Unraveling the Role of Amino Acid L-Tryptophan Concentration in Enhancing CO2 Hydrate Kinetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study 1: CO2 Hydrate Kinetics and Morphological Observation under Stirring Condition
2.1.1. Materials
2.1.2. Apparatus
2.1.3. Procedure
2.2. Study 2: CO2 Hydrate Kinetics and Morphological Observation in the Static System
2.2.1. Apparatus
2.2.2. Procedure
3. Results and Discussion
3.1. CO2 Hydrate Formation Kinetics in L-Trp Solution
CO2 Gas Uptake Profiles in 0.05 wt% L-Trp Solution
3.2. CO2 Hydrate Formation Morphology in L-Trp Solution
3.3. CO2 Hydrate Formation at 0.1/0.5 wt% L-Trp in Unstirred Conditions
- (i)
- As declared in the experimental procedure, the dissociation of hydrates was performed by gradually increasing the internal temperature. The initial increase in temperature did not cause any variation in pressure. It means that the system did not reach the equilibrium, while it remained widely within the stability zone (otherwise, even a little increase in temperature would have caused the variation in pressure). That consists of the main difference with tests showed in the previous section. Here, hydrates were produced in the absence of stirring and without using any porous medium in order to differentiate the results and to remove any further element of promotion from the system. As a consequence, hydrates mainly formed in correspondence of the gas–liquid interface. Therefore, the reaction occurred, as expected, but stopped in advance.
- (ii)
- The formation curves were widely different from the phase equilibrium line. The maximum distance between the two curves always occurred at the end of the formation phase, according to the literature, and so what was observed in previous studies carried out with the same apparatus [56].
- (iii)
- At 0.1 wt%, the increase in pressure during the dissociation phase showed a sudden change, accompanied by a local and time-limited decrease in temperature, which proved the fast dissociation of water cages in correspondence of it (with the process being endothermic). Moreover, this phenomenon occurred at the same pressures, measured during the formation phase, and corresponding to when the internal pressure changed its trend due to the more massive production of hydrates. Such a peculiarity is well visible in Figure 8a and, more in general, was verified in each experiment belonging to this group (0.1 wt% L-trp). Therefore, it can be considered characteristic for the process and can be associated to the heat and mass transfer properties of the system. Moreover, it may allow us to define the phase boundary conditions of the system in the presence of 0.1 wt% L-trp.
- (iv)
- During the last portion of the dissociation phase, the experimental curves significantly deviated from the phase equilibrium curve, independently from the additive concentration. It can be considered as the tendency of hydrate structures to preserve themselves, even if the thermodynamic conditions are no more feasible for the permanence of hydrates [57].
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Coninck, H.; Benson, S.M. Carbon dioxide capture and storage: Issues and prospects. Annu. Rev. Environ. Resour. 2014, 39, 243–270. [Google Scholar] [CrossRef]
- Rehman, A.N.; Bavoh, C.B.; Pendyala, R.; Lal, B. Research Advances, Maturation, and Challenges of Hydrate-Based CO2 Sequestration in Porous Media. ACS Sustain. Chem. Eng. 2021, 9, 15075–15108. [Google Scholar] [CrossRef]
