Progress in the Application of Laser-Induced Breakdown Spectroscopy in Coal Quality Analysis
Abstract
:1. Introduction
2. LIBS Experimental Procedure and Principle
2.1. Experimental Procedure
2.2. Measurement Principle
- (1)
- The process of plasma formation
- (2)
- Determination of peak atomic radiation
2.3. Spectral Preprocessing
- (1)
- Spectral baseline removal
- (2)
- Spectral normalization
2.4. Experimental Sample Preparation
3. Experimental Error Analysis and Spectral Preprocessing
3.1. Principle Section
- (1)
- Enhanced LIBS Plasma Strength
- (I)
- Dual pulse configuration
- (II)
- Resonance-enhanced laser-induced breakdown spectroscopy
- (III)
- Nanoparticle-enhanced laser-induced breakdown spectroscopy
- (IV)
- Flat top laser beam profile
- (2)
- Self-Absorption of Spectral Lines
- (3)
- Matrix Effect
3.2. Sample Section
- (1)
- Pressure Effect
- (2)
- Pulverized Coal Particle Size
- (3)
- Binder
3.3. Experimental Section
- (1)
- Laser Energy Optimization
- (2)
- Focus Position
- (3)
- Static and Dynamic Analysis
- (4)
- Number of Laser Actions at Focal Position
- (5)
- Ambient Gas
- (6)
- Delay Time
4. Spectral Data Processing Models and Their Advantages and Disadvantages
4.1. Linear Solution
- (1)
- Principal component regression
- (2)
- Partial least squares method
4.2. Machine Learning
- (1)
- Support vector regression
- (2)
- Random forest
- (3)
- Kernel extreme learning machine
- (4)
- Synergistic regression
- (5)
- Deep learning
- (6)
- Transfer learning
- (7)
- Algorithmic combination
4.3. LIBS in Conjunction with Other Technologies
- (1)
- XRF-assisted LIBS based on high stability
- (2)
- Synergy of Fourier transform infrared spectroscopy and LIBS information
- (3)
- Synergy of near-infrared reflectance spectroscopy and LIBS information
- (4)
- Single-beam splitting technology
4.4. Analysis and Summary
- (1)
- Principal component regression
- (2)
- Partial least squares
- (3)
- Machine learning
- (4)
- Modeling time
5. Conclusions and Prospects
Funding
Conflicts of Interest
References
- Zhu, S.; Zhang, W.; Song, G.; Li, Y.; Hu, B.; Zhu, F.; Zhang, H.; Wei, Y.; Sun, T.; Tang, J. Determination of ash content, volatile matter, and calorific value in coal by OLS combined with laser-induced breakdown spectroscopy based on PC recombination. J. Anal. At. Spectrom. 2023, 38, 1851–1864. [Google Scholar] [CrossRef]
- Bowen, M. Global Energy and Environmental Challenges, 2023; pp. 4–6.
- BP Statistical Review of World Energy, 71st ed.; BP: London, UK, 2023.
- Liu, Y.; Wang, D.; Ren, X. Rapid Quantitation of Coal Proximate Analysis by Using Laser-Induced Breakdown Spectroscopy. Energies 2022, 15, 2728. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuo, Z.; Lu, P.; Tang, J.; Tang, H.; Lu, J.; Xing, T.; Wang, Y. LIBS analysis of the ash content, volatile matter, and calorific value in coal by partial least squares regression based on ash classification. J. Anal. At. Spectrom. 2020, 35, 1621–1631. [Google Scholar] [CrossRef]
- Wen, Z.; Liu, H.; Zhou, M.; Liu, C.; Zhou, C. Explainable machine learning rapid approach to evaluate coal ash content based on X-ray fluorescence. Fuel 2023, 332, 125991. [Google Scholar] [CrossRef]
- Dong, M.; Lu, J.; Yao, S.; Li, J.; Li, J.; Zhong, Z.; Lu, W. Application of LIBS for direct determination of volatile matter content in coal. J. Anal. At. Spectrom. 2011, 26, 2183–2188. [Google Scholar] [CrossRef]
- Fan, J.; Wang, D.; Lu, J.; Zhang, B. Quantitative Analysis on Volatile Component of Fired Coal Based on Laser-induced Breakdown Spectroscopy. Guangdong Electr. Power 2015, 28, 7–11. [Google Scholar]
