Effectiveness of Daytime Radiative Sky Cooling in Constructions
Highlights
- Review of the physics, in-use technologies, and materials for daytime radiative cooling in buildings.
- Review of studies dealing with the use of passive radiative surfaces within the construction sector.
- The main advantages and limitations of building-integrated radiative coolers are presented.
- The performance and cost of present and future materials is discussed, which will further improve radiative cooling.
Abstract
:1. Introduction
1.1. Background of the Review
1.2. Problem Statement and Motivation
1.3. Objective and Structure
2. Methodology
3. Principles of Radiative Cooling
4. Literature Review for Building Integration of Radiative Cooling Surfaces
4.1. Passive Cooling Surfaces from Traditional “Cool Roofs” to Daytime Radiative Coolers
4.2. Integration of Passive Radiative Surfaces in Buildings and HVAC Systems
4.2.1. Air-Based Cooling Systems
4.2.2. Water-Based Cooling Systems
5. Switchable Materials and Systems Applied to Radiative Sky Cooling in Buildings
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EU Parliament. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency; EU Parliament: Strasbourg, France, 2018. [Google Scholar]
- Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Dalgo, D.; Mi, R.; Zhao, X.; Song, J.; et al. A Radiative Cooling Structural Material. Science 2019, 364, 760–763. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Hjortsberg, A. Surfaces for Radiative Cooling: Silicon Monoxide Films on Aluminum. Appl. Phys. Lett. 1980, 36, 139–141. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Hjortsberg, A. Radiative Cooling to Low Temperatures: General Considerations and Application to Selectively Emitting SiO Films. J. Appl. Phys. 1981, 52, 4205–4220. [Google Scholar] [CrossRef]
- Givoni, B. Options and Applications of Passive Cooling. Energy Build. 1984, 7, 297–300. [Google Scholar] [CrossRef]
- Tsai, C.C.; Shi, N.; Pelaez, J.; Pierce, N.; Yu, N. Butterflies Regulate Wing Temperatures Using Radiative Cooling. In Proceedings of the 2017 Conference on Lasers and Electro-Optics, CLEO 2017—Proceedings 2017, San Jose, CA, USA, 14–19 May 2017; Volume 2017-Janua, pp. 1–2. [Google Scholar] [CrossRef]
- Shi, N.N.; Tsai, C.C.; Craig, C.; Yu, N. Nano-Structured Wild Moth Cocoon Fibers as Radiative Cooling and Waveguiding Optical Materials. In Proceedings of the 2017 Conference on Lasers and Electro-Optics, CLEO 2017—Proceedings 2017, San Jose, CA, USA, 14–19 May 2017; Volume 2017-Janua, pp. 1–2. [Google Scholar] [CrossRef]
- Shi, N.N.; Tsai, C.C.; Camino, F.; Bernard, G.D.; Yu, N.; Wehner, R. Keeping Cool: Enhanced Optical Reflection and Radiative Heat Dissipation in Saharan Silver Ants. Science 2015, 349, 298–301. [Google Scholar] [CrossRef]
- Hossain, M.M.; Gu, M. Radiative Cooling: Principles, Progress, and Potentials. Adv. Sci. 2016, 3, 1500360. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.Y.; Tso, C.Y.; Zouagui, M.; Wong, Y.M.; Chao, C.Y.H. A Numerical Study of Daytime Passive Radiative Coolers for Space Cooling in Buildings. Build. Simul. 2018, 11, 1011–1028. [Google Scholar] [CrossRef]
- Ulpiani, G.; Ranzi, G.; Feng, J.; Santamouris, M. Expanding the Applicability of Daytime Radiative Cooling: Technological Developments and Limitations. Energy Build. 2021, 243, 110990. [Google Scholar] [CrossRef]
- John, A.; Duffie, W.A.B. Solar Engineering of Thermal Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Swinbank, W.C. Long-Wave Radiations from Clear Skies. Q. J. R. Meteorol. Soc. 1963, 89, 339–348. [Google Scholar] [CrossRef]