- Pandey, G.; Poothia, T.; Kumar, A. Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization. Appl. Energy 2022, 326, 119900. [Google Scholar] [CrossRef]
- Wang, P.; Teng, Y.; Zhao, Y.; Zhu, J. Experimental Studies on Gas Hydrate-Based CO2 Storage: State-of-the-Art and Future Research Directions. Energy Technol. 2021, 9, 2100004. [Google Scholar] [CrossRef]
- Kumar, Y.; Sangwai, J.S. A perspective on the effect of physicochemical parameters, macroscopic environment, additives, and economics to harness the large-scale hydrate-based CO2 sequestration potential in oceans. ACS Sustain. Chem. Eng. 2023, 11, 10950–10979. [Google Scholar] [CrossRef]
- Zheng, J.; Chong, Z.R.; Qureshi, M.F.; Linga, P. Carbon dioxide sequestration via gas hydrates: A potential pathway toward decarbonization. Energy Fuels 2020, 34, 10529–10546. [Google Scholar] [CrossRef]
- Teng, Y.; Zhang, D. Long-term viability of carbon sequestration in deep-sea sediments. Sci. Adv. 2018, 4, eaao6588. [Google Scholar] [CrossRef]
- Hou, Y.; Xiao, C.; Fu, W.; Ge, Z.; Jia, Y. Dissolution-induced pore-matrix-fracture characteristics evolution due to supercritical CO2. Energy 2024, 1, 131820. [Google Scholar] [CrossRef]
- Snæbjörnsdóttir, S.Ó.; Sigfússon, B.; Marieni, C.; Goldberg, D.; Gislason, S.R.; Oelkers, E.H. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 2020, 1, 90–102. [Google Scholar] [CrossRef]
- Su, Y.; Li, B.; Zhou, W.; Jie, W.; Li, Y.; Zhang, H.; Ni, H. CO2 sequestration by ammonia-enhanced phosphogypsum mineral carbonation: Development and optimization of reaction kinetic model. Chem. Eng. Sci. 2024, 292, 119967. [Google Scholar] [CrossRef]
- Lin, X.; Li, X.; Liu, H.; Boczkaj, G.; Cao, Y.; Wang, C. A review on carbon storage via mineral carbonation: Bibliometric analysis, research advances, challenges, and perspectives. Sep. Purif. Technol. 2024, 338, 126558. [Google Scholar] [CrossRef]
- Cao, X.; Wang, H.; Yang, K.; Wu, S.; Chen, Q.; Bian, J. Hydrate-based CO2 sequestration technology: Feasibilities, mechanisms, influencing factors, and applications. J. Pet. Sci. Eng. 2022, 219, 111121. [Google Scholar] [CrossRef]
- Sloan, E.D. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Bavoh, C.B.; Lal, B.; Osei, H.; Sabil, K.M.; Mukhtar, H. A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage. J. Nat. Gas Sci. Eng. 2019, 64, 52–71. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, F.; He, Y.; Wang, F. Enhanced CO2 hydrate formation via biopromoter coupled with initial stirring activation. Fuel 2022, 330, 125713. [Google Scholar] [CrossRef]
- Hu, Q.; Wnag, X.; Wang, W.; Li, Y.; Liu, S. Growth and aggregation micromorphology of natural gas hydrate particles near gas-liquid interface under stirring conditions. Chin. J. Chem. Eng. 2021, 40, 65–77. [Google Scholar] [CrossRef]
- Bhattacharjee, G.; Kumar, A.; Sakpal, T.; Kumar, R. Carbon dioxide sequestration: Influence of porous media on hydrate formation kinetics. ACS Sustain. Chem. Eng. 2015, 3, 1205–1214. [Google Scholar] [CrossRef]
- Chirkova, Y.F.; Varfolomeev, M.A.; Mirzakimov, U.Z.; Gainullin, S.E.; Semenov, M.E.; Stoporev, A.S.; Pavelyev, R.S. Influence of kinetic promoters with different surface-active properties on methane and natural gas hydrate formation in porous media. Fuel 2024, 369, 131727. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Li, Y.; Rossi, F. Influence of different proportion of CO2/N2 binary gas mixture on methane recovery through replacement processes in natural gas hydrates. Chem. Eng. Process. 2022, 175, 108932. [Google Scholar] [CrossRef]
