Recent Advancements in Geothermal Energy Piles Performance and Design
Abstract
:1. Introduction
2. Background and Literature Review
3. Thermo and Thermomechanical Behaviors of Energy Piles
3.1. Analytical Methods
3.2. Numerical Methods
3.3. Experimental Tests
4. Results and Discussion
4.1. Pile Design
4.2. Ground Heat Exchanger Tube Design
4.3. System Development and Applications
5. Conclusions
- Numerical-based studies are highly recommended in this area of research as the experimental studies are indeed accurate, but also time- and cost-consuming, since the computational time is significantly high for the full numerical model. To avoid high computational time and obtain an accurate simulation assumption, experimental validation is necessary. A comprehensive study that involves finite element modeling (FEM) and finite volume modeling (FVM) is required to achieve accurate thermomechanical behavior of the energy pile. Therefore, combining the structural and fluid dynamic analyses obtained from FEM and FVM, respectively, provides an enhanced outlook and a better understanding of the actual behavior of energy pile systems during and after system operation.
- In modeling, the pile boundary conditions highly affect the distribution of the thermal stresses. For this reason, a proper definition of the pile rigidity is extremely suggested due to the fact that it might either underestimate or overestimate the design of the energy pile system. The thermally induced stresses also depend on the applied mechanical load since an irreversible settlement occurs between 30% and 40% of the ultimate pile resistance.
- A detailed thermomechanical analysis is decidedly necessary to obtain accurate pile constraints under service and ultimate loads for single piles and groups of piles. It is important to note that the pile-to-pile interaction must be incorporated in the thermomechanical analysis of the group of piles. Furthermore, a detailed investigation of pile-to-pile interaction is required to configure the best positions of the piles and to detect the minimum number of piles required.
- Geothermal energy pile systems have been effectively adapted to various climates and geological conditions worldwide, with significant progress in Europe and major contributions from countries like the United States, the Philippines, and Iceland. However, challenges such as high capital costs, exploration risks, and regulatory obstacles persist, necessitating policy changes, enhanced human resource development, and technology transfer to further advance geothermal development globally.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalil, A.; Khan, Z.H.; Attom, M.; El Emam, M.; Fattah, K. Dynamic Properties of Calcareous Sands from Urban Areas of Abu Dhabi. Appl. Sci. 2022, 12, 3325. [Google Scholar] [CrossRef]
- Wang, G.; Hong, B.; Liu, X.; Sun, D.; Shao, Z.; Yao, Y. Experimental Study on the Shear Properties of Soil around Piles with Permeation Grouting. Appl. Sci. 2023, 13, 621. [Google Scholar] [CrossRef]
- Xu, L.; Qi, C.; Niu, L.; Ding, X. Effect of Expanded Body Diameter on the Soil Surrounding a Pile Based on the Half-Face Pile Model Test of Undisturbed Soil. Buildings 2023, 13, 951. [Google Scholar] [CrossRef]
- Lin, C.; Huang, L.; Chen, S.; Huang, M.; Wang, R.; Tan, Q. Study on Shielding Effect of the Pile Group in a Soft-Soil Foundation. Appl. Sci. 2023, 13, 9478. [Google Scholar] [CrossRef]
- Kong, G.; Fang, J.; Lv, Z.; Yang, Q. Effects of pile and soil properties on thermally induced mechanical responses of energy piles. Comput. Geotech. 2023, 154, 105176. [Google Scholar] [CrossRef]