- Bliss, R.W. Atmospheric Radiation near the Surface of the Ground: A Summary for Engineers. Sol. Energy 1961, 5, 103–120. [Google Scholar] [CrossRef]
- Martin, M.; Berdahl, P. Summary of Results from the Spectral and Angular Sky Radiation Measurement Program. Sol. Energy 1984, 33, 241–252. [Google Scholar] [CrossRef]
- Berdahl, P.; Martin, M. Emissivity of Clear Skies Permalink. Energy Environ. Div. 1984. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Jarimi, H.; Riffat, S. Nocturnal Cooling Technology for Building Applications; Springer: Singapore, 2019; ISBN 9789811358340. [Google Scholar] [CrossRef]
- Rephaeli, E.; Raman, A.; Fan, S. Ultrabroadband Photonic Structures to Achieve High-Performance Daytime Radiative Cooling. Nano Lett. 2013, 13, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Santamouris, M.; Yun, G.Y. Recent Development and Research Priorities on Cool and Super Cool Materials to Mitigate Urban Heat Island. Renew. Energy 2020, 161, 792–807. [Google Scholar] [CrossRef]
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive Radiative Cooling below Ambient Air Temperature under Direct Sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Raman, A. Metamaterials for Radiative Sky Cooling. Natl. Sci. Rev. 2018, 5, 132–133. [Google Scholar] [CrossRef]
- Heo, S.Y.; Lee, G.J.; Kim, D.H.; Kim, Y.J.; Ishii, S.; Kim, M.S.; Seok, T.J.; Lee, B.J.; Lee, H.; Song, Y.M. A Janus Emitter for Passive Heat Release from Enclosures. Sci. Adv. 2020, 6, eabb1906. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Aili, A.; Zhai, Y.; Xu, S.; Tan, G.; Yin, X.; Yang, R. Radiative Sky Cooling: Fundamental Principles, Materials, and Applications. Appl. Phys. Rev. 2019, 6, 021306. [Google Scholar] [CrossRef]
- Greffet, J.-J.; Bouchon, P.; Brucoli, G.; Sakat, E.; Marquier, F. Generalized Kirchhoff Law. arXiv 2016, arXiv:1601.00312. [Google Scholar] [CrossRef]
- Ji, M.; Xu, Y.; Mo, Y.; Zhang, Y.; Zhou, R.; Zhu, S. Land Surface Temperature Retrieval Method Based on UAV Thermal Infrared Remote Sensing and Synchronized Atmospheric Profiles. J. Geo-Information Sci. 2023, 25, 2456–2467. [Google Scholar] [CrossRef]
- Vall, S.; Castell, A. Radiative Cooling as Low-Grade Energy Source: A Literature Review. Renew. Sustain. Energy Rev. 2017, 77, 803–820. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, M.; Ao, X.; Huang, X.; Ren, X.; Pei, G. Conventional Photovoltaic Panel for Nocturnal Radiative Cooling and Preliminary Performance Analysis. Energy 2019, 175, 677–686. [Google Scholar] [CrossRef]
- Lim, X.Z. The Super-Cool Materials That Send Heat to Space. Nature 2020, 577, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Ko, B.; Lee, D.; Badloe, T.; Rho, J. Metamaterial-Based Radiative Cooling: Towards Energy-Free All-Day Cooling. Energies 2019, 12, 89. [Google Scholar] [CrossRef]
- Kecebas, M.A.; Menguc, M.P.; Kosar, A.; Sendur, K. Passive Radiative Cooling Design with Broadband Optical Thin-Film Filters. J. Quant. Spectrosc. Radiat. Transf. 2017, 198, 1339–1351. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, L.; Raman, A.; Fan, S. Radiative Cooling to Deep Sub-Freezing Temperatures through a 24-h Day-Night Cycle. Nat. Commun. 2016, 7, 13729. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Scalable-Manufactured Randomized Glass-Polymer Hybrid Metamaterial for Daytime Radiative Cooling. Science 2017, 355, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, X.; Li, Z.; Zhang, H.; Yang, Z.; Zhou, H.; Fan, T. Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime Radiative Cooling. Adv. Funct. Mater. 2020, 30, 1907562. [Google Scholar] [CrossRef]