- Liu, F.P.; Li, A.R.; Qing, S.L.; Luo, Z.D.; Ma, Y.L. Formation kinetics, mechanism of CO2 hydrate and its applications. Renew. Sustain. Energ. Rev. 2022, 159, 112221. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Wong, A.J.H.; Babu, P.; Kumar, R.; Kulprathipanja, S.; Rangsunvigit, P.; Linga, P. Rapid methane hydrate formation to develop a cost effective large scale energy storage system. Chem. Eng. J. 2016, 290, 161–173. [Google Scholar] [CrossRef]
- Li, Y.; Gambelli, A.M.; Rossi, F. Experimental Study on the Effect of SDS and Micron Copper Particles Mixture on Carbon Dioxide Hydrates Formation. Energies 2022, 15, 6540. [Google Scholar] [CrossRef]
- Li, M.; Chen, B.; Li, K.; Song, Y.; Yang, M. Stability and structure of multiply occupied sII CO2 clathrate hydrates: A possibility for carbon capturing. J. Mol. Liq. 2023, 380, 121746. [Google Scholar] [CrossRef]
- Juan, Y.-W.; Tang, M.; Chen, L.-J.; Lin, S.-T.; Chen, P.-C.; Chen, Y.-P. Measurements for the equilibrium conditions of methane hydrate in the presence of cyclopentanone or 4-hydroxy-4-methyl-2-pentanone additives. Fluid Phase Equilib. 2015, 386, 162–167. [Google Scholar] [CrossRef]
- Komarov, V.Y.; Rodionova, T.V.; Terekhova, I.S.; Kuratieva, N.V. The cubic superstructure-I of tetrabutylammonium fluoride (C4H9)4NF·29.7 H2O clathrate hydrate. J. Incl. Phenom. Macrocycl. Chem. 2007, 59, 11–15. [Google Scholar] [CrossRef]
- Sun, Z.-G.; Liu, C.-G.; Zhou, B.; Xu, L.-Z. Phase equilibrium and latent heat of tetra-n-butylammonium chloride semi-clathrate hydrate. J. Chem. Eng. Data 2011, 56, 3416–3418. [Google Scholar] [CrossRef]
- Muromachi, S.; Kida, M.; Takeya, S.; Yamamoto, Y.; Ohmura, R. Characterization of the ionic clathrate hydrate of tetra-n-butylammonium acrylate. Can. J. Chem. 2015, 93, 954–959. [Google Scholar] [CrossRef]
- Fakharian, H.; Ganji, H.; Far, A.N.; Kameli, M. Potato starch as methane hydrate promoter. Fuel 2012, 94, 356–360. [Google Scholar] [CrossRef]
- Bavoh, C.B.; Partoon, B.; Lal, B.; Keong, L.K. Engineering, Methane hydrate-liquid-vapour-equilibrium phase condition measurements in the presence of natural amino acids. J. Nat. Gas Sci. Eng. 2017, 37, 425–434. [Google Scholar]
- Madeira, P.P.; Bessa, A.; Álvares-Ribeiro, L.; Raquel Aires-Barros, M.; Rodrigues, A.E.; Uversky, V.N.; Zaslavsky, B.Y. Amino acid/water interactions study: A new amino acid scale. J. Biomol. Struct. Dyn. 2014, 32, 959–968. [Google Scholar]
- Badawy, W.A.; Ismail, K.M.; Fathi, A.M. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions. Electrochim. Acta 2005, 50, 3603–3608. [Google Scholar] [CrossRef]
- Giovannetti, R.; Gambelli, A.M.; Castellani, B.; Rossi, A.; Minicucci, M.; Zannotti, M.; Li, Y.; Rossi, F. May sediments affect the inhibiting properties of NaCl on CH4 and CO2 hydrates formation? An experimental report. J. Mol. Liq. 2022, 359, 119300. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Lee, P.Y.; Premasinghe, K.; Linga, P. Effect of biofriendly amino acids on the kinetics of methane hydrate formation and dissociation. Ind. Eng. Chem. Res. 2017, 56, 6145–6154. [Google Scholar] [CrossRef]
- Sa, J.H.; Lee, B.R.; Park, D.H.; Han, K.; Chun, H.D.; Lee, K.H. Amino acids as natural inhibitors for hydrate formation in CO2 sequestration. Environ. Sci. Technol. 2011, 45, 5885–5891. [Google Scholar] [CrossRef]
- Sa, J.H.; Kwak, G.H.; Han, K.; Ahn, D.; Cho, S.J.; Lee, J.D.; Lee, K.H. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids. Sci. Rep. 2016, 6, 31582. [Google Scholar] [CrossRef]