- Cai, J.; Dong, M.; Zhang, Y.; Chen, Y.; Liang, Y.; Lu, J. Temporally and spatially resolved study of laser-induced plasma generated on coals with different volatile matter contents. Spectrochim. Acta Part B At. Spectrosc. 2021, 180, 106195. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, K.; Cao, Y.; Pan, W. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses. Bioresour. Technol. 2013, 131, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Sheta, S.; Afgan, M.S.; Hou, Z.; Yao, S.-C.; Zhang, L.; Li, Z.; Wang, Z. Coal analysis by laser-induced breakdown spectroscopy: A tutorial review. J. Anal. At. Spectrom. 2019, 34, 1047–1082. [Google Scholar] [CrossRef]
- Borsaru, M.; Jecny, Z. Application of PGNAA for bulk coal samples in a 4π geometry. Appl. Radiat. Isot. 2001, 54, 519–526. [Google Scholar] [CrossRef]
- Begum, N.; Maiti, A.; Chakravarty, D.; Das, B.S. Diffuse reflectance spectroscopy based rapid coal rank estimation: A machine learning enabled framework. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 263, 120150. [Google Scholar] [CrossRef]
- Gao, R.; Li, J.; Wang, S.; Zhang, Y.; Zhang, L.; Ye, Z.; Zhu, Z.; Yin, W.; Jia, S. Ultra-repeatability measurement of calorific value of coal by NIRS-XRF. Anal. Methods 2023, 15, 1674–1680. [Google Scholar] [CrossRef]
- Cutmore, N.G.; Evans, T.G.; McEwan, A.J.; Rogers, C.A.; Stoddard, S.L. Low frequency microwave technique for on-line measurement of moisture. Miner. Eng. 2000, 13, 1615–1622. [Google Scholar] [CrossRef]
- Farah, K.S.; Sneddon, J. Developments and Applications of Multielement Graphite Furnace Atomic Absorption Spectrometry. Appl. Spectrosc. Rev. 1995, 30, 351–371. [Google Scholar] [CrossRef]
- Agterdenbos, J.; van Elteren, J.T.; Bax, D.; Ter Heege, J.P. The determination of selenium with hydride generation AAS-IV: Application to coal analysis. Spectrochim. Acta Part B At. Spectrosc. 1986, 41, 303–316. [Google Scholar] [CrossRef]
- Xu, S.; He, R.; Zhao, S.; Shon, H.K.; He, T. Is conductivity measurement or inductively coupled plasma-atomic emission spectrometry reliable to define rejection of different ions? Desalination 2022, 543, 116097. [Google Scholar] [CrossRef]
- Fiddler, M.N.; Begashaw, I.; Mickens, M.A.; Collingwood, M.S.; Assefa, Z.; Bililign, S. Laser Spectroscopy for Atmospheric and Environmental Sensing. Sensors 2009, 9, 10447–10512. [Google Scholar] [CrossRef]
- Sabsabi, M.; Cielo, P.G.; Boily, S.; Chaker, M. Laser-induced breakdown spectroscopy on aluminum alloy targets. In Optical Methods for Chemical Process Control; SPIE: Bellingham, WA, USA, 1993; pp. 191–201. [Google Scholar]
- Ottesen, D.K.; Baxter, L.L.; Radziemski, L.J.; Burrows, J.F. Laser spark emission spectroscopy for in-situ, real-time monitoring of pulverized coal particle composition. Energy Fuels 1991, 5, 304–312. [Google Scholar] [CrossRef]
- Body, D.; Chadwick, B.L. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 725–736. [Google Scholar] [CrossRef]
- Gaft, M.; Dvir, E.; Modiano, H.; Schone, U. Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 1177–1182. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, X.; Yao, S.; Qin, H.; Zhang, L.; Yao, X.; Yu, Z.; Lu, J. Feasibility study of gross calorific value, carbon content, volatile matter content and ash content of solid biomass fuel using laser-induced breakdown spectroscopy. Fuel 2019, 258, 116150. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Fu, Y.; Li, Z.; Ni, W. A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2014, 99, 82–86. [Google Scholar] [CrossRef]
- Liu, K.; He, C.; Zhu, C.; Chen, J.; Zhan, K.; Li, X. A review of laser-induced breakdown spectroscopy for coal analysis. TrAC Trends Anal. Chem. 2021, 143, 116357. [Google Scholar] [CrossRef]
- Petrovic, J.; Savovic, J.; Rankovic, D.; Kuzmanovic, M. Quantitative Analysis of Coal by Laser-Induced Breakdown Spectroscopy Using TEA CO2 Laser as the Excitation Source. Plasma Chem. Plasma Process. 2022, 42, 519–533. [Google Scholar] [CrossRef]