- Yan, T.; Xu, D.; Meng, J.; Xu, X.; Yu, Z.; Wu, H. A Review of Radiative Sky Cooling Technology and Its Application in Building Systems. Renew. Energy 2024, 220, 119599. [Google Scholar] [CrossRef]
- Hu, M.; Zhao, B.; Suhendri; Ao, X.; Cao, J.; Wang, Q.; Riffat, S.; Su, Y.; Pei, G. Applications of Radiative Sky Cooling in Solar Energy Systems: Progress, Challenges, and Prospects. Renew. Sustain. Energy Rev. 2022, 160, 112304. [Google Scholar] [CrossRef]
- Pacheco, R.; Ordóñez, J.; Martínez, G. Energy Efficient Design of Building: A Review. Renew. Sustain. Energy Rev. 2012, 16, 3559–3573. [Google Scholar] [CrossRef]
- Jia, S.; Weng, Q.; Yoo, C.; Xiao, H.; Zhong, Q. Building Energy Savings by Green Roofs and Cool Roofs in Current and Future Climates. Npj Urban Sustain. 2024, 4, 23. [Google Scholar] [CrossRef]
- Feng, J.; Saliari, M.; Gao, K.; Santamouris, M. On the Cooling Energy Conservation Potential of Super Cool Roofs. Energy Build. 2022, 264, 112076. [Google Scholar] [CrossRef]
- Chan, Y.H.; Zhang, Y.; Tennakoon, T.; Fu, S.C.; Chan, K.C.; Tso, C.Y.; Yu, K.M.; Wan, M.P.; Huang, B.L.; Yao, S.; et al. Potential Passive Cooling Methods Based on Radiation Controls in Buildings. Energy Convers. Manag. 2022, 272, 116342. [Google Scholar] [CrossRef]
- ASHRAE. Advanced Energy Design Guide for Small to Medium Office Buildings 50%; ASHRAE: Peachtree Corners, GA, USA, 2014; ISBN 9781936504053. [Google Scholar]
- ASTM E1980-11(2019); Standard Practice for Calculating Solar Reflectance Index of Horizontal and Low-Sloped Opaque Surface. ASTM: West Conshohocken, PA, USA, 2019; Volume 04.04. [CrossRef]
- Akbari, H.; Berdahl, P.; Levinson, R.; Wiel, S.; Miller, B.; Desjarlais, A. Cool-Color Roofing Material. California Energy Commission, PIER Building End-Use Energy Efficiency Program; CEC-500-2006-067; California Energy Commission: Sacramento, CA, USA, 2006. [Google Scholar]
- Bamdad, K. Cool Roofs: A Climate Change Mitigation and Adaptation Strategy for Residential Buildings. Build. Environ. 2023, 236, 110271. [Google Scholar] [CrossRef]
- Hernández-Pérez, I.; Xamán, J.; Macías-Melo, E.V.; Aguilar-Castro, K.M. Reflective Materials for Cost-Effective Energy-Efficient Retrofitting of Roofs; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780081011287. [Google Scholar]
- Pisello, A.L.; Cotana, F. The Thermal Effect of an Innovative Cool Roof on Residential Buildings in Italy: Results from Two Years of Continuous Monitoring. Energy Build. 2014, 69, 154–164. [Google Scholar] [CrossRef]
- Gentle, A.R.; Smith, G.B. A Subambient Open Roof Surface under the Mid-Summer Sun. Adv. Sci. 2015, 2, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Baniassadi, A.; Sailor, D.J.; Ban-Weiss, G.A. Potential Energy and Climate Benefits of Super-Cool Materials as a Rooftop Strategy. Urban Clim. 2019, 29, 100495. [Google Scholar] [CrossRef]
- Mandal, J.; Fu, Y.; Overvig, A.C.; Jia, M.; Sun, K.; Shi, N.N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically Porous Polymer Coatings for Highly Efficient Passive Daytime Radiative Cooling. Science 2018, 362, 315–319. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, J.; Lei, D.; Jiang, C.; Yang, Z.; Yang, G.; Zhang, D.; Zhang, L.; Zhang, C.; Bai, Y. Temperature-Adaptive Smart Windows with Passive Transmittance and Radiative Cooling Regulation. Appl. Energy 2024, 369, 123619. [Google Scholar] [CrossRef]
- Byrnes, S.J. Multilayer Optical Calculations. arXiv 2016, arXiv:1603.02720. [Google Scholar]
