EOR Technology (Patents) and Science (Articles) Assessment of BRICS and nonBRICS with Growth Rates and Specializations within Responsible Global Energy Transition: A Critical Review
Abstract
:1. Introduction
2. Materials and Methods
- WORLD: The number of world patents for each EOR method;
- BRICS: The number of EOR patents for each EOR method filed by residents of BRICS countries, determined by the assignee’s country at the earliest priority date: Argentina, Brazil, China, Egypt, Ethiopia, India, Iran, Russian Federation, Saudi Arabia, South Africa, and the United Arab Emirates;
- NonBRICS: The number of patents was obtained by subtracting the BRICS dataset from the World dataset.
3. Results and Discussion
3.1. EOR Science and Technology Distribution among BRICS and NonBRICS
3.2. EOR Growth Rates and Temporal Tendencies
3.3. EOR Technological Specialization
3.4. EOR Methods within BRICS and NonBRICS
3.4.1. Positioning of EOR Methods in Science (TRL3) and Technology (TRL4–5)
3.4.2. EOR Methods Growth Rates
3.4.3. Description of Competitive EOR Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ahmad, T.; Zhang, D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations. 2015. Available online: https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981# (accessed on 26 April 2022).
- Sustainable Development Goals. United Nations. Available online: https://sdgs.un.org/goals (accessed on 15 October 2022).
- Joseph, J.A. The ethical interface of sustainable prosperity in the teachings of pope Francis. J. Dharma 2021, 46, 279–294. Available online: https://dvkjournals.in/index.php/jd/article/view/3530 (accessed on 10 December 2023).
- Fincham, G. A World Not Our Own to Define: Ecological Solutions to Global Catastrophe in the Works of Barry Lopez. Engl. Acad. Rev. 2023, 41, 33–46. [Google Scholar] [CrossRef]
- Oil Producers and Consumers. U.S. Energy Information Administration. Available online: https://www.eia.gov/tools/faqs/faq.php?id=709&t=6 (accessed on 9 December 2023).
- Statistical Review of World Energy 2023. Energy Institute 2023. Heriot Watt University. 2023. Available online: https://www.energyinst.org/statistical-review (accessed on 9 December 2023).
- The Breakthrough Agenda Report 2022. Accelerating Sector Transitions Through Stronger International Collaboration. International Energy Agency (IEA), the International Renewable Energy Agency (IRENA) and the UN Climate Change High-Level Champions. Available online: https://www.iea.org/reports/breakthrough-agenda-report-2022 (accessed on 9 December 2023).
- Resetting Globalisation: Catalysts for Change. White Paper. Bloomberg Media Studios. Available online: https://sponsored.bloomberg.com/immersive/sc/resetting-globalisation (accessed on 9 December 2023).
- European Commission. 2021. Available online: https://ec.europa.eu/commission/presscorner/detail/cs/ip_21_5768 (accessed on 9 December 2023).
- Delina, L. Clean energy financing at Asian Development Bank. Energy Sustain. Dev. 2011, 15, 195–199. [Google Scholar] [CrossRef]
- Conheça os BRICS. Instituto de Pesquisa Econômica Aplicada IPEA. Brazil. Available online: https://www.ipea.gov.br/forumbrics/pt-BR/conheca-os-brics.html (accessed on 9 December 2023).
- History. Brazilian Government. Available online: https://www.gov.br/planalto/pt-br/assuntos/reuniao-do-brics/historia-do-brics (accessed on 9 December 2023).
- New Development Bank. Available online: https://www.ndb.int/about-ndb/history/ (accessed on 9 December 2023).
- Treaty for the Establishment of a BRICS Contingent Reserve Arrangement. Government of Brazil. Available online: https://web.archive.org/web/20150925234418/http://brics.itamaraty.gov.br/media2/press-releases/220-treaty-for-the-establishment-of-a-brics-contingent-reserve-arrangement-fortaleza-july-15 (accessed on 9 December 2023).