- Khumaeni, A.; Ramli, M.; Deguchi, Y.; Lee, Y.I.; Idris, N.; Kurniawan, K.H.; Lie, T.J.; Kagawa, K. New Technique for the Direct Analysis of Food Powders Confined in a Small Hole Using Transversely Excited Atmospheric CO2 Laser-Induced Gas Plasma. Appl. Spectrosc. 2008, 62, 1344–1348. [Google Scholar] [CrossRef]
- Bohling, C.; Hohmann, K.; Scheel, D.; Bauer, C.; Schippers, W.; Burgmeier, J.; Willer, U.; Holl, G.; Schade, W. All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1519–1527. [Google Scholar] [CrossRef]
- Li, Y.; Yun, T.; Ahmed, N.; Zhou, X.; Guan, A.Y.; Zheng, Y.; Zhang, C.; Cheng, B.; Yang, T. Study on typical characteristics of coal samples based on laser-induced breakdown spectroscopy. Laser Infrared 2023, 53, 1505–1512. [Google Scholar]
- Xu, S.; Yu, Z.; Qin, H.; Mo, J.; Lu, Z.; Dong, M.; Lu, J.; Yao, S. Research and application of rapid analysis of coal quality by laser-induced breakdown spectroscopy. Chin. J. Quantum Electron. 2021, 38, 727–750. [Google Scholar]
- Liu, Y. Investigation of Coal Quality by Using Laser-Induced Breakdown Spectroscopy Assisted with Machine Learning and Feature Engineering. Master’s thesis, Shandong University, Jinan, China, 2023. [Google Scholar]
- Zhang, Z.-M.; Chen, S.; Liang, Y.-Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 2010, 135, 1138–1146. [Google Scholar] [CrossRef]
- Wang, D.; Xu, L.; Gao, W.; Xia, H.; Guo, N.; Ren, X. Application of Semi-Supervised Learning Model to Coal Sample Classification. Appl. Sci. 2024, 14, 1606. [Google Scholar] [CrossRef]
- Li, A.; Zhang, X.; Wang, X.; He, Y.; Yin, Y.; Liu, R. High-accuracy quantitative analysis of coal by small sample modelling algorithm based laser induced breakdown spectroscopy. J. Anal. At. Spectrom. 2022, 37, 2022–2032. [Google Scholar] [CrossRef]
- Ahmed, R.; Baig, M.A. A comparative study of single and double pulse laser induced breakdown spectroscopy. J. Appl. Phys. 2009, 106, 033307. [Google Scholar] [CrossRef]
- Noll, R.; Sattmann, R.; Sturm, V.; Winkelmann, S. Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples. J. Anal. At. Spectrom. 2004, 19, 419–428. [Google Scholar] [CrossRef]
- Kuwako, A.; Uchida, Y.; Maeda, K. Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy. Appl. Opt. 2003, 42, 6052–6056. [Google Scholar] [CrossRef] [PubMed]
- Angel, S.M.; Stratis, D.N.; Eland, K.L.; Lai, T.; Berg, M.A.; Gold, D.M. LIBS using dual- and ultra-short laser pulses. Fresenius J. Anal. Chem. 2001, 369, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Uebbing, J.; Brust, J.; Sdorra, W.; Leis, F.; Niemax, K. Reheating of a Laser-Produced Plasma by a Second Pulse Laser. Appl. Spectrosc. 1991, 45, 1419–1423. [Google Scholar] [CrossRef]
- De Giacomo, A.; Dell’Aglio, M.; Bruno, D.; Gaudiuso, R.; De Pascale, O. Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 805–816. [Google Scholar] [CrossRef]
- Colao, F.; Lazic, V.; Fantoni, R.; Pershin, S. A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1167–1179. [Google Scholar] [CrossRef]
- Wang, W.; Sun, L.; Zhang, P.; Zheng, L.; Qi, L. Reducing self-absorption effect by double-pulse combination in laser-induced breakdown spectroscopy. Microchem. J. 2022, 172, 106964. [Google Scholar] [CrossRef]
- Corsi, M.; Cristoforetti, G.; Hidalgo, M.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.; Vallebona, C. Double pulse, calibration-free laser-induced breakdown spectroscopy: A new technique for in situ standard-less analysis of polluted soils. Appl. Geochem. 2006, 21, 748–755. [Google Scholar] [CrossRef]
- Piñon, V.; Fotakis, C.; Nicolas, G.; Anglos, D. Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 1006–1010. [Google Scholar] [CrossRef]
- Atikukke, S.; Veis, M.; Khan, W.; Grigore, E.; Baiasu, F.; Ďurina, P.; Roch, T.; Dvořák, P.; Veis, P. Resonant Laser Induced Breakdown Spectroscopy for quantitative elemental depth profile analysis of WTa coating. Nucl. Mater. Energy 2024, 38, 101558. [Google Scholar] [CrossRef]
