, 1324–1331. [Google Scholar] [CrossRef]
- Giuliano, A.; Bolzonella, D.; Pavan, P.; Cavinato, C.; Cecchi, F. Co-Digestion of Livestock Effluents, Energy Crops and Agro-Waste: Feeding and Process Optimization in Mesophilic and Thermophilic Conditions. Bioresour. Technol. 2013, 128, 612–618. [Google Scholar] [CrossRef]
- Mangwandi, C.; JiangTao, L.; Albadarin, A.B.; Allen, S.J.; Walker, G.M. The Variability in Nutrient Composition of Anaerobic Digestate Granules Produced from High Shear Granulation. Waste Manag. 2013, 33, 33–42. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.; He, N.; Zheng, Y.; Li, H.; Wang, H.; Wang, Y.; Lu, Y.; Li, Q.; Peng, Y. Nitrogen and Phosphorus Removal from Anaerobically Digested Wastewater by Microalgae Cultured in a Novel Membrane Photobioreactor. Biotechnol. Biofuels 2018, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Marcilhac, C.; Sialve, B.; Pourcher, A.M.; Ziebal, C.; Bernet, N.; Béline, F. Control of Nitrogen Behaviour by Phosphate Concentration during Microalgal-Bacterial Cultivation Using Digestate. Bioresour. Technol. 2015, 175, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Pizzera, A.; Scaglione, D.; Bellucci, M.; Marazzi, F.; Mezzanotte, V.; Parati, K.; Ficara, E. Digestate Treatment with Algae-Bacteria Consortia: A Field Pilot-Scale Experimentation in a Sub-Optimal Climate Area. Bioresour. Technol. 2019, 274, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Prasad, R.; Higgins, B.T. Aerobic Bacterial Pretreatment to Overcome Algal Growth Inhibition on High-Strength Anaerobic Digestates. Water Res. 2019, 162, 420–426. [Google Scholar] [CrossRef]
- Bankston, E.M.; Higgins, B.T. Anaerobic Microbial Communities Can Influence Algal Growth and Nutrient Removal from Anaerobic Digestate. Bioresour. Technol. 2020, 297, 122445. [Google Scholar] [CrossRef]
- Xia, A.; Murphy, J.D. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems. Trends Biotechnol. 2016, 34, 264–275. [Google Scholar] [CrossRef]
- Roberts, N.; Hilliard, M.; He, Q.P.; Wang, J. A Microalgae-Methanotroph Coculture Is a Promising Platform for Fuels and Chemical Production From Wastewater. Front. Energy Res. 2020, 8, 563352. [Google Scholar] [CrossRef]
- Sheets, J.P.; Yang, L.; Ge, X.; Wang, Z.; Li, Y. Beyond Land Application: Emerging Technologies for the Treatment and Reuse of Anaerobically Digested Agricultural and Food Waste. Waste Manag. 2015, 44, 94–115. [Google Scholar] [CrossRef] [PubMed]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Buysse, J.; Tack, F.M.G. Ecological and Economic Benefits of the Application of Bio-Based Mineral Fertilizers in Modern Agriculture. Biomass Bioenergy 2013, 49, 239–248. [Google Scholar] [CrossRef]
- Herbes, C.; Roth, U.; Wulf, S.; Dahlin, J. Economic Assessment of Different Biogas Digestate Processing Technologies: A Scenario-Based Analysis. J. Clean. Prod. 2020, 255, 120282. [Google Scholar] [CrossRef]