- BRICS Countries Give Unanimous Support to Indias Draft BRICS Innovation Action Plan 2021–2024. Department of Science and Technology. Ministry of Science and Technology. Government of India. 2021. Available online: https://dst.gov.in/brics-countries-give-unanimous-support-indias-draft-brics-innovation-action-plan-2021-2024 (accessed on 9 December 2023).
- Khan, A.M.; Osinska, M. How to Predict Energy Consumption in BRICS Countries? Energies 2021, 14, 2749. [Google Scholar] [CrossRef]
- Liu, J.-L.; Ma, C.-Q.; Ren, Y.-S.; Zhao, X.-W. Do Real Output and Renewable Energy Consumption Affect CO2 Emissions? Evidence for Selected BRICS Countries. Energies 2020, 13, 960. [Google Scholar] [CrossRef]
- Li, F.; Wu, Y.C.; Wang, M.C.; Wong, W.K.; Xing, Z. Empirical Study on CO2 Emissions, Financial Development and Economic Growth of the BRICS Countries. Energies 2021, 14, 7341. [Google Scholar] [CrossRef]
- Em declaração conjunta, líderes do BRICS anunciam a entrada de seis novos países. Relações Exteriores. Brazilian Government. Available online: https://www.gov.br/planalto/pt-br/acompanhe-o-planalto/noticias/2023/08/em-declaracao-conjunta-lideres-do-brics-anunciam-a-entrada-de-seis-novos-paises (accessed on 9 December 2023).
- Makhoba, X.; Pouris, A. A patentometric assessment of selected R&D priority areas in South Africa, a comparison with other BRICS countries. World Pat. Info 2019, 56, 20–28. [Google Scholar] [CrossRef]
- Li, B.; Rahman, S.U.; Afshan, S.; Amin, A.; Younas, S. Energy consumption and innovation-environmental degradation nexus in BRICS countries: New evidence from NARDL approach using carbon dioxide and nitrous oxide emissions. Environ. Sci. Pollut. Res. 2023, 30, 113561–113586. [Google Scholar] [CrossRef]
- Camioto, F.G.; Moralles, H.F.; Mariano, E.B.; Rebelatto, D.A.N. Energy efficiency analysis of G7 and BRICS considering total-factor structure. J. Clean. Prod. 2016, 122, 67–77. [Google Scholar] [CrossRef]
- Chen, J.; Xie, Q.; Shahbaz, M.; Song, M.; Wu, Y. The fossil energy trade relations among BRICS countries. Energy 2021, 217, 119383. [Google Scholar] [CrossRef]
- Wang, Z.; Razzaq, A. Natural resources, energy efficiency transition and sustainable development: Evidence from BRICS economies. Resour. Policy 2022, 79, 103118. [Google Scholar] [CrossRef]
- Marathe, S.R.; Raju, G.A. Does Crude Oil Prices Have Effect on Exports, Imports and GDP on BRICS Countries?—An Empirical Evidence. IJEEP 2020, 10, 524–528. [Google Scholar] [CrossRef]
- Mensi, W.; Rehman, M.U.; Maitra, D.; Al-Yahyaee, K.H.; Vo, X.V. Oil, natural gas and BRICS stock markets: Evidence of systemic risks and co-movements in the time-frequency domain. Resour. Policy 2021, 72, 102062. [Google Scholar] [CrossRef]
- He, Y.; Nakajima, T.; Hamori, S. Connectedness Between Natural Gas Price and BRICS Exchange Rates: Evidence from Time and Frequency Domains. Energies 2019, 12, 3970. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, S.; Cao, Y. How does economic policy uncertainty respond to the global oil price fluctuations? Evidence from BRICS countries. Resour. Policy 2022, 79, 103025. [Google Scholar] [CrossRef]
- Su, C.; Huang, S.; Qin, M.; Umar, M. Does crude oil price stimulate economic policy uncertainty in BRICS? Pac-Basin Financ. J. 2021, 66, 101519. [Google Scholar] [CrossRef]
- Yousefi, Y.; Ardehali, A.; Ghodusinejad, M.H. BRICS or G7? Current and future assessment of energy and environment performance using multi-criteria and time series analyzes. Energy Strat. Rev. 2023, 49, 101164. [Google Scholar] [CrossRef]
- Alvarado, V.; Manrique, E. Enhanced Oil Recovery: An Update Review. Energies 2010, 3, 1529–1575. [Google Scholar] [CrossRef]
- Muggeridge, A.; Cockin, A.; Webb, K.; Frampton, H.; Collins, I.; Moulds, T.; Salino, P. Recovery rates, enhanced oil recovery and technological limits. Phil. Trans. R. Soc. 2014, A372, 20120320. [Google Scholar] [CrossRef]
- DOE—Enhanced Oil Recovery. US Department of Energy. USA. Available online: https://www.energy.gov/fecm/enhanced-oil-recovery#:~:text=However%2C%20with%20much%20of%20the,reservoir’s%20original%20oil%20in%20place (accessed on 9 December 2023).