- Christian, G.; Laville, S. Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys. JAAS (J. Anal. At. Spectrom.) 2010, 25, 635–644. [Google Scholar]
- De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell’Aglio, M.; De Pascale, O. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission. Spectrochim. Acta Part B At. Spectrosc. 2014, 98, 19–27. [Google Scholar] [CrossRef]
- Dell’Aglio, M.; Mallardi, A.; Gaudiuso, R.; Giacomo, A.D. Plasma Parameters During Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) in the Presence of Nanoparticle–Protein Conjugates. Appl. Spectrosc. 2023, 77, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Umhofer, U.; Jäger, E.; Bischoff, C. Refractive and diffractive laser beam shaping optics. Laser Tech. J. 2011, 8, 24–27. [Google Scholar] [CrossRef]
- Abdel-Harith, M.; El-Saeid, R.H.; Abdelazeem, R.M.; Abdel-Salam, Z.; Elhassan, A. Wavefront-enhanced laser-induced breakdown spectroscopy (WELIBS) utilizing a crystalline silicon wafer for a flat-top IR laser beam. J. Anal. At. Spectrom. 2024, 39, 582–591. [Google Scholar] [CrossRef]
- Aït-Ameur, K.; Passilly, N.; de Saint Denis, R.; Fromager, M. Laser Beam Shaping. AIP Conf. Proc. 2008, 1047, 59–67. [Google Scholar]
- Cowan, R.D.; Dieke, G.H. Self-Absorption of Spectrum Lines. Rev. Mod. Phys. 1948, 20, 418–455. [Google Scholar] [CrossRef]
- Amamou, H.; Bois, A.; Ferhat, B.; Redon, R.; Rossetto, B.; Matheron, P. Correction of self-absorption spectral line and ratios of transition probabilities for homogeneous and LTE plasma. J. Quant. Spectrosc. Radiat. Transf. 2002, 75, 747–763. [Google Scholar] [CrossRef]
- Takahashi, T.; Thornton, B. Quantitative methods for compensation of matrix effects and self-absorption in Laser Induced Breakdown Spectroscopy signals of solids. Spectrochim. Acta Part B At. Spectrosc. 2017, 138, 31–42. [Google Scholar] [CrossRef]
- Ke, W.; Yuan, H.; Liu, J.Q.; Wang, X.H.; Yang, A.J.; Chu, J.F.; Liu, D.X.; Rong, M.Z. Effect of laser energy on temporal evolution of self-absorption at different air pressures. J. Phys. Appl. Phys. 2023, 57, 095204. [Google Scholar] [CrossRef]
- Tang, Y.; Li, J.; Hao, Z.; Tang, S.; Zhu, Z.; Guo, L.; Li, X.; Zeng, X.; Duan, J.; Lu, Y. Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation. Opt. Express 2018, 26, 12121–12130. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.Q.; Liu, L.; Shen, M.; Yang, X.Y.; Li, K.H.; Guo, L.B.; Li, X.Y.; Lu, Y.F.; Zeng, X.Y. Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy. Opt. Express 2016, 24, 26521–26528. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, D.; Chen, N.; He, Y.; Zhang, H.; Ke, C.; Xu, T.; Chen, Y.; Zhao, Y. Self-absorption effects of laser-induced breakdown spectroscopy under different gases and gas pressures. Plasma Sci. Technol. 2022, 25, 025501. [Google Scholar] [CrossRef]
- Rezaei, F.; Karimi, P.; Tavassoli, S.H. Estimation of self-absorption effect on aluminum emission in the presence of different noble gases: Comparison between thin and thick plasma emission. Appl. Opt. 2013, 52, 5088–5096. [Google Scholar] [CrossRef]
- Zehra, K.; Bashir, S.; Hassan, S.A.; Ahmed, Q.S.; Akram, M.; Hayat, A. The effect of nature and pressure of ambient environment on laser-induced breakdown spectroscopy and ablation mechanisms of Si. Laser Part. Beams 2017, 35, 492–504. [Google Scholar] [CrossRef]
- Bian, J.; Yin, K.; Yao, S.; Lu, J.; Xu, J. Quantitative Analysis of Unburned Carbon in Fly Ash by Laser-Induced Breakdown Spectroscopy in Different Atmosphere. Laser Optoelectron. Prog. 2016, 53, 234–239. [Google Scholar]
- Gu, W.; Song, W.; Yan, G.; Ye, Q.; Li, Z.; Afgan, M.S.; Liu, J.; Song, Y.; Hou, Z.; Wang, Z.; et al. A data preprocessing method based on matrix matching for coal analysis by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2021, 180, 106212. [Google Scholar] [CrossRef]