- Tsaridou, C.; Karanasiou, A.; Sioutopoulos, D.; Plakas, K.; Tzioumaklis, C.; Patsikas, N.; Gliaos, P.; Karabelas, A. Nutrients Recovery from Liquid Anaerobic Digestate by Combining Nanofiltration and Struvite Precipitation-The Case of Dairy Effluents Valorization. In Proceedings of the 18th International Conference on Environmental Science and Technology, Athens, Greece, 30 August–2 September 2023; Volume 18. [Google Scholar]
- Muhmood, A.; Lu, J.; Kadam, R.; Dong, R.; Guo, J.; Wu, S. Biochar Seeding Promotes Struvite Formation, but Accelerates Heavy Metal Accumulation. Sci. Total Environ. 2019, 652, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Chen, Q.; Liu, R.; Song, L.; Zhang, Y.; Dai, X. Ammonia Recovery from Anaerobic Digestate: State of the Art, Challenges and Prospects. Bioresour. Technol. 2022, 363, 127957. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, M.; Sosulski, T.; Bożętka, A.; Dawidowicz, U.; Wąs, A.; Szara, E.; Malak-Rawlikowska, A.; Sulewski, P.; van Pruissen, G.W.P.; Cornelissen, R.L. Evaluating the Struvite Recovered from Anaerobic Digestate in a Farm Bio-Refinery as a Slow-Release Fertiliser. Energies 2020, 13, 5342. [Google Scholar] [CrossRef]
- Saerens, B.; Geerts, S.; Weemaes, M. Phosphorus Recovery as Struvite from Digested Sludge—Experience from the Full Scale. J. Environ. Manag. 2021, 280, 111743. [Google Scholar] [CrossRef] [PubMed]
- Mehta, C.M.; Khunjar, W.O.; Nguyen, V.; Tait, S.; Batstone, D.J. Technologies to Recover Nutrients from Waste Streams: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 385–427. [Google Scholar] [CrossRef]
- Shi, L.; Simplicio, W.S.; Wu, G.; Hu, Z.; Hu, H.; Zhan, X. Nutrient Recovery from Digestate of Anaerobic Digestion of Livestock Manure: A Review. Curr. Pollut. Rep. 2018, 4, 74–83. [Google Scholar] [CrossRef]
- Yellezuome, D.; Zhu, X.; Wang, Z.; Liu, R. Mitigation of Ammonia Inhibition in Anaerobic Digestion of Nitrogen-Rich Substrates for Biogas Production by Ammonia Stripping: A Review. Renew. Sustain. Energy Rev. 2022, 157, 112043. [Google Scholar] [CrossRef]
- Bonmatí, A.; Flotats, X. Air Stripping of Ammonia from Pig Slurry: Characterisation and Feasibility as a Pre- or Post-Treatment to Mesophilic Anaerobic Digestion. Waste Manag. 2003, 23, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Folino, A.; Zema, D.A.; Calabrò, P.S. Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review. Sustainability 2020, 12, 4971. [Google Scholar] [CrossRef]
- Tao, W.; Fattah, K.P.; Huchzermeier, M.P. Struvite Recovery from Anaerobically Digested Dairy Manure: A Review of Application Potential and Hindrances. J. Environ. Manag. 2016, 169, 46–57. [Google Scholar] [CrossRef]
- Bousek, J.; Scroccaro, D.; Sima, J.; Weissenbacher, N.; Fuchs, W. Influence of the Gas Composition on the Efficiency of Ammonia Stripping of Biogas Digestate. Bioresour. Technol. 2016, 203, 259–266. [Google Scholar] [CrossRef]
- Serna-Maza, A.; Heaven, S.; Banks, C.J. Biogas Stripping of Ammonia from Fresh Digestate from a Food Waste Digester. Bioresour. Technol. 2015, 190, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Pezzuolo, A.; Gouda, S.G.; Jia, S.; Eraky, M.; Ran, Y.; Chen, M.; Ai, P. Valorization of Bio-Fertilizer from Anaerobic Digestate through Ammonia Stripping Process: A Practical and Sustainable Approach towards Circular Economy. Environ. Technol. Innov. 2022, 27, 102414. [Google Scholar] [CrossRef]