- Khalil, A.; Khan, Z.; Attom, M.; Fattah, K.; Ali, T.; Mortula, M. Continuous Evaluation of Shear Wave Velocity from Bender Elements during Monotonic Triaxial Loading. Materials 2023, 16, 766. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Khan, Z.; Attom, M.; Khalafalla, O. Evaluation of Ground Improvement with Dynamic Replacement and Rapid Impact Compaction of an Artificial Island in the UAE—A Case Study. In Proceedings of the Geo-Congress 2024, Vancouver, BC, Canada, 25–28 February 2024; pp. 116–125. [Google Scholar] [CrossRef]
- Banu, S.; Attom, M.; Abed, F.; Vandanapu, R.; Astillo, P.V.; Al-Lozi, N.; Khalil, A. Numerical Analysis of the Ultimate Bearing Capacity of Strip Footing Constructed on Sand-over-Clay Sediment. Buildings 2024, 14, 1164. [Google Scholar] [CrossRef]
- Attom, M.F.; Vandanapu, R.; Khan, Z.; Yamin, M.; Astillo, P.V.; Eltayeb, A.; Khalil, A. Prediction of Internal Erosion Parameters of Clay Soils Using Initial Physical Properties. Water 2024, 16, 232. [Google Scholar] [CrossRef]
- Tsanis, I.K.; Seiradakis, K.D.; Sarchani, S.; Panagea, I.S.; Alexakis, D.D.; Koutroulis, A.G. The Impact of Soil-Improving Cropping Practices on Erosion Rates: A Stakeholder-Oriented Field Experiment Assessment. Land 2021, 10, 964. [Google Scholar] [CrossRef]
- Bourne-Webb, P.; Freitas, T.B.; Assunção, R.F. A review of pile-soil interactions in isolated, thermally-activated piles. Comput. Geotech. 2019, 108, 61–74. [Google Scholar] [CrossRef]
- Galindo, A.V.; Khan, T.S.; Al Hajri, E. Feasibility Study and Experimental Investigation of Heat and Mass Transfer in Dry and Moisturised Sand for Energy Savings. In International Symposium on Energy Geotechnics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 171–178. [Google Scholar]
- Ferrari, A.; Laloui, L. Energy Geotechnics: SEG-2018; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Buildings|Alliance to Save Energy. Available online: https://www.ase.org/categories/buildings (accessed on 15 November 2021).
- Adam, D.; Markiewicz, R. Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique 2009, 59, 229–236. [Google Scholar] [CrossRef]
- Faizal, M.; Bouazza, A.; Singh, R.M. Heat transfer enhancement of geothermal energy piles. Renew. Sustain. Energy Rev. 2016, 57, 16–33. [Google Scholar] [CrossRef]
- Batini, N.; Loria, A.F.R.; Conti, P.; Testi, D.; Grassi, W.; Laloui, L. Energy and geotechnical behaviour of energy piles for different design solutions. Appl. Therm. Eng. 2015, 86, 199–213. [Google Scholar] [CrossRef]
- Sani, A.K.; Singh, R.M.; Amis, T.; Cavarretta, I. A review on the performance of geothermal energy pile foundation, its design process and applications. Renew. Sustain. Energy Rev. 2019, 106, 54–78. [Google Scholar] [CrossRef]
- Bourne-Webb, P.; Burlon, S.; Javed, S.; Kürten, S.; Loveridge, F. Analysis and design methods for energy geostructures. Renew. Sustain. Energy Rev. 2016, 65, 402–419. [Google Scholar] [CrossRef]
- Budiono, A.; Suyitno, S.; Rosyadi, I.; Faishal, A.; Ilyas, A.X. A systematic review of the design and heat transfer performance of enhanced closed-loop geothermal systems. Energies 2022, 15, 742. [Google Scholar] [CrossRef]
- Greco, A.; Gundabattini, E.; Solomon, D.G.; Rassiah, R.S.; Masselli, C. A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning. Energies 2022, 15, 5519. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Liang, M.; Jiang, Z.; Ou, Y.; Tang, X.; Li, X.; Qiu, L.; Liang, M.; Liu, D.; et al. Three-Dimensional Electromagnetic Imaging of Geothermal System in Gonghe Basin. Minerals 2023, 13, 883. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. VOSviewer Manual. 2023. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.5.2.pdf (accessed on 15 April 2024).