- Srivastava, S.; Kollemparembil, A.M.; Zettel, V.; Classen, T.; Gatternig, B.; Delgado, A.; Hitzmann, B. Experimental investigation of CO2 uptake in CO2 hydrates formation with amino acids as kinetic promoters and its dissociation at high temperature. Sci. Rep. 2022, 12, 8359. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.S.R.; Kiran, B.S. Synergistic effects of amino acids in clathrates hydrates: Gas capture and storage applications. Chem. Eng. J. Adv. 2020, 3, 100022. [Google Scholar] [CrossRef]
- Khandelwal, H.; Qureshi, M.F.; Zheng, J.; Venkataraman, P.; Barckholtz, T.A.; Mhadeshwar, A.B.; Linga, P. Effect of l-Tryptophan in Promoting the Kinetics of Carbon Dioxide Hydrate Formation. Energy Fuels 2020, 35, 649–658. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Y.; Li, Q.; Li, L.; Huang, H.; Wang, S.; Wang, W. CO2 Hydrate Formation Promoted by a Natural Amino Acid l-Methionine for Possible Application to CO2 Capture and Storage. Energy Technol. 2017, 5, 1195–1199. [Google Scholar] [CrossRef]
- Liu, X.; Ren, J.; Chen, D.; Yin, Z. Comparison of SDS and L-Methionine in promoting CO2 hydrate kinetics: Implication for hydrate-based CO2 storage. Chem. Eng. J. 2022, 438, 135504. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Chen, G.-J.; Chen, D.-Y.; Sun, B.; Yin, Z. Coupling amino acid with THF for the pynergistic promotion of CO2 hydrate micro kinetics: Implication for hydrate-based CO2 sequestration. ACS Sustain. Chem. Eng. 2023, 11, 6057–6069. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Z.; Lu, H.; Xu, C.; Liu, X.; Huang, H.; Chen, D.; Linga, P. Evaluation of amino acid L-Leucine as a kinetic promoter for CO2 sequestration as hydrate: A kinetic and morphological study. J. Environ. Chem. Eng. 2023, 11, 111363. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Rossi, F. Experimental characterization of the difference in induction period between CH4 and CO2 hydrates: Motivations and possible consequences on the replacement process. Gas Sci. Eng. 2022, 108, 104848. [Google Scholar] [CrossRef]
- Giovannetti, R.; Gambelli, A.M.; Rossi, A.; Castellani, B.; Minicucci, M.; Zannotti, M.; Nicolini, A.; Rossi, F. Thermodynamic assessment and microscale Raman spectroscopy of binary CO2/CH4 hydrates produced during replacement applications in natural reservoirs. J. Mol. Liq. 2022, 368, 120739. [Google Scholar] [CrossRef]
- Gambelli, A.M. Variations in terms of CO2 capture and CH4 recovery during replacement processes in gas hydrate reservoirs, associated to the “memory effect”. J. Clean. Prod. 2022, 360, 132154. [Google Scholar] [CrossRef]
- Tariq, M.; Rooney, D.; Othman, E.; Aparicio, S.; Atilham, M.; Khraishes, M. Gas hydrate inhibition: A review of the role of ionic liquids. Ind. Eng. Chem. Res. 2014, 53, 17855–17868. [Google Scholar] [CrossRef]
- Du, J.; Wang, X.; Liu, H.; Guo, P.; Wang, Z.; Fan, S. Experiments and prediction of phase equilibrium conditions for methane hydrate formation in the NaCl, CaCl2, MgCl2 electrolyte solutions. Fluid Phase Equilibr. 2019, 479, 1–8. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Hong, Q.W.; Linga, P. Morphology Study of Methane Hydrate Formation and Dissociation in the Presence of Amino Acid. Cryst. Growth Des. 2016, 16, 5932–5945. [Google Scholar] [CrossRef]
- Pagar, E.; Burla, S.K.; Kumar, V.; Veluswamy, H.P. Influence of amino acids on gas hydrate formation and dissociation kinetics using flue gas (CO2 + N2 mixture) in silica sand under saline/non saline conditions for CO2 sequestration. Appl. Energy 2024, 367, 123460. [Google Scholar] [CrossRef]