- Xiang, S.; Liu, Y.; Zhang, G.; Ruan, R.; Wang, Y.; Wu, X.; Zheng, H.; Zhang, Q.; Cao, L. New Progress of Ammonia Recovery during Ammonia Nitrogen Removal from Various Wastewaters. World J. Microbiol. Biotechnol. 2020, 36, 10. [Google Scholar] [CrossRef] [PubMed]
- Palakodeti, A.; Azman, S.; Rossi, B.; Dewil, R.; Appels, L. A Critical Review of Ammonia Recovery from Anaerobic Digestate of Organic Wastes via Stripping. Renew. Sustain. Energy Rev. 2021, 143, 110903. [Google Scholar] [CrossRef]
- Aung, S.L.; Choi, J.; Cha, H.; Woo, G.; Song, K.G. Ammonia-Selective Recovery from Anaerobic Digestate Using Electrochemical Ammonia Stripping Combined with Electrodialysis. Chem. Eng. J. 2024, 479, 147949. [Google Scholar] [CrossRef]
- Eraky, M.; Elsayed, M.; Qyyum, M.A.; Ai, P.; Tawfik, A. A New Cutting-Edge Review on the Bioremediation of Anaerobic Digestate for Environmental Applications and Cleaner Bioenergy. Environ. Res. 2022, 213, 113708. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, G.; Trimarchi, E.; Selvaggi, R. Assessment of Economic Viability and Production Costs for the Innovative Microfiltered Digestate. J. Environ. Manag. 2023, 332, 117360. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Dong, H.; Chen, Y.; Shang, B.; Wang, Y.; Wang, S.; Zhu, Z. Direct Purification of Digestate Using Ultrafiltration Membranes: Influence of Pore Size on Filtration Behavior and Fouling Characteristics. Membranes 2021, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- Adam, G.; Mottet, A.; Lemaigre, S.; Tsachidou, B.; Trouvé, E.; Delfosse, P. Fractionation of Anaerobic Digestates by Dynamic Nanofiltration and Reverse Osmosis: An Industrial Pilot Case Evaluation for Nutrient Recovery. J. Environ. Chem. Eng. 2018, 6, 6723–6732. [Google Scholar] [CrossRef]
- Ledda, C.; Schievano, A.; Salati, S.; Adani, F. Nitrogen and Water Recovery from Animal Slurries by a New Integrated Ultrafiltration, Reverse Osmosis and Cold Stripping Process: A Case Study. Water Res. 2013, 47, 6157–6166. [Google Scholar] [CrossRef] [PubMed]
- Masse, L.; Massé, D.I.; Pellerin, Y. The Use of Membranes for the Treatment of Manure: A Critical Literature Review. Biosyst. Eng. 2007, 98, 371–380. [Google Scholar] [CrossRef]
- Qi, B.; Jiang, X.; Wang, H.; Li, J.; Zhao, Q.; Li, R.; Wang, W. Resource Recovery from Liquid Digestate of Swine Wastewater by an Ultrafiltration Membrane Bioreactor (UF-MBR) and Reverse Osmosis (RO) Process. Environ. Technol. Innov. 2021, 24, 101830. [Google Scholar] [CrossRef]
- Ma, W.; Han, R.; Zhu, L.; Jiang, L.; Zhang, W.; Zhang, H.; Chen, L. Efficient Recovery of Ammonia from Digestate by Membrane Distillation: Nano-FeOOH Re-Entry Structure Modification, Anti-Fouling, and Anti-Wetting Performance. Sep. Purif. Technol. 2023, 323, 124414. [Google Scholar] [CrossRef]
- Camilleri-Rumbau, M.S.; Briceño, K.; Søtoft, L.F.; Christensen, K.V.; Roda-Serrat, M.C.; Errico, M.; Norddahl, B. Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges. Int. J. Environ. Res. Public Health 2021, 18, 3107. [Google Scholar] [CrossRef]