- Chen, Y.; Dang, B.; Fu, J.; Wang, C.; Li, C.; Sun, Q.; Li, H. Cellulose-Based Hybrid Structural Material for Radiative Cooling. Nano Lett. 2021, 21, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Cannavale, A.; Pugliese, M.; Giannuzzi, R.; Scarfiello, R.; Prontera, C.T.; Primiceri, V.; Mazzeo, M.; Martellotta, F.; Ayr, U.; Fiorito, F.; et al. Towards the Scale-up of Solid-State, Low-Emissive Electrochromic Films, Fabricated on a Single Substrate with Novel Electrolyte Formulations. Sol. Energy Mater. Sol. Cells 2022, 241, 111760. [Google Scholar] [CrossRef]
- Çengel, Y.A. Introduction to Thermodynamics and Heat Transfer; McGraw-Hill: New York, NY, USA, 2009; Volume 960. [Google Scholar]
- Erell, E.; Etzion, Y. Analysis and Experimental Verification of an Improved Cooling Radiator. Renew. Energy 1999, 16, 700–703. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.H., Jr.; Hoke, M.L.; et al. MODTRAN5: 2006 Update. Algorithms Technol. Multispectral Hyperspectral Ultraspectral Imag. XII 2006, 6233, 62331F. [Google Scholar] [CrossRef]
- Carlosena, L.; Andueza, Á.; Torres, L.; Irulegi, O.; Hernández-Minguillón, R.J.; Sevilla, J.; Santamouris, M. Experimental Development and Testing of Low-Cost Scalable Radiative Cooling Materials for Building Applications. Sol. Energy Mater. Sol. Cells 2021, 230, 111209. [Google Scholar] [CrossRef]
- Bergman, T.L. Active Daytime Radiative Cooling Using Spectrally Selective Surfaces for Air Conditioning and Refrigeration Systems. Sol. Energy 2018, 174, 16–23. [Google Scholar] [CrossRef]
- Kousis, I.; D’Amato, R.; Pisello, A.L.; Latterini, L. Daytime Radiative Cooling: A Perspective toward Urban Heat Island Mitigation. ACS Energy Lett. 2023, 8, 3239–3250. [Google Scholar] [CrossRef]
- Yuan, J.; Yin, H.; Yuan, D.; Yang, Y.; Xu, S. On Daytime Radiative Cooling Using Spectrally Selective Metamaterial Based Building Envelopes. Energy 2022, 242, 122779. [Google Scholar] [CrossRef]
- Liu, J.; Xu, C.; Ao, X.; Lu, K.; Zhao, B.; Pei, G. A Dual-Layer Polymer-Based Film for All-Day Sub-Ambient Radiative Sky Cooling. Energy 2022, 254, 124350. [Google Scholar] [CrossRef]
- Lim, H.; Chae, D.; Son, S.; Ha, J.; Lee, H. CaCO3 Micro Particle-Based Radiative Cooling Device without Metal Reflector for Entire Day. Mater. Today Commun. 2022, 32, 103990. [Google Scholar] [CrossRef]
- Huang, T.; Chen, Q.; Huang, J.; Lu, Y.; Xu, H.; Zhao, M.; Xu, Y.; Song, W. Scalable Colored Subambient Radiative Coolers Based on a Polymer-Tamm Photonic Structure. ACS Appl. Mater. Interfaces 2023, 15, 16277–16287. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Huang, Y.; Zhao, Y.; Rao, Z.; Li, W.; Chen, Z.; Chen, M. Self-Sustained and Insulated Radiative/Evaporative Cooler for Daytime Subambient Passive Cooling. ACS Appl. Mater. Interfaces 2023, 16, 6513–6522. [Google Scholar] [CrossRef]
- Givoni, B. Solar Heating and Night Radiation Cooling by a Roof Radiation Trap. Energy Build. 1977, 1, 141–145. [Google Scholar] [CrossRef]
- Liu, Z.; Tan, H.; Ma, G. Experimental Investigation on Night Sky Radiant Cooling Performance of Duct-Type Heat Exchanger. Int. J. Vent. 2017, 16, 255–267. [Google Scholar] [CrossRef]
- Parker, D.S.; Sherwin, J.R. Evaluation of the NightCool Nocturnal Radiation Cooling Concept: Annual Performance Assessment in Scale Test Buildings Stage Gate 1B; Florida Solar Energy Center: Cocoa, FL, USA, 2008. [Google Scholar] [CrossRef]
- Kimball, B.A.; Idso, S.B.; Aase, J.K. A Model of Thermal Radiation from Partly Cloudy and Overcast Skies. Water Resour. Res. 1982, 18, 931–936. [Google Scholar] [CrossRef]
- Hollick, J. Nocturnal Radiation Cooling Tests. Energy Procedia 2012, 30, 930–936. [Google Scholar] [CrossRef]
