Thermal and Hydrodynamic Measurements of a Novel Chaotic Micromixer to Enhance Mixing Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Micromixer Design
2.2. Numerical Simulations
2.2.1. Properties of Fluids
2.2.2. Governing Equations
2.3. Characterization of the Thermal Mixing
2.4. Boundary Conditions and Mesh-Independent Test
3. Results and Discussion
3.1. CFD Validation Case
3.2. Analysis of the Newtonian Fluid
Micromixer Mixing Performance
3.3. Analysis of the Non-Newtonian Fluid
3.3.1. Micromixer Mixing Performance
3.3.2. Pressure Drop and Performance Index
3.3.3. Mixing Energy Cost
3.3.4. Mass Distribution of the Non-Newtonian Fluids
3.3.5. Temperature Contours
3.3.6. Average Fluid Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbol | Description |
∇ | Gradient operator |
c | Concentration |
C | Average mole fraction |
ci | Mole fraction at a specific location |
CFD | Computational fluid dynamics |
CMC | Carboxy methyl cellulose |
D | Diffusion coefficient |
d1, d2 | Diameter of grooves |
Dh | Hydraulic diameter |
k | Consistency index |
L | Axial length of channel |
l1, l2 | Length of grooves |
MEC | Mixing energy cost |
MI | Mixing index |
n | Power law index |
N | Number of nodes in the cross-section. |
P | Pressure |
PI | Performance index |
Q | Flow rate |
Reg | Generalized Reynolds number |
T | Cross-section mean temperature |
Ti | Temperature at the i-th node |
TMI | Thermal mixing index |
u | Velocity vector |
w1, w2 | Width of inlet channels |
γ | Shear rate tensor |
ΔP | Pressure drop |
Μ | Dynamic viscosity |
μa | Apparent viscosity (for non-Newtonian fluids) |
ξ | Dimensionless geometrical parameter |
ρ | Fluid density |
σ | Standard deviation |
σ0 | Standard deviation at inlet section |
τ | Shear stress tensor |
References
- Chen, X.; Shen, J. Design and Simulation of a Chaotic Micromixer with Diamond-Like Micropillar Based on Artificial Neural Network. Int. J. Chem. React. Eng. 2017, 15, 20160039. [Google Scholar] [CrossRef]
- Stroock, A.D.; Dertinger, S.K.W.; Ajdari, A.; Mezić, I.; Stone, H.A.; Whitesides, G.M. Chaotic Mixer for Microchannels. Science 2002, 295, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, M.; Azimi, N.; Parsamogadam, M.A.; Rahimi, A.; Masahy, M.M. Mixing Performance of T, Y, and Oriented Y-Micromixers with Spatially Arranged Outlet Channel: Evaluation with Villermaux/Dushman Test Reaction. Microsyst. Technol. 2017, 23, 3117–3130. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Wu, Z. Micromixers—A Review. J. Micromech. Microeng. 2005, 15, 2. [Google Scholar] [CrossRef]
- Hessel, V.; Löwe, H.; Schönfeld, F. Micromixers—A Review on Passive and Active Mixing Principles. Chem. Eng. Sci. 2005, 60, 2479–2501. [Google Scholar] [CrossRef]
- Glasgow, I.; Aubry, N. Enhancement of Microfluidic Mixing Using Time Pulsing. Lab Chip 2003, 3, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, T.; Zeng, H.; Hu, Z.; Fu, B. Numerical and Experimental Investigation on Micromixers with Serpentine Microchannels. Int. J. Heat Mass Transf. 2016, 98, 131–140. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X. Optimized Modular Design and Experiment for Staggered Herringbone Chaotic Micromixer. Int. J. Chem. React. Eng. 2015, 13, 305–309. [Google Scholar] [CrossRef]