- Zhang, S.; He, M.; Yin, Z.; Zhu, E.; Hang, W.; Huang, B. Elemental fractionation and matrix effects in laser sampling based spectrometry. J. Anal. At. Spectrom. 2016, 31, 358–382. [Google Scholar] [CrossRef]
- Dong, M.; Lu, J.; Chen, K.; Li, P.; Yao, S. Properties of laser-induced breakdown spectroscopy of element speciation analysis of carbon. High Power Laser Part. Beams 2010, 33, 270–274. [Google Scholar] [CrossRef]
- Chen, S.; Lu, J.; Li, J.; Pan, F.; Dong, X.; Zhang, X.; Yao, S. The plasma characteristics of different kinds of coal particles flow-All Databases. J. Optoelectron. Laser 2013, 24, 596–601. [Google Scholar]
- Yuan, T.; Wang, Z.; Li, L.; Hou, Z.; Li, Z.; Ni, W. Quantitative carbon measurement in anthracite using laser-induced breakdown spectroscopy with binder. Appl. Opt. 2012, 51, B22–B29. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Niu, S.; Khan, A.Q.; Yuan, S.; Yu, J.; Zeng, H. Comparative study of the matrix effect in Cl analysis with laser-induced breakdown spectroscopy in a pellet or in a dried solution layer on a metallic target. Spectrochim. Acta Part B At. Spectrosc. 2016, 118, 66–71. [Google Scholar] [CrossRef]
- Zorov, N.B.; Gorbatenko, A.A.; Labutin, T.A.; Popov, A.M. A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 642–657. [Google Scholar] [CrossRef]
- Morton, K.L.; Nohe, J.D.; Madsen, B.S. The Relationship of Spectral Line Intensity to the Weight of Sample Vaporized with the Laser Microprobe. Appl. Spectrosc. 1973, 27, 109–117. [Google Scholar] [CrossRef]
- Wallis, F.J.; Chadwick, B.L.; Morrison, R.J.S. Analysis of Lignite Using Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. 2000, 54, 1231–1235. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Lin, Z.; Xie, C. Effects of coal-sampling density on the elemental analysis by using laser-induced breakdown spectroscopy. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2009, 37, 112–116. [Google Scholar]
- Lieber, C.A.; Mahadevan-Jansen, A. Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Appl. Spectrosc. 2003, 57, 1363–1367. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Fan, J.; Li, Y.; Gong, Y.; Dong, L.; Ma, W.; Yin, W.; Jia, S. Parameters Optimization of Laser-Induced Breakdown Spectroscopy Experimental Setup for the Case with Beam Expander. Plasma Sci. Technol. 2015, 17, 914–918. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Lin, Z.; Gong, S.; Xie, C.; Chang, L.; Yang, L.; Li, P. Effects of experimental parameters on elemental analysis of coal by laser-induced breakdown spectroscopy. Opt. Laser Technol. 2009, 41, 907–913. [Google Scholar] [CrossRef]
- Wisbrun, R.; Schechter, I.; Niessner, R.; Schroeder, H.; Kompa, K.L. Detector for Trace Elemental Analysis of Solid Environmental Samples by Laser Plasma Spectroscopy. Am. Chem. Soc. 2002, 66, 2964–2975. [Google Scholar] [CrossRef]
- Russo, R. Laser ablation in analytical chemistry—A review. Talanta 2002, 57, 425–451. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Li, X.; Sun, R.; Zhang, Y.; Yan, Y.; Yu, X.; Ren, X. Investigation of mineral-element migration upon pyrolysis and quantitative prediction of volatiles in coal using laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2021, 36, 1399–1409. [Google Scholar] [CrossRef]
- Xie, C. Study of the Spectral Data Processing in Laser Induced Breakdown Spectroscopy Analysis and Its Application in Elemental Analysis of Coal. Ph.D. Dissertation, Huazhong University of Science and Technology, Wuhan, China, 2009. [Google Scholar]
- Shen, Y.; Yao, S.; Pan, G.; Xu, Q. Influence of Binder on Laser-Induced Breakdown Spectroscopy Measurement of Unburned Carbon in Fly Ash. Chin. J. Lasers 2014, 41, 0315003. [Google Scholar] [CrossRef]
- Mateo, M.P.; Nicolas, G.; Yañez, A. Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations. Appl. Surf. Sci. 2007, 254, 868–872. [Google Scholar] [CrossRef]