- Khedari, J.; Waewsak, J.; Thepa, S.; Hirunlabh, J. Field Investigation of Night Radiation Cooling under Tropical Climate. Renew. Energy 2000, 20, 183–193. [Google Scholar] [CrossRef]
- Hu, M.; Seng Lee, P. Performance Evaluation of a Passive Air Conditioning Module Integrating Radiative Sky Cooling and Indirect Evaporative Cooling. Appl. Therm. Eng. 2024, 244, 122608. [Google Scholar] [CrossRef]
- Gálvez, M.; García, J.; Barraza, R.; Contreras, J. Parametric Analysis of an Air-Based Radiative Cooling System Coupled to a Thermal Storage Wall for a Low-Income Household. Energy Build. 2021, 252, 111364. [Google Scholar] [CrossRef]
- Al-Zubaydi, A.Y.T.; Dartnall, W.J. Design and Modelling of Water Chilling Production System by the Combined Effects of Evaporation and Night Sky Radiation. J. Renew. Energy 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Cui, Y.; Luo, X.; Zhang, F.; Sun, L.; Jin, N.; Yang, W. Progress of Passive Daytime Radiative Cooling Technologies towards Commercial Applications. Particuology 2022, 67, 57–67. [Google Scholar] [CrossRef]
- Zhao, D.; Aili, A.; Yin, X.; Tan, G.; Yang, R. Roof-Integrated Radiative Air-Cooling System to Achieve Cooler Attic for Building Energy Saving. Energy Build. 2019, 203, 109453. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, J.; Su, Y.S.; Du, W.; Ma, Y.G. Daytime Passive Radiative Cooler Using Porous Alumina. Sol. Energy Mater. Sol. Cells 2019, 191, 50–54. [Google Scholar] [CrossRef]
- Torgerson, E.; Hellhake, J. Polymer Solar Filter for Enabling Direct Daytime Radiative Cooling. Sol. Energy Mater. Sol. Cells 2020, 206, 110319. [Google Scholar] [CrossRef]
- Wang, C.; Chen, H.; Wang, F. Passive Daytime Radiative Cooling Materials toward Real-World Applications. Prog. Mater. Sci. 2024, 144, 101276. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, H.; Sun, H.; Duan, M.; Lin, B.; Wu, S. A Review of the Application of Radiative Sky Cooling in Buildings: Challenges and Optimization. Energy Convers. Manag. 2022, 265, 115768. [Google Scholar] [CrossRef]
- Hamza, A.; Ali, H. Passive Cooling of Water at Night in Uninsulated Open Tank in Hot Arid Areas. Energy Convers. Manag. 2006, 48, 93–100. [Google Scholar] [CrossRef]
- Tang, R.; Etzion, Y. On Thermal Performance of an Improved Roof Pond for Cooling Buildings. Build. Environ. 2004, 39, 201–209. [Google Scholar] [CrossRef]
- Spanaki, A.; Tsoutsos, T.; Kolokotsa, D. On the Selection and Design of the Proper Roof Pond Variant for Passive Cooling Purposes. Renew. Sustain. Energy Rev. 2011, 15, 3523–3533. [Google Scholar] [CrossRef]
- Spanaki, A.; Kolokotsa, D.; Tsoutsos, T.; Zacharopoulos, I. Theoretical and Experimental Analysis of a Novel Low Emissivity Water Pond in Summer. Sol. Energy 2012, 86, 3331–3344. [Google Scholar] [CrossRef]
- Hosseinzadeh, E.; Taherian, H. An Experimental and Analytical Study of a Radiative Cooling System with Unglazed Flat Plate Collectors. Int. J. Green Energy 2012, 9, 766–779. [Google Scholar] [CrossRef]
- Okoronkwo, C.A.; Nwigwe, K.N.; Ogueke, N.V.; Anyanwu, E.E.; Onyejekwe, D.C.; Ugwuoke, P.E. An Experimental Investigation of the Passive Cooling of a Building Using Nighttime Radiant Cooling. Int. J. Green Energy 2014, 11, 1072–1083. [Google Scholar] [CrossRef]
- Ferrer Tevar, J.A.; Castã No, S.; Marijuán, A.G.; Heras, M.R.; Pistono, J. Modelling and Experimental Analysis of Three Radioconvective Panels for Night Cooling. Energy Build. 2015, 107, 37–48. [Google Scholar] [CrossRef]
- Raeissi, S.; Taheri, M. Skytherm: An Approach to Year-Round Thermal Energy Sufficient Houses. Renew. Energy 2000, 19, 527–543. [Google Scholar] [CrossRef]