- Escoffier, M.; Hache, E.; Mignon, V.; Paris, A. Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter? Energy Econ. 2021, 97, 105024. [Google Scholar] [CrossRef]
- Bealessio, A.A.; Alonso, N.A.B.; Mendes, N.J.; Sande, A.V.; Hascakir, B. A review of enhanced oil recovery (EOR) methods applied in Kazakhstan. Petroleum 2021, 7, 1–9. [Google Scholar] [CrossRef]
- Aleksandrov, D.; Kudryavtsev, P.; Hascakir, B. Variations in in-situ combustion performance due to fracture orientation. J. Pet. Sci. Eng. 2017, 154, 488–494. [Google Scholar] [CrossRef]
- Antolinez, J.D.; Miri, R.; Nouri, A. In Situ Combustion: A Comprehensive Review of the Current State of Knowledge. Energies 2023, 16, 6306. [Google Scholar] [CrossRef]
- Cinar, M.; Deniz-Paker, M. Laboratory experiments of in situ combustion in core samples with simulated fractures. J. Pet. Sci. Eng. 2023, 220 (Part A), 111153. [Google Scholar] [CrossRef]
- Mahinpey, N.; Ambalae, A.; Asghari, K. In Situ Combustion in Enhanced Oil Recovery (EOR): A Review. Chem. Eng. Commun. 2007, 194, 995–1021. [Google Scholar] [CrossRef]
- Swadesi, B.; Ahmad Muraji, S.; Kurniawan, A.; Widiyaningsih, I.; Widyaningsih, R.; Budiarto, A.; Aslam, B.M. Optimizing the development strategy of combined steam flooding & cyclic steam stimulation for enhanced heavy oil recovery through reservoir proxy modeling. J. Pet. Explor. Prod. Technol. 2021, 11, 4415–4427. [Google Scholar] [CrossRef]
- Liu, B.; Wang, D.; Guo, Y. Effect of Circuit Parameters and Environment on Shock Waves Generated by Underwater Electrical Wire Explosion. IEEE Trans. Plasma Sci. 2017, 45, 2519–2526. [Google Scholar] [CrossRef]
- Shafiq, M.U.; Mahmud, H.B. Sandstone matrix acidizing knowledge and future development. J. Pet. Explor. Prod. Technol. 2017, 7, 1205–1216. [Google Scholar] [CrossRef]
- Kamal, M.S.; Sultan, A.S.; Al-Mubaiyedh, U.A.; Hussein, I.A. Review on Polymer Flooding: Rheology, Adsorption, Stability, and Field Applications of Various Polymer Systems. Polym. Rev. 2015, 55, 491–530. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. The use of surfactants in enhanced oil recovery: A review of recent advances. Energ. Rep. 2020, 6, 3150–3178. [Google Scholar] [CrossRef]
- Zhu, D.; Bai, B.; Hou, J. Polymer Gel Systems for Water Management in High-Temperature Petroleum Reservoirs: A Chemical Review. Energ. Fuel. 2017, 31, 13063–13087. [Google Scholar] [CrossRef]
- Sheng, J.J. Critical review of low-salinity waterflooding. J. Pet. Sci. Eng. 2014, 120, 216–224. [Google Scholar] [CrossRef]
- Hao, J.; Mohammadkhani, S.; Shahverdi, H.; Esfahany, M.N.; Shapiro, A. Mechanisms of smart waterflooding in carbonate oil reservoirs—A review. J. Pet. Sci. Eng. 2019, 179, 276–291. [Google Scholar] [CrossRef]