- Lal, B.; Zheng, H.; Yueh, F.-Y.; Singh, J.P. Parametric study of pellets for elemental analysis with laser-induced breakdown spectroscopy. Appl. Opt. 2004, 43, 2792–2797. [Google Scholar] [CrossRef]
- Rajavelu, H.; Vasa, N.J.; Seshadri, S. Effect of ambiance on the coal characterization using laser-induced breakdown spectroscopy (LIBS). Appl. Phys. A 2020, 126, 395. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Xie, C.; Lin, Z. Investigation on the Delay Time of Coal Experiment by Laser-Induced Breakdown Spectroscopy. Spectrosc. Spectr. Anal. 2008, 28, 736–739. [Google Scholar]
- Tognoni, E.; Palleschi, V.; Corsi, M.; Cristoforetti, G. Quantitative micro-analysis by laser-induced breakdown spectroscopy: A review of the experimental approaches. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1115–1130. [Google Scholar] [CrossRef]
- Pearson, K. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Daffertshofer, A.; Lamoth, C.J.C.; Meijer, O.G.; Beek, P.J. PCA in studying coordination and variability: A tutorial. Clin. Biomech. 2004, 19, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal component analysis. Wires Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, Z.; Ma, Y.; Zhu, C.; Zhou, R.; Li, X.; Li, Q.; Zeng, Q. Quantitative analysis of coal quality by laser-induced breakdown spectroscopy assisted with different chemometric methods. Anal. Methods 2020, 12, 3530–3536. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Lu, Q.; Chen, A.; Liu, Y.; Ren, X. Rapid Classification and Quantification of Coal by Using Laser-Induced Breakdown Spectroscopy and Machine Learning. Appl. Sci. 2023, 13, 8158. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strateg. Manag. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Christophert, M. Improving Spectral Analysis with the Application of Machine Learning: Study of Laser-Induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy with Classification and Clustering Techniques. Master’s Thesis, Southern Illinois University at Carbondale, Carbondale, IL, USA, 2020. [Google Scholar]
- Boucher, T.F.; Ozanne, M.V.; Carmosino, M.L.; Dyar, M.D.; Mahadevan, S.; Breves, E.A.; Lepore, K.H.; Clegg, S.M. A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2015, 107, 1–10. [Google Scholar] [CrossRef]
- Cui, J.; Song, W.; Hou, Z.; Gu, W.; Wang, Z. A transferred multitask regularization convolutional neural network (TrMR-CNN) for laser-induced breakdown spectroscopy quantitative analysis. J. Anal. At. Spectrom. 2022, 37, 2059–2068. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q. Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst. 2009, 95, 188–198. [Google Scholar] [CrossRef]
- Ni, Q.; Zhu, Y.; Zhu, W.; He, Y.; Wang, Z. Comparative Study of Four Chemometric Methods for the Quantitative Analysis of the Carbon Content in Coal by Laser-Induced Breakdown Spectroscopy Technology. ACS Omega 2022, 7, 9443–9451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gong, Y.; Li, Y.; Wang, X.; Fan, J.; Dong, L.; Ma, W.; Yin, W.; Jia, S. Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2015, 113, 167–173. [Google Scholar] [CrossRef]
- Dou, Y.; Wang, Q.; Wang, S.; Shu, X.; Ni, M.; Shen, L.-X.; Li, Y. Quantitative analysis of coal industrial index based on data set partitioning method. In AOPC 2023: Laser Technology and Applications; and Optoelectronic Devices and Integration; SPIE: Bellingham, WA, USA, 2023; pp. 18–28. [Google Scholar]
- Scornet, E. On the asymptotics of random forests. J. Multivar. Anal. 2016, 146, 72–83. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Y. Simultaneous quantitative analysis of non-metallic elements in coal by laser-induced breakdown spectroscopy assisted with machine learning. Optik 2020, 222, 165449. [Google Scholar] [CrossRef]