- Laloui, L.; di Donna, A. Energy Geostructures: Innovation in Underground Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Wang, K.; Huang, T.; Zhang, W.; Zhang, Z.; Ma, X.; Zhang, L. An Analysis of the Heat Transfer Characteristics of Medium-Shallow Borehole Ground Heat Exchangers with Various Working Fluids. Sustainability 2023, 15, 12657. [Google Scholar] [CrossRef]
- Al-Qadami, E.H.H.; Mustaffa, Z.; Al-Atroush, M.E. Evaluation of the pavement geothermal energy harvesting technologies towards sustainability and renewable energy. Energies 2022, 15, 1201. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Gao, W.; Xu, T.; Wei, X.; Shi, C.; Qi, Z.; Bai, L. Uncovering the Efficiency and Performance of Ground-Source Heat Pumps in Cold Regions: A Case Study of a Public Building in Northern China. Buildings 2023, 13, 1564. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, X.; Zhang, W.; Liu, J.; Yue, W.; Ma, F. Investigation of a Novel Deep Borehole Heat Exchanger for Building Heating and Cooling with Particular Reference to Heat Extraction and Storage. Processes 2022, 10, 888. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, F.; Shao, Y.; Twaha, S.; Tong, H. Techno-economic comprehensive review of state-of-the-art geothermal and solar roadway energy systems. Sustainability 2022, 14, 10974. [Google Scholar] [CrossRef]
- Kumar, L.; Hossain, S.; Assad, M.E.H.; Manoo, M.U. Technological Advancements and Challenges of Geothermal Energy Systems: A Comprehensive Review. Energies 2022, 15, 9058. [Google Scholar] [CrossRef]
- Younger, P.L. Geothermal Energy: Delivering on the Global Potential. Energies 2015, 8, 11737–11754. [Google Scholar] [CrossRef]
- Aquino, A.; Scrucca, F.; Bonamente, E. Sustainability of Shallow Geothermal Energy for Building Air-Conditioning. Energies 2021, 14, 7058. [Google Scholar] [CrossRef]
- Gonzalez, J.M.; Santana, M.M.; Gomez, E.J.; Delgado, J.A. Soil Thermophiles and Their Extracellular Enzymes: A Set of Capabilities Able to Provide Significant Services and Risks. Microorganisms 2023, 11, 1650. [Google Scholar] [CrossRef]
- De Giorgio, G.; Chieco, M.; Limoni, P.P.; Zuffianò, L.E.; Dragone, V.; Romanazzi, A.; Pagliarulo, R.; Musicco, G.; Polemio, M. Improving Regulation and the Role of Natural Risk Knowledge to Promote Sustainable Low Enthalpy Geothermal Energy Utilization. Water 2020, 12, 2925. [Google Scholar] [CrossRef]
- Bonamente, E.; Aquino, A. Environmental performance of innovative ground-source heat pumps with PCM energy storage. Energies 2019, 13, 117. [Google Scholar] [CrossRef]
- Di Donna, A.; Barla, M.; Amis, T. Energy geostructures: A collection of data from real applications. In Proceedings of the 15th International Conference of the International Association for Computer Methods and Advances in Geomechanics (15th IACMAG), Wuhan, China, 18–22 October 2017; p. 9. [Google Scholar]
- Fadejev, J.; Simson, R.; Kurnitski, J.; Haghighat, F. A review on energy piles design, sizing and modelling. Energy 2017, 122, 390–407. [Google Scholar] [CrossRef]
- de Moel, M.; Bach, P.M.; Bouazza, A.; Singh, R.M.; Sun, J.O. Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia. Renew. Sustain. Energy Rev. 2010, 14, 2683–2696. [Google Scholar] [CrossRef]
- Loveridge, F.; Powrie, W. Pile heat exchangers: Thermal behaviour and interactions. Proc. Inst. Civ. Eng. Geotech. Eng. 2013, 166, 178–196. [Google Scholar] [CrossRef]
- Abuel-Naga, H.; Raouf, A.M.; Raouf, M.I.N.; Nasser, A.G. Energy piles: Current state of knowledge and design challenges. Environ. Geotech. 2015, 2, 195–210. [Google Scholar] [CrossRef]
- Chitsaz, A.; Mahmoudi, S.M.S.; Rosen, M.A. Greenhouse gas emission and exergy analyses of an integrated trigeneration system driven by a solid oxide fuel cell. Appl. Therm. Eng. 2015, 86, 81–90. [Google Scholar] [CrossRef]