- Ianovska, M.A.; Mulder, P.P.M.F.A.; Verpoorte, E. Development of Small-Volume, Microfluidic Chaotic Mixers for Future Application in Two-Dimensional Liquid Chromatography. RSC Adv. 2017, 7, 9090–9099. [Google Scholar] [CrossRef]
- Ober, T.J.; Foresti, D.; Lewis, J.A. Active Mixing of Complex Fluids at the Microscale. Proc. Natl. Acad. Sci. USA 2015, 112, 12293–12298. [Google Scholar] [CrossRef]
- The, H.L.; Ta, B.Q.; Thanh, H.L.; Dong, T.; Thoi, T.N.; Karlsen, F. Geometric Effects on Mixing Performance in a Novel Passive Micromixer with Trapezoidal-Zigzag Channels. J. Micromech. Microeng. 2015, 25, 094004. [Google Scholar] [CrossRef]
- Chen, J.-K.; Yang, R.-J. Electroosmotic Flow Mixing in Zigzag Microchannels. Electrophoresis 2007, 28, 975–983. [Google Scholar] [CrossRef]
- Liu, R.H.; Stremler, M.A.; Sharp, K.V.; Olsen, M.G.; Santiago, J.G.; Adrian, R.J.; Aref, H.; Beebe, D.J. Passive Mixing in a Three-Dimensional Serpentine Microchannel. J. Microelectromech. Syst. 2000, 9, 190–197. [Google Scholar] [CrossRef]
- Vanka, S.P.; Luo, G.; Winkler, C.M. Numerical Study of Scalar Mixing in Curved Channels at Low Reynolds Numbers. AIChE J. 2004, 50, 2359–2368. [Google Scholar] [CrossRef]
- Johnson, T.J.; Ross, D.; Locascio, L.E. Rapid Microfluidic Mixing. Anal. Chem. 2002, 74, 45–51. [Google Scholar] [CrossRef]
- Chen, J.J.; Shie, Y.S. Interfacial Configurations and Mixing Performances of Fluids in Staggered Curved-Channel Micromixers. Microsyst. Technol. 2012, 18, 1823–1833. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, S.H.; Kwon, T.H.; Ahn, C.H. A Serpentine Laminating Micromixer Combining Splitting/Recombination and Advection. Lab Chip 2005, 5, 739–747. [Google Scholar] [CrossRef]
- Tayeb, N.T.; Hossain, S.; Khan, A.H.; Mostefa, T.; Kim, K.-Y. Evaluation of Hydrodynamic and Thermal Behaviour of Non-Newtonian-Nanofluid Mixing in a Chaotic Micromixer. Micromachines 2022, 13, 933. [Google Scholar] [CrossRef]
- Wu, S.-J.; Hsu, H.-C.; Feng, W.-J. Novel Design and Fabrication of a Geometrical Obstacle-Embedded Micromixer with Notched Wall. Jpn. J. Appl. Phys. 2014, 53, 097201. [Google Scholar] [CrossRef]
- Mengeaud, V.; Josserand, J.; Girault, H.H. Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study. Anal. Chem. 2002, 74, 4279–4286. [Google Scholar] [CrossRef]
- Tsai, R.-T.; Wu, C.-Y. An Efficient Micromixer Based on Multidirectional Vortices Due to Baffles and Channel Curvature. Biomicrofluidics 2011, 5, 014103. [Google Scholar] [CrossRef]
- Tsai, R.-T.; Wu, C.-Y.; Chang, C.-Y.; Kuo, M.-Y. Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers. Int. J. Aerosp. Mech. Eng. 2015, 9, 1329–1335. [Google Scholar]
- Raza, W.; Kim, K.-Y. Unbalanced Split and Recombine Micromixer with Three-Dimensional Steps. Ind Eng Chem Res 2020, 59, 3744–3756. [Google Scholar] [CrossRef]
- Alam, A.; Kim, K.-Y. Mixing Performance of a Planar Micromixer with Circular Chambers and Crossing Constriction Channels. Sens. Actuators B Chem. 2013, 176, 639–652. [Google Scholar] [CrossRef]
- Xia, H.M.; Wan, S.Y.M.; Shu, C.; Chew, Y.T. Chaotic Micromixers Using Two-Layer Crossing Channels to Exhibit Fast Mixing at Low Reynolds Numbers. Lab Chip 2005, 5, 748–755. [Google Scholar] [CrossRef]