- He, T.; Liang, J.; Tang, H.; Zhang, T.; Yan, C.; Li, H. Quantitative analysis of coal quality by mutual information-particle swarm optimization (MI-PSO) hybrid variable selection method coupled with spectral fusion strategy of laser-induced breakdown spectroscopy (LIBS) and fourier transform infrared spectroscopy (FTIR). Spectrochim. Acta Part B At. Spectrosc. 2021, 178, 106112. [Google Scholar]
- Yan, C.; Liang, J.; Zhao, M.; Zhang, X.; Zhang, T.; Li, H. A novel hybrid feature selection strategy in quantitative analysis of laser-induced breakdown spectroscopy. Anal. Chim. Acta 2019, 1080, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Hou, Z.; Gu, W.; Wang, H.; Cui, J.; Zhou, Z.; Yan, G.; Ye, Q.; Li, Z.; Wang, Z. Industrial at-line analysis of coal properties using laser-induced breakdown spectroscopy combined with machine learning. Fuel 2021, 306, 121667. [Google Scholar] [CrossRef]
- Wu, Y.; Feng, J. Development and Application of Artificial Neural Network. Wirel. Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Li, L.-N.; Liu, X.-F.; Yang, F.; Xu, W.-M.; Wang, J.-Y.; Shu, R. A review of artificial neural network based chemometrics applied in laser-induced breakdown spectroscopy analysis. Spectrochim. Acta Part B At. Spectrosc. 2021, 180, 106183. [Google Scholar] [CrossRef]
- Kasabov, N.; Scott, N.M.; Tu, E.; Marks, S.; Sengupta, N.; Capecci, E.; Othman, M.; Doborjeh, M.G.; Murli, N.; Hartono, R.; et al. Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: Design methodology and selected applications. Neural Netw. 2016, 78, 1–14. [Google Scholar] [CrossRef]
- Prochazka, D.; Pořízka, P.; Hruška, J.; Novotný, K.; Hrdlička, A.; Kaiser, J. Machine learning in laser-induced breakdown spectroscopy as a novel approach towards experimental parameter optimization. J. Anal. At. Spectrom. 2022, 37, 603–612. [Google Scholar] [CrossRef]
- Yao, S.; Mo, J.; Zhao, J.; Li, Y.; Zhang, X.; Lu, W.; Lu, Z. Development of a Rapid Coal Analyzer Using Laser-Induced Breakdown Spectroscopy (LIBS). Appl. Spectrosc. 2018, 72, 1225–1233. [Google Scholar] [CrossRef]
- Lu, Z.; Mo, J.; Yao, S.; Zhao, J.; Lu, J. Rapid Determination of the Gross Calorific Value of Coal Using Laser-Induced Breakdown Spectroscopy Coupled with Artificial Neural Networks and Genetic Algorithm. Energy Fuels 2017, 31, 3849–3855. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Chen, J.; Yan, W.; Kang, L.; Lu, B.; Liu, K.; Li, X. Accuracy improvement of laser-induced breakdown spectroscopy coal analysis by hybrid transfer learning. Anal. Methods 2023, 15, 5157–5165. [Google Scholar] [CrossRef]
- Dou, Y.; Wang, Q.; Wang, S.; Shu, X.; Ni, M.; Li, Y. Quantitative Analysis of Coal Quality by a Portable Laser Induced Breakdown Spectroscopy and Three Chemometrics Methods. Appl. Sci. 2023, 13, 10049. [Google Scholar] [CrossRef]
- Román Gómez, Y.; Cabanzo Hernández, R.; Guerrero, J.E.; Mejía-Ospino, E. FTIR-PAS coupled to partial least squares for prediction of ash content, volatile matter, fixed carbon and calorific value of coal. Fuel 2018, 226, 536–544. [Google Scholar] [CrossRef]
- Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria. Spectrochim. Acta Part B At. Spectrosc. 2018, 139, 6–12. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef]
- Uffelmann, S. Quantitative XRF of solid samples using an iterative matrix correction code. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1986, 242, 550–557. [Google Scholar] [CrossRef]
- Tian, Z.; Li, J.; Wang, S.; Bai, Y.; Zhao, Y.; Zhang, L.; Zhang, P.; Ye, Z.; Zhu, Z.; Yin, W.; et al. Development and industrial application of LIBS-XRF coal quality analyzer by combining PCA and PLS regression methods. J. Anal. At. Spectrom. 2023, 38, 1421–1430. [Google Scholar] [CrossRef]