- Meir, M.G.; Rekstad, J.B.; LØvvik, O.M. A Study of a Polymer-Based Radiative Cooling System. Sol. Energy 2002, 73, 403–417. [Google Scholar] [CrossRef]
- Zhou, K.; Miljkovic, N.; Cai, L. Performance Analysis on System-Level Integration and Operation of Daytime Radiative Cooling Technology for Air-Conditioning in Buildings. Energy Build. 2021, 235, 110749. [Google Scholar] [CrossRef]
- Wang, W.; Fernandez, N.; Katipamula, S.; Alvine, K. Performance Assessment of a Photonic Radiative Cooling System for Office Buildings. Renew. Energy 2018, 118, 265–277. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, D.; Yin, X.; Yang, R.; Tan, G. Energy Saving and Economic Analysis of a New Hybrid Radiative Cooling System for Single-Family Houses in the USA. Appl. Energy 2018, 224, 371–381. [Google Scholar] [CrossRef]
- Pirvaram, A.; Talebzadeh, N.; Leung, S.N.; O’Brien, P.G. Radiative Cooling for Buildings: A Review of Techno-Enviro-Economics and Life-Cycle Assessment Methods. Renew. Sustain. Energy Rev. 2022, 162, 112415. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, M.; Seo, J.; Kim, S.; Lee, H.; Lee, J.; Lee, B.J. Performance Analysis of a Hybrid HVAC System Consisting of a Solar Thermal Collector and a Radiative Cooling Panel. Energy Build. 2021, 241, 110921. [Google Scholar] [CrossRef]
- Zhao, D.; Aili, A.; Zhai, Y.; Lu, J.; Kidd, D.; Tan, G.; Yin, X.; Yang, R. Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling. Joule 2019, 3, 111–123. [Google Scholar] [CrossRef]
- Jia, L.; Lu, L.; Chen, J. Exploring the Cooling Potential Maps of a Radiative Sky Cooling Radiator-Assisted Ground Source Heat Pump System in China. Appl. Energy 2023, 349, 121678. [Google Scholar] [CrossRef]
- Goldstein, E.A.; Raman, A.P.; Fan, S. Sub-Ambient Non-Evaporative Fluid Cooling with the Sky. Nat. Energy 2017, 2, 17143. [Google Scholar] [CrossRef]
- Yu, X.; Chan, J.; Chen, C. Review of Radiative Cooling Materials: Performance Evaluation and Design Approaches. Nano Energy 2021, 88, 106259. [Google Scholar] [CrossRef]
- Fang, H.; Zhao, D.; Yuan, J.; Aili, A.; Yin, X.; Yang, R.; Tan, G. Performance Evaluation of a Metamaterial-Based New Cool Roof Using Improved Roof Thermal Transfer Value Model. Appl. Energy 2019, 248, 589–599. [Google Scholar] [CrossRef]
- Fernandez, N.; Wang, W.; Alvine, K.J.; Katipamula, S. Energy Savings Potential of Radiative Cooling Technologies; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2015; Volume 72. [Google Scholar]
- Felicelli, A.; Wang, J.; Feng, D.; Forti, E.; Azrak, S.E.A.; Peoples, J.; Youngblood, J.; Chiu, G.; Ruan, X. Efficient Radiative Cooling of Low-Cost BaSO4 Paint-Paper Dual-Layer Thin Films. Nanophotonics 2024, 13, 639–648. [Google Scholar] [CrossRef]
- Lu, X.; Xu, P.; Wang, H.; Yang, T.; Hou, J. Cooling Potential and Applications Prospects of Passive Radiative Cooling in Buildings: The Current State-of-the-Art. Renew. Sustain. Energy Rev. 2016, 65, 1079–1097. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, Y.; Xiao, Y.; Xie, H.L.; Lan, R.; Zhang, L.; Yang, H. Ultrafast Switchable Passive Radiative Cooling Smart Windows with Synergistic Optical Modulation. Adv. Funct. Mater. 2023, 33, 2301319. [Google Scholar] [CrossRef]
- An, Y.; Fu, Y.; Jian-Guo, D.; Yin, X.; Lei, D. Switchable Radiative Cooling Technologies for Smart Thermal Management. Cell Rep. Phys. Sci. 2022, 3, 101098. [Google Scholar] [CrossRef]
- Yoo, M.J.; Pyun, K.R.; Jung, Y.; Lee, M.; Lee, J.; Ko, S.H. Switchable Radiative Cooling and Solar Heating for Sustainable Thermal Management. Nanophotonics 2024, 13, 543–561. [Google Scholar] [CrossRef]