- Quintella, C.M.; Rodrigues, P.D.; Silva, H.R.; Carvalho, E.B.; Souza, E.R.D.; Santos, E.; Nicoleti, J.L.; Hanna, S.A. Smart Water as a Sustainable Enhanced Oil Recovery Fluid: Covariant Saline Optimization. In Proceedings of the Offshore Technology Conference Brazil, Rio de Janeiro, Brazil, 17 October 2023. [Google Scholar] [CrossRef]
- Borges, S.M.S.; Lima, A.M.V.; Musse, A.P.S.; Almeida, P.M.M.; Quintella, C.M. Recuperação secundária de óleo pesado e completação de reservatórios de campos maduros utilizando o subproduto (glicerina bruta) da produção do biodiesel. Bol. Técnico Da Produção De Petróleo 2007, 2, 131–152. [Google Scholar]
- Santos, D.; Barros, V.S.; Silva, M.L.P.; Sales, H.M.M.S.; Borges, G.R.; Franceschi, E.; Dariva, C. Strontium-based low salinity water as an IOR/EOR method: Oil-brine interaction. J. Pet. Sci. Eng. 2021, 202, 108549. [Google Scholar] [CrossRef]
- Ramos-de-Souza, E.; Rodrigues, P.D.; Sampaio, I.C.F.; Bacic, E.; Crugeira, P.J.L.; Vasconcelos, A.C.; Silva, M.S.; Santos, J.N.; Quintella, C.M.; Pinheiro, A.L.B.; et al. Xanthan gum produced by Xanthomonas campestris using produced water and crude glycerin as an environmentally friendlier agent to enhance oil recovery. Fuel 2022, 310 Pt B, 122421. [Google Scholar] [CrossRef]
- Sen, R. Biotechnology in petroleum recovery: The microbial EOR. Prog. Energy Combust 2008, 34, 714–724. [Google Scholar] [CrossRef]
- Afzali, S.; Rezaei, N.; Zendehboudi, S. A comprehensive review on Enhanced Oil Recovery by Water Alternating Gas (WAG) injection. Fuel 2018, 227, 218–246. [Google Scholar] [CrossRef]
- Kumar, S.; Mandal, A. A comprehensive review on chemically enhanced water alternating gas/CO2 (CEWAG) injection for enhanced oil recovery. J. Pet. Sci. Eng. 2017, 157, 696–715. [Google Scholar] [CrossRef]
- Raffa, P.; Broekhuis, A.A.; Picchioni, F. Polymeric surfactants for enhanced oil recovery: A review. J. Pet. Sci. Eng. 2016, 145, 723–733. [Google Scholar] [CrossRef]
- Olajire, A.A. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 2014, 77, 963–982. [Google Scholar] [CrossRef]
- Tackie-Otoo, B.N.; Mohammed, M.A.A.; Yekeen, N.; Negash, B.M. Alternative chemical agents for alkalis, surfactants and polymers for enhanced oil recovery: Research trend and prospects. J. Pet. Sci. Eng. 2020, 187, 106828. [Google Scholar] [CrossRef]
- Marques, L.S.; Rodrigues, P.D.; Simonelli, G.; Assis, D.J.; Quintella, C.M.; Lobato, A.K.L.; Oliveira, O.M.C.; Santos, L.C.L. Optimization of enhanced oil recovery using ASP solution. Heliyon 2023, 9, e21797. [Google Scholar] [CrossRef] [PubMed]
- NASA—The TRL scale as a Research & Innovation Policy Tool, EARTO Recommendations. 2014. Available online: https://www.earto.eu/wp-content/uploads/The_TRL_Scale_as_a_R_I_Policy_Tool_-_EARTO_Recommendations_-_Final.pdf (accessed on 4 April 2023).