- Labutin, T.A.; Popov, A.M.; Raikov, S.N.; Zaytsev, S.M.; Labutina, N.A.; Zorov, N.B. Determination of chlorine in concrete by laser-induced breakdown spectroscopy in air. J. Appl. Spectrosc. 2013, 80, 315–318. [Google Scholar] [CrossRef]
- Tian, Z.; Li, X.; Wang, G.; Zhang, L. Elemental and proximate analysis of coal by x-ray flfluorescence assisted laser-induced breakdown spectroscopy. Plasma Sci. Technol. 2022, 24, 084007. [Google Scholar] [CrossRef]
- Yan, C.; Su, Y.; Liu, Y.; Zhang, T.; Li, H. Performing parameter optimization and variable selection simultaneously in Fourier transform infrared and laser-induced breakdown spectroscopy data fusion. J. Anal. At. Spectrom. 2023, 38, 2424–2432. [Google Scholar] [CrossRef]
- Yao, S.; Qin, H.; Wang, Q.; Lu, Z.; Yao, X.; Yu, Z.; Chen, X.; Zhang, L.; Lu, J. Optimizing analysis of coal property using laser-induced breakdown and near-infrared reflectance spectroscopies. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2020, 239, 118492. [Google Scholar] [CrossRef]
- Cheng, J.; Cao, Z.; Han, X.; Li, L.; Wang, J.; Fan, Q.; Lin, Q. Coal Analysis by Single-Beam-Splitting Laser-Induced Breakdown Spectroscopy (LIBS) with Support Vector Machine (SVM). Anal. Lett. 2023, 56, 1399–1409. [Google Scholar] [CrossRef]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Höskuldsson, A. Variable and subset selection in PLS regression. Chemom. Intell. Lab. Syst. 2001, 55, 23–38. [Google Scholar] [CrossRef]
- Nørgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J.P.; Munck, L.; Engelsen, S.B. Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy. Appl. Spectrosc. 2000, 54, 413–419. [Google Scholar] [CrossRef]
- Zaidi, M.A.; Gervasi, O.; Murgante, B.; Misra, S.; Garau, C.; Blečić, I.; Taniar, D.; Apduhan, B.O.; Rocha, A.M.A.C.; Tarantino, E.; et al. Conceptual Modeling Interacts with Machine Learning—A Systematic Literature Review. In Computational Science and Its Applications—ICCSA 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 522–532. [Google Scholar]
- Yao, S.; Zhao, J.; Xu, J.; Lu, Z.; Lu, J. Optimizing the binder percentage to reduce matrix effects for the LIBS analysis of carbon in coal. J. Anal. At. Spectrom. 2017, 32, 766–772. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, L.; Liu, F.; Huang, J.; Peng, J. Application of deep learning in laser-induced breakdown spectroscopy: A review. Artif. Intell. Rev. 2023, 56, 2789–2823. [Google Scholar] [CrossRef]
- Tan, Z.-H.; Yang, R.; Terabe, K.; Yin, X.-B.; Zhang, X.-D.; Guo, X. Synaptic Metaplasticity Realized in Oxide Memristive Devices. Adv. Mater. 2016, 28, 377–384. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Z.; West, L.; Li, Z.; Ni, W. A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 2011, 400, 3261–3271. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Lu, H.; Xu, J.; Li, H. An LIBS quantitative analysis method for alloy steel at high temperature based on transfer learning. J. Anal. At. Spectrom. 2018, 33, 1184–1195. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, N.; Xu, L.; Gao, W.; Xia, H.; Xie, M.; Ren, X. Progress in the Application of Laser-Induced Breakdown Spectroscopy in Coal Quality Analysis. Energies 2024, 17, 3559. https://doi.org/10.3390/en17143559
Guo N, Xu L, Gao W, Xia H, Xie M, Ren X. Progress in the Application of Laser-Induced Breakdown Spectroscopy in Coal Quality Analysis. Energies. 2024; 17(14):3559. https://doi.org/10.3390/en17143559
Chicago/Turabian StyleGuo, Ning, Li Xu, Wei Gao, Hongwei Xia, Min Xie, and Xiaohan Ren. 2024. "Progress in the Application of Laser-Induced Breakdown Spectroscopy in Coal Quality Analysis" Energies 17, no. 14: 3559. https://doi.org/10.3390/en17143559
APA StyleGuo, N., Xu, L., Gao, W., Xia, H., Xie, M., & Ren, X. (2024). Progress in the Application of Laser-Induced Breakdown Spectroscopy in Coal Quality Analysis. Energies, 17(14), 3559. https://doi.org/10.3390/en17143559