- Hossain, S.; Lee, I.; Kim, S.M.; Kim, K.-Y. A Micromixer with Two-Layer Serpentine Crossing Channels Having Excellent Mixing Performance at Low Reynolds Numbers. Chem. Eng. J. 2017, 327, 268–277. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Li, X.; He, F.; Ma, X. A Micromixer with Two-Layer Crossing Microchannels Based on PMMA Bonding Process. Int. J. Chem. React. Eng. 2019, 17, 20180265. [Google Scholar] [CrossRef]
- Afzal, A.; Kim, K.-Y. Flow and Mixing Analysis of Non-Newtonian Fluids in Straight and Serpentine Microchannels. Chem. Eng. Sci. 2014, 116, 263–274. [Google Scholar] [CrossRef]
- Baheri Islami, S.; Khezerloo, M.; Gharraei, R. The Effect of Chaotic Advection on Mixing Degree and Pressure Drop of Non-Newtonian Fluids Flow in Curved Micromixers. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 813–831. [Google Scholar] [CrossRef]
- Baheri Islami, S.; Khezerloo, M. Enhancement of Mixing Performance of Non-Newtonian Fluids Using Curving and Grooving of Microchannels. J. Appl. Fluid Mech. 2017, 10, 127–141. [Google Scholar] [CrossRef]
- He, M.; Li, W.; Zhang, M.Q.; Zhang, J. Numerical Investigation on the Efficient Mixing of Overbridged Split-and-Recombine Micromixer at Low Reynolds Number. Microsyst. Technol. 2019, 25, 3447–3461. [Google Scholar] [CrossRef]
- Mashaei, P.R.; Hosseinalipour, S.M.; Esmailpour, K. Numerical Investigation of Thermal Mixing of Shear Thinning Fluids in One-Way Opposing Jets. J. Comput. Appl. Res. Mech. Eng. 2014, 3, 95–103. [Google Scholar]
- Maurya, A.; Tiwari, N.; Chhabra, R.P. Thermal Mixing of Impinging Laminar Streams of Shear-Thinning Fluids. Heat Transf. Eng. 2020, 41, 1576–1595. [Google Scholar] [CrossRef]
- Naas, T.T.; Lasbet, Y.; Aidaoui, L.; Boukhalkhal, A.L.; Loubar, K. High Performance in Terms of Thermal Mixing of Non-Newtonian Fluids Using Open Chaotic Flow: Numerical Investigations. Therm. Sci. Eng. Prog. 2020, 16, 100454. [Google Scholar] [CrossRef]
- Kouadri, A.; Douroum, E.; El Ouederni, A.R.; Benazza, A.; Laouedj, S.; Khelladi, S. Assessment of Mixing Behaviors of Non-Newtonian Pseudoplastic Fluids in Short Microdevices. Int. Commun. Heat Mass Transf. 2024, 155, 107500. [Google Scholar] [CrossRef]
- Li, A.; Yao, Y.; Tang, X.; Liu, P.; Zhang, Q.; Li, Q.; Li, P.; Zhang, F.; Wang, Y.; Tao, C.; et al. Experimental and Computational Investigation of Chaotic Advection Mixing in Laminar Rectangular Stirred Tanks. Chem. Eng. J. 2024, 485, 149956. [Google Scholar] [CrossRef]
- Fellouah, H.; Castelain, C.; Ould-El-Moctar, A.; Peerhossaini, H. The Dean Instability in Power-Law and Bingham Fluids in a Curved Rectangular Duct. J. Non-Newton Fluid Mech. 2010, 165, 163–173. [Google Scholar] [CrossRef]
- Pinho, F.T.; Whitelaw, J.H. Flow of Non-Newtonian Fluids in a Pipe. J. Non-Newton Fluid Mech. 1990, 34, 129–144. [Google Scholar] [CrossRef]
- Huang, H.-C.; Li, Z.-H.; Zheng-Hua, L. Finite Element Analysis of Non-Newtonian Flow: Theory and Software; Springer: London, UK, 1998. [Google Scholar]
- Byron Bird, R.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar]