- Mohamad, Z.; Fardoun, F.; Meftah, F. A review on energy piles design, evaluation, and optimization. J. Clean. Prod. 2021, 292, 125802. [Google Scholar] [CrossRef]
- Caulk, R.; Ghazanfari, E.; McCartney, J.S. Parameterization of a calibrated geothermal energy pile model. Geomech. Energy Environ. 2016, 5, 1–15. [Google Scholar] [CrossRef]
- Jeon, J.-S.; Lee, S.-R.; Kim, M.-J. A modified mathematical model for spiral coil-type horizontal ground heat exchangers. Energy 2018, 152, 732–743. [Google Scholar] [CrossRef]
- Loveridge, F.; McCartney, J.S.; Narsilio, G.A.; Sanchez, M. Energy geostructures: A review of analysis approaches, in situ testing and model scale experiments. Geomech. Energy Environ. 2020, 22, 100173. [Google Scholar] [CrossRef]
- Zarrella, A.; Emmi, G.; Zecchin, R.; De Carli, M. An appropriate use of the thermal response test for the design of energy foundation piles with U-tube circuits. Energy Build. 2017, 134, 259–270. [Google Scholar] [CrossRef]
- Man, Y.; Yang, H.; Diao, N.; Liu, J.; Fang, Z. A new model and analytical solutions for borehole and pile ground heat exchangers. Int. J. Heat Mass Transf. 2010, 53, 2593–2601. [Google Scholar] [CrossRef]
- Wang, D.; Lin, L.; Aiqiang, P. Investigating the impact of thermo-physical property difference between soil and pile on the thermal performance of energy piles. Procedia Eng. 2017, 205, 3199–3205. [Google Scholar] [CrossRef]
- Park, S.; Sung, C.; Jung, K.; Sohn, B.; Chauchois, A.; Choi, H. Constructability and heat exchange efficiency of large diameter cast-in-place energy piles with various configurations of heat exchange pipe. Appl. Therm. Eng. 2015, 90, 1061–1071. [Google Scholar] [CrossRef]
- Park, S.; Lee, S.; Oh, K.; Kim, D.; Choi, H. Engineering chart for thermal performance of cast-in-place energy pile considering thermal resistance. Appl. Therm. Eng. 2018, 130, 899–921. [Google Scholar] [CrossRef]
- Cui, P.; Li, X.; Man, Y.; Fang, Z. Heat transfer analysis of pile geothermal heat exchangers with spiral coils. Appl. Energy 2011, 88, 4113–4119. [Google Scholar] [CrossRef]
- Han, C.; Yu, X. An innovative energy pile technology to expand the viability of geothermal bridge deck snow melting for different United States regions: Computational assisted feasibility analyses. Renew. Energy 2018, 123, 417–427. [Google Scholar] [CrossRef]
- Dehghan, B. Effectiveness of using spiral ground heat exchangers in ground source heat pump system of a building for district heating/cooling purposes: Comparison among different configurations. Appl. Therm. Eng. 2018, 130, 1489–1506. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.; Ma, H.; Huang, C.-H. Enhanced Heat Transfer Characteristics of Graphite Concrete and Its Application in Energy Piles. Adv. Mater. Sci. Eng. 2018, 2018, 8142392. [Google Scholar] [CrossRef]
- Dehghan, B.; Sisman, A.; Aydin, M. Parametric investigation of helical ground heat exchangers for heat pump applications. Energy Build. 2016, 127, 999–1007. [Google Scholar] [CrossRef]
- Aresti, L.; Christodoulides, P.; Florides, G. A review of the design aspects of ground heat exchangers. Renew. Sustain. Energy Rev. 2018, 92, 757–773. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, J.; Twaha, S.; Riffat, S. A comprehensive review on 2D and 3D models of vertical ground heat exchangers. Renew. Sustain. Energy Rev. 2018, 94, 84–114. [Google Scholar] [CrossRef]
- Bezyan, B.; Porkhial, S.; Mehrizi, A.A. 3-D simulation of heat transfer rate in geothermal pile-foundation heat exchangers with spiral pipe configuration. Appl. Therm. Eng. 2015, 87, 655–668. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, J. 3D transient heat transfer numerical analysis of multiple energy piles. Energy Build. 2017, 134, 129–142. [Google Scholar] [CrossRef]