- Zielińska, M.; Mikucka, W. Membrane Filtration for Valorization of Digestate from the Anaerobic Treatment of Distillery Stillage. Desalin. Water Treat. 2021, 215, 60–68. [Google Scholar] [CrossRef]
- Piash, K.S.; Anwar, R.; Shingleton, C.; Erwin, R.; Lin, L.; Sanyal, O. Integrating Chemical Precipitation and Membrane Separation for Phosphorus and Ammonia Recovery from Anaerobic Digestate. AIChE J. 2022, 68, 17869. [Google Scholar] [CrossRef]
- González-García, I.; Oliveira, V.; Molinuevo-Salces, B.; García-González, M.C.; Dias-Ferreira, C.; Riaño, B. Two-Phase Nutrient Recovery from Livestock Wastewaters Combining Novel Membrane Technologies. Biomass Convers. Biorefin. 2022, 12, 4563–4574. [Google Scholar] [CrossRef]
- Guo, X.; Zeng, L.; Li, X.; Park, H. Removal of Ammonium from RO Permeate of Anaerobically Digested Wastewater by Natural Zeolite. Sep. Sci. Technol. 2007, 42, 3169–3185. [Google Scholar] [CrossRef]
- Kocatürk-Schumacher, N.P.; Bruun, S.; Zwart, K.; Jensen, L.S. Nutrient Recovery From the Liquid Fraction of Digestate by Clinoptilolite. Clean 2017, 45, 153. [Google Scholar] [CrossRef]
- Wirthensohn, T.; Waeger, F.; Jelinek, L.; Fuchs, W. Ammonium Removal from Anaerobic Digester Effluent by Ion Exchange. Water Sci. Technol. 2009, 60, 201–210. [Google Scholar] [CrossRef]
- Song, B.; Manu, M.K.; Li, D.; Wang, C.; Varjani, S.; Ladumor, N.; Michael, L.; Xu, Y.; Wong, J.W.C. Food Waste Digestate Composting: Feedstock Optimization with Sawdust and Mature Compost. Bioresour. Technol. 2021, 341, 125759. [Google Scholar] [CrossRef]
- Gurmessa, B.; Cocco, S.; Ashworth, A.J.; Udawatta, R.P.; Cardelli, V.; Ilari, A.; Serrani, D.; Fornasier, F.; Del Gatto, A.; Pedretti, E.F.; et al. Short Term Effects of Digestate and Composted Digestate on Soil Health and Crop Yield: Implications for Sustainable Biowaste Management in the Bioenergy Sector. Sci. Total Environ. 2024, 906, 167208. [Google Scholar] [CrossRef] [PubMed]
- Czekała, W.; Dach, J.; Dong, R.; Janczak, D.; Malińska, K.; Jóźwiakowski, K.; Smurzyńska, A.; Cieślik, M. Composting Potential of the Solid Fraction of Digested Pulp Produced by a Biogas Plant. Biosyst. Eng. 2017, 160, 25–29. [Google Scholar] [CrossRef]
- Chaher, N.E.H.; Nassour, A.; Hamdi, M.; Nelles, M. Digestate Post-Treatment and Upcycling: Unconventional Moisturizing Agent for Food Waste In-Vessel Composting. Waste Biomass Valori. 2022, 13, 1459–1473. [Google Scholar] [CrossRef]
- Bekchanov, M.; Mirzabaev, A. Circular Economy of Composting in Sri Lanka: Opportunities and Challenges for Reducing Waste Related Pollution and Improving Soil Health. J. Clean. Prod. 2018, 202, 1107–1119. [Google Scholar] [CrossRef]
- Crutchik, D.; Rodríguez-Valdecantos, G.; Bustos, G.; Bravo, J.; González, B.; Pabón-Pereira, C. Vermiproductivity, Maturation and Microbiological Changes Derived from the Use of Liquid Anaerobic Digestate during the Vermicomposting of Market Waste. Water Sci. Technol. 2020, 82, 1781–1794. [Google Scholar] [CrossRef]