- Testa, J.; Krarti, M. A Review of Benefits and Limitations of Static and Switchable Cool Roof Systems. Renew. Sustain. Energy Rev. 2017, 77, 451–460. [Google Scholar] [CrossRef]
- Cui, Y.; Ke, Y.; Liu, C.; Chen, Z.; Wang, N.; Zhang, L.; Zhou, Y.; Wang, S.; Gao, Y.; Long, Y. Thermochromic VO2 for Energy-Efficient Smart Windows. Joule 2018, 2, 1707–1746. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, J.; Fan, D. Switchable Radiative Cooling from Temperature-Responsive Thermal Resistance Modulation. ACS Appl. Energy Mater. 2022, 5, 6003–6010. [Google Scholar] [CrossRef]
- Cannavale, A.; Pugliese, M.; De Matteis, V.; Giannuzzi, R.; Mancarella, F.; Valenzano, V.; Ayr, U.; Liuzzi, S.; Maiorano, V.; Berardi, U.; et al. Multifunctional Hydrogel-Based Electrolytes for Thermoelectrochromic Devices. J. Appl. Polym. Sci. 2023, 140, e54330. [Google Scholar] [CrossRef]
Reference | Technology Adopted | Adaptiveness | Main Features |
---|---|---|---|
Raman et al. [20] | Integrated photonic solar reflector/thermal emitter (seven layers of HfO2 and SiO2). | No | R = 97% of incident sunlight; high selective emittance in the atmospheric transparency window. Exposed to direct sunlight >850 W/m2 cools to 4.9 °C below ambient Tair; cooling power of 40.1 W/m2 at Tair. |
Pisello et al. [45] | Prototyped cool clay tile. | No | Tiles decrease summer peak indoor temperature of the attic by up to 4.7 °C. Winter maximum temperature reduction was 1.2 °C |
Gentle et al. [46] | Birefringent polymer pairs, with high index and one with low index, for example poly-ethylene terephthalate (PET)/naphthalene dicarboxylate and polyethylene naphthalate. | No | For a 1000 W·m−2 incident, around 30 W/m2 of solar energy is absorbed. Average thermal emittance of 0.96 from 7.9 to 14 µm. In the absence of a convective barrier, Tamb − Troof value is equal to 3 °C for peak midday conditions on a clear summer day, and to 7 °C at night. |
Wang et al. [33] | 300 µm thick flexible hybrid photonic membrane radiator. Polyvinylidene fluoride/ tetraethyl orthosilicate fibres with randomly distributed SiO2 microspheres. | No | Average infrared emissivity > 0.96 and Rsol ≈ 97%. Average radiative cooling power of 61 W·m−2 and a temperature decrease up to 6 °C under solar intensity of 1000 W/m2. |
Zhai et al. [32] | Resonant polar dielectric microspheres randomly embedded in a polymeric matrix, backed with silver coating. | No | Daytime radiative cooling power of 93 W/m2 under direct sunshine and economical roll-to-roll manufacturing of the metamaterial. |
Zhang et al. [90] | Switchable radiative cooler composed of a radiative cooling coating and a temperature-responsive part. | Yes | The prepared radiative cooler shows Rsol ≈ 96% and 95% infrared emission in the atmospheric transmittance window (8−13 μm). The temperature responsive part consists of nickel−titanium alloy springs working as a thermal switch, showing low thermal resistance (2.7 K·W−1) in the ON state. The heat is blocked to escape the indoor space since a high thermal resistance (20 K·W−1) is created when the thermal switch is in the OFF state. |
Deng et al. [101] | Electro-controlled polymer-dispersed liquid crystal. | Yes | The device reaches near/sub-ambient temperature when the solar irradiance is below 400 W/m2 and can dynamically manage daytime cooling efficiency by applying an external bias. |
Carlosena et al. [56] | Vikuiti substrate covered with 2 um thick film of polymethylsesquioxane + SiO2 microparticles. | No | Daytime radiative cooler with a cost of 0.3 €/m2. >7 °C sub-ambient temperature in moderate weather conditions. |