- Rui, Y.; Garber, D.; Yin, M. Modelling ground source heat pump system by an integrated simulation programme. Appl. Therm. Eng. 2018, 134, 450–459. [Google Scholar] [CrossRef]
- Lu, H.-W.; Jin, X.; Jiang, G.; Liu, W.-Q. Numerical Analysis of the Thermal Performance of Energy Pile with U-Tube. Energy Procedia 2017, 105, 4731–4737. [Google Scholar] [CrossRef]
- Carotenuto, A.; Marotta, P.; Massarotti, N.; Mauro, A.; Normino, G. Energy piles for ground source heat pump applications: Comparison of heat transfer performance for different design and operating parameters. Appl. Therm. Eng. 2017, 124, 1492–1504. [Google Scholar] [CrossRef]
- Laloui, L.; Sutman, M.; International Society for Soil Mechanics and Geotechnical Engineering. Energy geostructures: A new era for geotechnical engineering practice. In Proceedings of the XVII ECSMGE-2019, Reykjavík, Iceland, 1–6 September 2019. [Google Scholar] [CrossRef]
- Wu, D.; Kong, G.; Liu, H.; Jiang, Q.; Yang, Q.; Kong, L. Performance of a full-scale energy pile for underground solar energy storage. Case Stud. Therm. Eng. 2021, 27, 101313. [Google Scholar] [CrossRef]
- Xiong, Z.; Li, X.; Zhao, P.; Zhang, D.; Dong, S. An in-situ experimental investigate of thermo-mechanical behavior of a large diameter over length energy pile. Energy Build 2021, 252, 111474. [Google Scholar] [CrossRef]
- Elzeiny, R.; Suleiman, M.T.; Xiao, S.; Qamar, M.A.A.; Al-Khawaja, M. Laboratory-Scale Pull-Out Tests on a Geothermal Energy Pile in Dry Sand Subjected to Heating Cycles. Available online: https://mc06.manuscriptcentral.com/cgj-pubs (accessed on 12 March 2024).
- Ghasemi-Fare, O.; Basu, P. Influences of ground saturation and thermal boundary condition on energy harvesting using geothermal piles. Energy Build. 2018, 165, 340–351. [Google Scholar] [CrossRef]
- Jiang, G.; Lin, C.; Shao, D.; Huang, M.; Lu, H.; Chen, G.; Zong, C. Thermo-mechanical behavior of driven energy piles from full-scale load tests. Energy Build. 2021, 233, 110668. [Google Scholar] [CrossRef]
- Yazdani, S.; Helwany, S.; Olgun, G. Investigation of Thermal Loading Effects on Shaft Resistance of Energy Pile Using Laboratory-Scale Model. J. Geotech. Geoenviron. Eng. 2019, 145, 04019043. [Google Scholar] [CrossRef]
- Cecinato, F.; Loveridge, F.A. Influences on the thermal efficiency of energy piles. Energy 2015, 82, 1021–1033. [Google Scholar] [CrossRef]
- Faizal, M.; Bouazza, A.; Haberfield, C.; McCartney, J.S. Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes. J. Geotech. Geoenviron. Eng. 2018, 144, 04018072. [Google Scholar] [CrossRef]
- Kumar, P.; Samui, P. Design of an energy pile based on CPT data using soft computing techniques. Infrastructures 2022, 7, 169. [Google Scholar] [CrossRef]
- Zhao, P.; Li, X.; Hu, L.; Wu, Y.; Zhang, C. A Finite Element Model for Investigating Unsteady-State Temperature Distribution and Thermomechanical Behavior of Underground Energy Piles. Appl. Sci. 2022, 12, 8401. [Google Scholar] [CrossRef]
- Faizal, M.; Bouazza, A.; McCartney, J.S. Thermohydraulic Responses of Unsaturated Sand around a Model Energy Pile. J. Geotech. Geoenviron. Eng. 2021, 147, 04021105. [Google Scholar] [CrossRef]
- Laloui, L.; Loria, A.F.R. Analysis and Design of Energy Geostructures: Theoretical Essentials and Practical Application; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Kavanaugh, S.P.; Rafferty, K.D. Geothermal Heating and Cooling: Design of Ground-Source Heat Pump Systems; ASHRAE: Technology Parkway, NW, USA, 2014. [Google Scholar]
- Jones, G.L. Geotrainet Training Manual for Designers of Shallow Geothermal Systems; Geotrainet: Berlin, Germany, 2011. [Google Scholar]
- Noorollahi, Y.; Saeidi, R.; Mohammadi, M.; Amiri, A.; Hosseinzadeh, M. The effects of ground heat exchanger parameters changes on geothermal heat pump performance—A review. Appl. Therm. Eng. 2018, 129, 1645–1658. [Google Scholar] [CrossRef]