- Wang, N.; Huang, D.; Bai, X.; Lin, Y.; Miao, Q.; Shao, M.; Xu, Q. Mechanism of Digestate-Derived Biochar on Odorous Gas Emissions and Humification in Composting of Digestate from Food Waste. J. Hazard. Mater. 2022, 434, 128878. [Google Scholar] [CrossRef] [PubMed]
- Yatoo, A.M.; Ali, M.N.; Baba, Z.A.; Hassan, B. Sustainable Management of Diseases and Pests in Crops by Vermicompost and Vermicompost Tea. A Review. Agron. Sustain. Dev. 2021, 41, 1–26. [Google Scholar] [CrossRef]
- Lu, J.; Xu, S. Post-Treatment of Food Waste Digestate towards Land Application: A Review. J. Clean. Prod. 2021, 303, 127033. [Google Scholar] [CrossRef]
- Petrovič, A.; Vohl, S.; Cenčič Predikaka, T.; Bedoić, R.; Simonič, M.; Ban, I.; Čuček, L. Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar. Sustainability 2021, 13, 9642. [Google Scholar] [CrossRef]
- Tayibi, S.; Monlau, F.; Marias, F.; Thevenin, N.; Jimenez, R.; Oukarroum, A.; Alboulkas, A.; Zeroual, Y.; Barakat, A. Industrial Symbiosis of Anaerobic Digestion and Pyrolysis: Performances and Agricultural Interest of Coupling Biochar and Liquid Digestate. Sci. Total Environ. 2021, 793, 148461. [Google Scholar] [CrossRef]
- Beusch, C.; Beusch, C. Biochar as a Soil Ameliorant: How Biochar Properties Benefit Soil Fertility—A Review. J. Geosci. Environ. Prot. 2021, 9, 28–46. [Google Scholar] [CrossRef]
- Basak, B.B.; Sarkar, B.; Saha, A.; Sarkar, A.; Mandal, S.; Biswas, J.K.; Wang, H.; Bolan, N.S. Revamping Highly Weathered Soils in the Tropics with Biochar Application: What We Know and What Is Needed. Sci. Total Environ. 2022, 822, 153461. [Google Scholar] [CrossRef] [PubMed]
- Lopes, É.M.G.; Reis, M.M.; Frazão, L.A.; da Mata Terra, L.E.; Lopes, E.F.; dos Santos, M.M.; Fernandes, L.A. Biochar Increases Enzyme Activity and Total Microbial Quality of Soil Grown with Sugarcane. Environ. Technol. Innov. 2021, 21, 101270. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Glaser, B. Soil Organic Carbon Sequestration after Biochar Application: A Global Meta-Analysis. Agronomy 2021, 11, 2474. [Google Scholar] [CrossRef]
- Dutta, S.; He, M.; Xiong, X.; Tsang, D.C.W. Sustainable Management and Recycling of Food Waste Anaerobic Digestate: A Review. Bioresour. Technol. 2021, 341, 125915. [Google Scholar] [CrossRef] [PubMed]
- Hue, N. Biochar for Maintaining Soil Health. Soil Health 2020, 1, 21–46. [Google Scholar] [CrossRef]
- Siipola, V.; Pflugmacher, S.; Romar, H.; Wendling, L.; Koukkari, P. Low-Cost Biochar Adsorbents for Water Purification Including Microplastics Removal. Appl. Sci. 2020, 10, 788. [Google Scholar] [CrossRef]
- Guo, X.-x.; Liu, H.-t.; Zhang, J. The Role of Biochar in Organic Waste Composting and Soil Improvement: A Review. Waste Manag. 2020, 102, 884–899. [Google Scholar] [CrossRef]
- Haeldermans, T.; Campion, L.; Kuppens, T.; Vanreppelen, K.; Cuypers, A.; Schreurs, S. A Comparative Techno-Economic Assessment of Biochar Production from Different Residue Streams Using Conventional and Microwave Pyrolysis. Bioresour. Technol. 2020, 318, 124083. [Google Scholar] [CrossRef]