Zhao et al. [74] | “RadiCold” metafilm on top of an aluminum sheet. Polyethylene-based convective shield. | No | Sub-ambient temperatures of 3–5 °C during daytime. |
Yuan et al. [59] | Polymer-based spectrally selective metamaterial; Rsol about 96%. | No | When solar irradiation is 720 W/m2, a surface temperature of the model house of 2–9 °C below the ambient during a 72 h experiment period is achieved. |
Liu et al. [60] | Dual-layer film consisting of ethylene-tetra-fluoro-ethylene (25 µm) and silver. | No | Rsol = 0.94 and average total emissivity of 0.84, capable of reaching 1.6 °C below ambient air. |
Lim et al. [61] | Single layer of a CaCO3 composite without any metal reflector | No | Daytime sub-ambient temperatures of 3.38 °C and cooling power of 93.1 W/m2. |
Huang et al. [62] | Polymer–Tamm photonic structure. | No | Found theoretical thresholds for sub-ambient cooling through coloured coolers. Temperature drop of 2.6–8.8 °C during the daytime and 4.0–4.4 °C during the nighttime is achieved. |
Yu et al. [63] | Porous polyethylene film at the top, an air layer in the middle, and poly(vinyl alcohol) hydrogel with lithium bromide at the bottom. | No | Rsol = 0.91; εLWIR = 0.96; daytime sub-ambient cooling ∼3.3 °C in the field tests. |
Wang et al. [89] | The photonic radiative cooler consists of seven alternating layers of two thin oxides, a couple of metal layers, and a silicon wafer substrate. | No | HVAC system integrating the use of the photonic radiative cooler was proposed and modelled using the whole energy simulation program, EnergyPlus. During the cooling season, the passive cooler addressed about 10% of the cooling load in Miami, 17–36% in Las Vegas, and 61–84% in Los Angeles. |
Jia et al. [94] | Hybrid system that combines ground source heat pump and all-day radiative sky cooling radiators. | No | Annual average cooling power provided by radiative sky cooling radiators ranges between 149.7 and 484.6 W/m2 across all regions of China. |
Zhao et al. [93] | Polymer-based hybrid film (50 µm); silver (200 nm); adhesive (90 µm); and polycarbonate (0.5 mm). | No | A 10.6 °C sub-ambient cooling of a large mass of water in real experiments. |
Goldstein et al. [95] | Visibly reflective extruded copolymer mirror (3M Vikiuiti ESR film) to achieve sub-ambient temperatures under sunlight on top of a silver reflective surface. | No | Panels cooling water down to a 5 °C sub-ambient temperature with water flow rates of 0.2 L/(min·m2), resulting in an effective heat rejection flux of 70 W/m2. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannavale, A.; Pugliese, M.; Stasi, R.; Liuzzi, S.; Martellotta, F.; Maiorano, V.; Ayr, U. Effectiveness of Daytime Radiative Sky Cooling in Constructions. Energies 2024, 17, 3210. https://doi.org/10.3390/en17133210
Cannavale A, Pugliese M, Stasi R, Liuzzi S, Martellotta F, Maiorano V, Ayr U. Effectiveness of Daytime Radiative Sky Cooling in Constructions. Energies. 2024; 17(13):3210. https://doi.org/10.3390/en17133210
Chicago/Turabian StyleCannavale, Alessandro, Marco Pugliese, Roberto Stasi, Stefania Liuzzi, Francesco Martellotta, Vincenzo Maiorano, and Ubaldo Ayr. 2024. "Effectiveness of Daytime Radiative Sky Cooling in Constructions" Energies 17, no. 13: 3210. https://doi.org/10.3390/en17133210
APA StyleCannavale, A., Pugliese, M., Stasi, R., Liuzzi, S., Martellotta, F., Maiorano, V., & Ayr, U. (2024). Effectiveness of Daytime Radiative Sky Cooling in Constructions. Energies, 17(13), 3210. https://doi.org/10.3390/en17133210