- Nesta, L.; Patel, P. National Patterns of Technology Accumulation: Use of Patent Statistics. In Handbook of Quantitative Science and Technology Research; Moed, H.F., Glänzel, W., Schmoch, U., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 531–552. [Google Scholar] [CrossRef]
- Quintella, C.M.; Pires, E.A.; Santos, W.P.C. Brazil’s food technology: A pre-pandemic assessment to achieve zero hunger SDG2 Goal, benchmarking against USA. World Pat. Info 2023, 75, 102240. [Google Scholar] [CrossRef]
- Handbook on Constructing Composite Indicators: Methodology and User Guide. JRC European Commission. OECD. 2008. Available online: https://www.oecd.org/sdd/42495745.pdf (accessed on 30 March 2023).
- Worldwide Database. European Patent Office. Available online: https://worldwide.espacenet.com (accessed on 8 May 2024).
- The Fampat Collection. Questel Orbit. Available online: https://static.orbit.com/orbit/help/1.9.8/en/index.html#!Documents/thefampatcollection.htm (accessed on 10 September 2023).
- Costa, B.M.G.; Silva Florencio, M.N.; Oliveira Junior, A.M. Analysis of technological production in EOR technology in northeast Brazil. World Pat. Info 2018, 52, 42–49. [Google Scholar] [CrossRef]
- Quintella, C.M.; Hanna, S.A.; Santos, S.C. Brazil’s biotechnology assessment of potential to achieve Sustainable Development Goals, benchmarking against the USA. World Pat. Info 2024, 77, 102275. [Google Scholar] [CrossRef]
- Quintella, C.M.; Rodrigues, P.D.; Nicoleti, E.; Ramos-De-Souza, E.; Carvalho, E.B.; Hanna, S.A. EOR & Environment technology of BRICS and nonBRICS within responsible global energy transition: A critical review. Energy Rep. 2024; submitted. [Google Scholar]
- Kim, K.; Hwang, J.; Jung, S.; Kim, E.; Ardito, L. Which technology diversification index should be selected? Insights for diversification perspectives. Cogent Bus. Manag. 2019, 6, 1643519. [Google Scholar] [CrossRef]
- Sayyouh, M.H.; AI-Blehed, M.S. Applications of the Enhanced Recovery Methods to Saudi Oil Fields. J. King. Saud. Univ.—Eng. Sci. 1992, 4, 95–104. [Google Scholar] [CrossRef]
- Xue, L.; Liu, P.; Zhang, Y. Status and Prospect of Improved Oil Recovery Technology of High Water Cut Reservoirs. Water 2023, 15, 1342. [Google Scholar] [CrossRef]
- Enhanced Oil Recovery. Office of Fossil Energy and Carbon Management, US Department of Energy. Available online: https://www.energy.gov/fecm/enhanced-oil-recovery (accessed on 24 May 2024).
- Jia, D.; Zhang, J.; Li, Y.; Wu, L.; Qiao, M. Recent Development of Smart Field Deployment for Mature Waterflood Reservoirs. Sustainability 2023, 15, 784. [Google Scholar] [CrossRef]
- The China effect on Global Innovation. Executive Summary. McKinsley Global Institute. October 2015. Available online: https://www.mckinsey.com/~/media/mckinsey/featured%20insights/Innovation/Gauging%20the%20strength%20of%20Chinese%20innovation/MGI%20China%20Effect_Executive%20summary_October_2015.ashx#:~:text=The%20overall%20China%20effect%20could,better%20goods%20at%20lower%20prices (accessed on 24 May 2024).