- Metzner, A.B.; Reed, J.C. Flow of Non-newtonian Fluids—Correlation of the Laminar, Transition, and Turbulent-flow Regions. AIChE J. 1955, 1, 434–440. [Google Scholar] [CrossRef]
- Delplace, F.; Leuliet, J.C. Generalized Reynolds Number for the Flow of Power Law Fluids in Cylindrical Ducts of Arbitrary Cross-Section. Chem. Eng. J. Biochem. Eng. J. 1995, 56, 33–37. [Google Scholar] [CrossRef]
- Mahammedi, A.; Tayeb, N.T.; Kim, K.-Y.; Hossain, S. Mixing Enhancement of Non-Newtonian Shear-Thinning Fluid for a Kenics Micromixer. Micromachines 2021, 12, 1494. [Google Scholar] [CrossRef] [PubMed]
- Lasbet, Y.; Auvity, B.; Castelain, C.; Peerhossaini, H. Thermal and Hydrodynamic Performances of Chaotic Mini-Channel: Application to the Fuel Cell Cooling. Heat Transf. Eng. 2007, 28, 795–803. [Google Scholar] [CrossRef]
- Gidde, R.R.; Pawar, P.M.; Ronge, B.P.; Shinde, A.B.; Misal, N.D.; Wangikar, S.S. Flow Field Analysis of a Passive Wavy Micromixer with CSAR and ESAR Elements. Microsyst. Technol. 2019, 25, 1017–1030. [Google Scholar] [CrossRef]
- Falk, L.; Commenge, J.-M. Performance Comparison of Micromixers. Chem. Eng. Sci. 2010, 65, 405–411. [Google Scholar] [CrossRef]
- Gidde, R.R.; Pawar, P.M. Flow Feature and Mixing Performance Analysis of RB-TSAR and EB-TSAR Micromixers. Microsyst. Technol. 2020, 26, 517–530. [Google Scholar] [CrossRef]
CMC (%) | n | k (Pa·sn) |
---|---|---|
0 | 1 | 0.00092 |
0.1 | 0.9 | 0.0075 |
0.2 | 0.8 | 0.06 |
0.3 | 0.73 | 0.15 |
0.7 | 0.49 | 2.75 |
Mesh | Standard Deviation | Pressure Drop (Pa) |
---|---|---|
138,768 | 0.0581 | 200.5 |
245,810 | 0.0637 | 204.36 |
316,116 | 0.0682 | 205.9 |
472,970 | 0.0727 | 209.56 |
540,824 | 0.0762 | 210.43 |
652,462 | 0.0784 | 211.3 |
793,495 | 0.0784 | 211.4 |
Re | MEC (μW) This Work | MEC (μW) in Ref. [18] | MEC (μW) in Ref. [47] |
---|---|---|---|
1 | 0.00134 | 0.0064 | 0.0297 |
5 | 0.336 | 0.194 | 0.8346 |
15 | 2.456 | 1.548 | 10.2599 |
30 | 11.529 | 7.43 | 55.1685 |
Line | P1 | P2 | P3 | P4 | P5 | Outlet |
---|---|---|---|---|---|---|
Y (m) | 0.00135 | 0.00247 | 0.00333 | 0.00415 | 0.00475 | 0.0056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahammedi, A.; Kouider, R.; Tayeb, N.T.; Kassir Al-Karany, R.; Cuerda-Correa, E.M.; Al-Kassir, A. Thermal and Hydrodynamic Measurements of a Novel Chaotic Micromixer to Enhance Mixing Performance. Energies 2024, 17, 3248. https://doi.org/10.3390/en17133248
Mahammedi A, Kouider R, Tayeb NT, Kassir Al-Karany R, Cuerda-Correa EM, Al-Kassir A. Thermal and Hydrodynamic Measurements of a Novel Chaotic Micromixer to Enhance Mixing Performance. Energies. 2024; 17(13):3248. https://doi.org/10.3390/en17133248
Chicago/Turabian StyleMahammedi, Abdelkader, Rahmani Kouider, Naas Toufik Tayeb, Raúl Kassir Al-Karany, Eduardo M. Cuerda-Correa, and Awf Al-Kassir. 2024. "Thermal and Hydrodynamic Measurements of a Novel Chaotic Micromixer to Enhance Mixing Performance" Energies 17, no. 13: 3248. https://doi.org/10.3390/en17133248
APA StyleMahammedi, A., Kouider, R., Tayeb, N. T., Kassir Al-Karany, R., Cuerda-Correa, E. M., & Al-Kassir, A. (2024). Thermal and Hydrodynamic Measurements of a Novel Chaotic Micromixer to Enhance Mixing Performance. Energies, 17(13), 3248. https://doi.org/10.3390/en17133248