- Mehrizi, A.A.; Porkhial, S.; Bezyan, B.; Lotfizadeh, H. Energy pile foundation simulation for different configurations of ground source heat exchanger. Int. Commun. Heat Mass Transf. 2016, 70, 105–114. [Google Scholar] [CrossRef]
- Zarrella, A.; De Carli, M.; Galgaro, A. Thermal performance of two types of energy foundation pile: Helical pipe and triple U-tube. Appl. Therm. Eng. 2013, 61, 301–310. [Google Scholar] [CrossRef]
- Luo, J.; Zhao, H.; Gui, S.; Xiang, W.; Rohn, J.; Blum, P. Thermo-economic analysis of four different types of ground heat exchangers in energy piles. Appl. Therm. Eng. 2016, 108, 11–19. [Google Scholar] [CrossRef]
- Mohamad, Z.; Fardoun, F. Energy performance evaluation of geothermal boreholes. In Proceedings of the 2017 Sensors Networks Smart and Emerging Technologies (SENSET), Beiriut, Lebanon, 12–14 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Aria Moradshahi, M.F. Effect of nearby piles and soil properties on thermal behaviour of a field-scale energy pile. Anal. Des. Energy Geostruct. 2020, i–iii. [Google Scholar] [CrossRef]
- Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [CrossRef] [PubMed]
- Rybach, L.; Sanner, B. Geothermal heat pump development: Trends and achievements in Europe. In Perspectives for Geothermal Energy in Europe; World Scientific: Singapore, 2017; pp. 215–253. [Google Scholar]
- Patil, P.A. Geothermal Energy in India: From Exploration to End User. Available online: https://www.researchgate.net/profile/Parimal-Patil/publication/292643785_Chapter_11_-_Geothermal_energy_in_India_From_exploration_to_end_user/links/5ea7fdcca6fdcccf72690898/Chapter-11-Geothermal-energy-in-India-From-exploration-to-end-user.pdf (accessed on 12 April 2024).
- Rajver, D.; Rman, N.; Lapanje, A. Stanje izkoriščanja geotermalne energije in nekateri zanimivi dosežki v geotermalnih raziskavah in razvoju v svetu. Geologija 2016, 59, 99–114. [Google Scholar] [CrossRef]
- Boguslavsky, E.I. World experience of geothermal engineering. Gorn. Zhurnal 2016, 2016, 19–23. [Google Scholar] [CrossRef]
- Soltani, M.; Kashkooli, F.M.; Souri, M.; Rafiei, B.; Jabarifar, M.; Gharali, K.; Nathwani, J.S. Environmental, economic, and social impacts of geothermal energy systems. Renew. Sustain. Energy Rev. 2021, 140, 110750. [Google Scholar] [CrossRef]
- Adams, C.A.; MC Auld, A.; Gluyas, J.G.; Hogg, S. Geothermal energy—The global opportunity. Proc. Inst. Mech. Eng. Part A J. Power Energy 2015, 229, 747–754. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Shabbir, M.S.; Siddiqi, A.F.; Ilyashenko, L.K.; Ahmadi, E. Review of two decade geothermal energy development in Iran, benefits, challenges, and future policy. Geothermics 2019, 77, 257–266. [Google Scholar] [CrossRef]
- Ouda, O.K.M.; Al-Bassam, A.M.; Lashin, A.A. Economic and Technical Potential of Geothermal Energy in the Kingdom of Saudi Arabia. In Advances in Science, Technology and Innovation; Springer Nature: Berlin/Heidelberg, Germany, 2022; pp. 391–395. [Google Scholar] [CrossRef]
- Masoud, A.A.; Kubo, T.; Koike, K. Detection of Thermal Features Through Interpolation of Well-Log Data in Low-to-Medium Enthalpy Geothermal System, Gulf of Suez, Egypt. Nat. Resour. Res. 2023, 32, 955–980. [Google Scholar] [CrossRef]
- Bosworth, W.; Taviani, M.; Rasul, N.M.A. Neotectonics of the red sea, gulf of suez and gulf of aqaba. In Geological Setting, Palaeoenvironment and Archaeology of the Red Sea; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 11–35. [Google Scholar] [CrossRef]
- Albawab, M.; Assad, M.E.H.; AlMallahi, M.N.; Asaad, S.M.; Elgendi, M. Sustainable geothermal cooling of a residence in UAE using different refrigerants: A numerical analysis. Model. Earth Syst. Environ. 2024, 10, 1841–1854. [Google Scholar] [CrossRef]