- Jeenmuang, K.; Pornaroontham, P.; Qureshi, M.F.; Linga, P.; Rangsunvigit, P. Micro kinetic analysis of the CO2 hydrate formation and dissociation with L-tryptophan in brine via high pressure in situ Raman spectroscopy for CO2 sequestration. Chem. Eng. J. 2024, 479, 147691. [Google Scholar] [CrossRef]
- Li, Y.; Gambelli, A.M.; Chen, J.; Yin, Z.; Rossi, F.; Tronconi, E.; Mei, S. Experimental study on the competition between carbon dioxide hydrate and ice below the freezing point. Chem. Eng. Sci. 2023, 268, 118426. [Google Scholar] [CrossRef]
- Cho, S.G.; Kim, K.; Sa, J.H. Promotion Effects of Hydrophobic Amino Acids on CO2 Hydrate Formation Kinetics under Isochoric/Isobaric and Stirred/Nonstirred Conditions. Energy Fuels 2023, 38, 526–535. [Google Scholar] [CrossRef]
- Dhamu, V.; Qureshi, M.F.; Abubakar, S.; Usadi, A.; Barckholtz, T.A.; Mhadeshwar, A.B.; Linga, P. Investigating high-pressure liquid CO2 hydrate formation, dissociation kinetics, and morphology in brine and freshwater static systems. Energy Fuels 2023, 37, 8406–8420. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Bhattacharjee, G.; Xu, H.; Yang, M.; Kumar, R.; Linga, P. Synthesis of methane hydrate at ambient temperature with ultra-rapid formation and high gas storage capacity. Energy Environ. Sci. 2022, 15, 5362–5378. [Google Scholar] [CrossRef]
- Bhavya, T.; Sai Kiran, B.; Prasad, P.S.R. The Role of Stirring and Amino Acid Mixtures to Surpass the Sluggishness of CO2 Hydrates. Energy Fuels 2021, 35, 13937–13944. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Rossi, F. Re-definition of the region suitable for CO2/CH4 replacement into hydrates as a function of the thermodynamic difference between CO2 hydrate formation and dissociation. Process Saf. Environ. Prot. 2023, 169, 132–141. [Google Scholar] [CrossRef]
- Rossi, F.; Li, Y.; Gambelli, A.M. Thermodynamic and Kinetic Description of the Main Effects Related to the Memory Effect during Carbon Dioxide Hydrates Formation in a Confined Environment. Sustainability 2021, 13, 13797. [Google Scholar] [CrossRef]
- Rossi, F.; Gambelli, A.M. Thermodynamic phase equilibrium of single-guest hydrate and formation data of hydrate in presence of chemical additives: A review. Fluid Phase Equilib. 2021, 536, 112958. [Google Scholar] [CrossRef]
0.1 wt% L-Trp | 0.5 wt% L-Trp | ||||
---|---|---|---|---|---|
Pmin [bar] | tmin [h] | Pmin [bar] | tmin [h] | ||
Test 1 | 24.79 | 24.73 | Test 6 | 27.36 | 20.18 |
Test 2 | 22.82 | 22.56 | Test 7 | 28.1 | 16.99 |
Test 3 | 23.71 | 26.02 | Test 8 | 27.58 | 16.88 |
Test 4 | 23.71 | 25.49 | Test 9 | 28.88 | 18.89 |
Test 5 | 22.93 | 25.03 | Test 10 | 27.67 | 17.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Gambelli, A.M.; Rao, Y.; Liu, X.; Yin, Z.; Rossi, F. Unraveling the Role of Amino Acid L-Tryptophan Concentration in Enhancing CO2 Hydrate Kinetics. Energies 2024, 17, 3702. https://doi.org/10.3390/en17153702
Li Y, Gambelli AM, Rao Y, Liu X, Yin Z, Rossi F. Unraveling the Role of Amino Acid L-Tryptophan Concentration in Enhancing CO2 Hydrate Kinetics. Energies. 2024; 17(15):3702. https://doi.org/10.3390/en17153702
Chicago/Turabian StyleLi, Yan, Alberto Maria Gambelli, Yizhi Rao, Xuejian Liu, Zhenyuan Yin, and Federico Rossi. 2024. "Unraveling the Role of Amino Acid L-Tryptophan Concentration in Enhancing CO2 Hydrate Kinetics" Energies 17, no. 15: 3702. https://doi.org/10.3390/en17153702
APA StyleLi, Y., Gambelli, A. M., Rao, Y., Liu, X., Yin, Z., & Rossi, F. (2024). Unraveling the Role of Amino Acid L-Tryptophan Concentration in Enhancing CO2 Hydrate Kinetics. Energies, 17(15), 3702. https://doi.org/10.3390/en17153702