- Das, D.; Bordoloi, U.; Muigai, H.H.; Kalita, P. A Novel Form Stable PCM Based Bio Composite Material for Solar Thermal Energy Storage Applications. J. Energy Storage 2020, 30, 101403. [Google Scholar] [CrossRef]
Waste Type | pH (–) | TS (%) | VS (%) | VFA (mg/L) | N (%) | P (%) | K (%) | Ca (%) | Mg (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Food waste | 6.77–6.83 | 4.49 | 2.93 | 8581 | 6.9 | 7.2 | – | – | – | [19] |
Municipal solid waste | – | 10.50 | 64.12 | – | 1.94 | 0.62 | – | – | – | [20] |
Chicken manure | 8.40 | 11.80 | 8.20 | – | 7.9 | 1.6 | 6.9 | 4.2 | 0.75 | [21] |
Biowaste | 8.31 | 24.40 | 63.00 | – | 4.32 | [22] | ||||
Agricultural residue | – | – | 70.20 | – | 3.2 | 1.2 | 1.6 | 1.3 | 0.7 | [23] |
Residual municipal solid waste | – | – | 36.20 | – | 1.5 | 0.7 | 1.6 | 10.4 | 1.4 | [23] |
Sewage sludge | – | – | 51.00 | – | 3.4 | 2.7 | 0.7 | 4.6 | 0.9 | [23] |
Vegetable, garden and fruit waste | – | – | 42.70 | – | 2.0 | 2.6 | 0.7 | 4.3 | 0.8 | [23] |
Sewage sludge | – | 1.78 | 0.95 | – | – | – | 298 * | 146 * | 26.5 * | [24] |
Food waste | 8.10 | – | – | 300 | 1.14 | – | – | – | – | [25] |
Food waste | – | 76.31 | 66.10 | – | 1.92 | 18.77 | 2.76 | 14.93 | 2.77 | [26] |
Maize and grass silage and cattle manure | – | – | 74.10 | – | 3.6 | 1.35 | 5.23 | 2.01 | 0.94 | [27] |
Recovery Method | Products Recovered | Benefits | Challenges |
---|---|---|---|
Struvite precipitation | Struvite (biofertilizer) | Slow-release fertilizer, reduces dependency on synthetic fertilizers | Initial investment, optimization of operating parameters |
Ammonia stripping | Ammonia-based fertilizers | Efficient nitrogen recovery, reduces environmental impact | High energy consumption, pH management |
Membrane technologies | Nutrient-rich concentrate, purified water | Efficient nutrient recovery, water reuse | Membrane fouling, high operational costs |
Microalgae cultivation | Biofuels, bioplastics | Renewable energy production, sustainable materials | Digestate component inhibition, strain selection |
Composting | Compost | Enhances soil health, reduces waste volume | Space requirements, odor emissions |
Vermicomposting | Vermicompost | Improves soil fertility, increases microbial activity | Environmental condition management |
Biochar production | Biochar | Soil enhancement, carbon sequestration | Upfront costs, quality variability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, M.; Bułkowska, K. Sustainable Management and Advanced Nutrient Recovery from Biogas Energy Sector Effluents. Energies 2024, 17, 3705. https://doi.org/10.3390/en17153705
Zielińska M, Bułkowska K. Sustainable Management and Advanced Nutrient Recovery from Biogas Energy Sector Effluents. Energies. 2024; 17(15):3705. https://doi.org/10.3390/en17153705
Chicago/Turabian StyleZielińska, Magdalena, and Katarzyna Bułkowska. 2024. "Sustainable Management and Advanced Nutrient Recovery from Biogas Energy Sector Effluents" Energies 17, no. 15: 3705. https://doi.org/10.3390/en17153705
APA StyleZielińska, M., & Bułkowska, K. (2024). Sustainable Management and Advanced Nutrient Recovery from Biogas Energy Sector Effluents. Energies, 17(15), 3705. https://doi.org/10.3390/en17153705