- Ansari, U.; Soomro, N.A.; Narejo, F.A.; Baloch, S.A.; Talpur, F.A. Geo-Thermo-Mechanical Modeling of Pre-Drilled Wellbores to Extract Geothermal Energy from Subsurface to Produce Cleaner Energy for United Arab Emirates. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 15–18 November 2021; p. D041S110R003. [Google Scholar] [CrossRef]
- Ediger, V.; Akar, S. Historical Pattern Analysis of Global Geothermal Power Capacity Development. Trans. Geotherm. Resour. Counc. 2023, 47, 262–289. [Google Scholar]
Author | Pipe Configuration | Pile Size | Method and/or Software | Included Experimental | Main Result |
---|---|---|---|---|---|
Kong et al. [5] | U-, W-, and 4U-shaped pipes | Dia = 0.6 m Length = 24 m | COMSOL (version 4.4) | Yes | Through experiments and numerical models, it is revealed that while longer pipes can enhance thermal exchange, they also introduce substantial mechanical effects requiring consideration in design. Additionally, the research examines soil effects, demonstrating that soil thermal expansion mitigates thermal compressive stress over time and that higher soil elastic modulus increases thermal stress in energy piles. |
(Kumar and Samui [72]) | U shaped pipe | Dia = 0.7 m Length = 8 m | Machine learning algorithms | No | The research identifies key variables for calculating energy pile capacity and employs soft computing algorithms like random forest, support vector machine, gradient boosting machine, and extreme gradient boosting to predict pile group capacity. The gradient boosting machine (GBM) technique demonstrates the best performance, with evaluation metrics indicating its accuracy in estimating energy pile group capacity compared to other models. |
(Zhao et al. [73]) | - | Dia = 1 m Length = 44 m | FEM | No | Under intermittent operation, energy pile temperatures and surrounding ground exhibit periodic variation, with prolonged use leading to thermal accumulation and peak temperatures during the initial daily cycle. Temperature fluctuations induce axial compression or tensile stress, especially in summer/winter conditions, and partial energy pile usage causes additional tensile stress in nonenergy anchor piles. |
(Faizal et al.) [74] | - | Dia = 0.025 m Length = 0.264 m | - | Yes | The ratio of heating and cooling would have a significant impact on the hydraulic response when the temperature changes. |
(Wu et al. [64]) | Spiral-shaped pipe | Pile full scale | COMSOL | Underground solar energy storage (USES) test | Increasing the tube length is more sufficient for improving the performance of thermal injection comparing to changing the tube shape. |
(Xiong et al. [65] | - | Dia = 1 m Length = 44 m | - | Yes | A slight change in radial effective contact pressure was noticed at the clay–pile interface during the heating process; however, a 55.3 kPa effective change in pressure was noticed at the sand–pile interface. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, A.; Attom, M.; Khan, Z.; Astillo, P.V.; El-Kadri, O.M. Recent Advancements in Geothermal Energy Piles Performance and Design. Energies 2024, 17, 3386. https://doi.org/10.3390/en17143386
Khalil A, Attom M, Khan Z, Astillo PV, El-Kadri OM. Recent Advancements in Geothermal Energy Piles Performance and Design. Energies. 2024; 17(14):3386. https://doi.org/10.3390/en17143386
Chicago/Turabian StyleKhalil, Ahmed, Mousa Attom, Zahid Khan, Philip Virgil Astillo, and Oussama M. El-Kadri. 2024. "Recent Advancements in Geothermal Energy Piles Performance and Design" Energies 17, no. 14: 3386. https://doi.org/10.3390/en17143386
APA StyleKhalil, A., Attom, M., Khan, Z., Astillo, P. V., & El-Kadri, O. M. (2024). Recent Advancements in Geothermal Energy Piles Performance and Design. Energies, 17(14), 3386. https://doi.org/10.3390/en17143386