- IP Facts and Figures 2023; World Intellectual Property Organization: Geneva, Switzerland, 2023. [CrossRef]
- Population. 2021. World Bank Indicators. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 10 December 2023).
- Fink, C.; Ménière, Y.; Toole, A.A.; Veugelers, R. (Eds.) Resilience and Ingenuity: Global Innovation Responses to COVID-19; CEPR PRESS: London, UK; Paris, France, 2022; ISBN 978-1-912179-62-6. Available online: https://cepr.org/system/files/publication-files/167264-resilience_and_ingenuity_global_innovation_responses_to_covid_19.pdf (accessed on 1 April 2023).
EOR Method | Articles (TRL3) (%) | Patents (TRL4–5) (%) | ||
---|---|---|---|---|
BRICS | NonBRICS | BRICS | NonBRICS | |
Combustion | 2.8 | 2.9 | 3.7 | 4.2 |
Combustion-explosives | 0.00 | 0.01 | 0.19 | 0.29 |
Combustion associated with fracturing | 1.2 | 0.77 | 0.27 | 1.0 |
Eroding chemicals | 0.01 | 0.52 | 4.0 | 3.3 |
Explosives | 0.26 | 0.10 | 2.6 | 1.8 |
Forming crevices or fractures | 15 | 15 | 23 | 30 |
Fractures reinforcement | 0.08 | 0.02 | 5.4 | 13 |
Fracturing | 15 | 15 | 2.8 | 3.6 |
Heat and steam | 7.9 | 8.1 | 12 | 11 |
Low salinity water (smart water) | 5.9 | 6.9 | 0.003 | 0.11 |
Macromolecular compounds | 1.6 | 0.80 | 2.3 | 4.0 |
MEOR | 2.3 | 1.4 | 0.95 | 1.1 |
Polymers | 24 | 22 | 10 | 8.0 |
Polymers and surfactants | 9.0 | 8.4 | 3.5 | 2.7 |
Repressuring or vacuum | 0.03 | 0.08 | 2.3 | 2.3 |
Surfactants | 11 | 11 | 9.0 | 7.3 |
WAG | 3.4 | 6.1 | 1.0 | 1.9 |
Water displacement | 0.61 | 0.38 | 16 | 4.0 |
CAGR (%) | |||||
---|---|---|---|---|---|
Indicator | Dataset | T1 (2002–2003 to 2008–2009) | T2 (2008–2009 to 2014–2015) | T3 (2014–2015 to 2020–2021) | 2002–2021 |
Biannual patent average | BRICS | 9.6 | 25 | 4.0 | 13 |
NonBRICS | 13 | 13 | −26 | 2.0 | |
Biannual patent average per million population | BRICS | 8.5 | 24 | 3.2 | 11 |
NonBRICS | 12 | 12 | −27 | −2.9 | |
Biannual patent average per trillion GDP | BRICS | 1.5 | 18 | −0.3 | 6.1 |
NonBRICS | 4.5 | 6.4 | −29 | −7.7 |
EOR Technology Indicators | BRICS | nonBRICS |
---|---|---|
Specialization—CV | 194 | 263 |
Concentration—Herfindahl–Hirschman Index HH | 0.12 | 0.14 |
Inequality—GINI | 0.47 | 0.47 |
Diversification—DIV | 0.47 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintella, C.M.; Rodrigues, P.D.; Nicoleti, J.L.; Ramos-de-Souza, E.; Carvalho, E.B.; Hanna, S.A. EOR Technology (Patents) and Science (Articles) Assessment of BRICS and nonBRICS with Growth Rates and Specializations within Responsible Global Energy Transition: A Critical Review. Energies 2024, 17, 3197. https://doi.org/10.3390/en17133197
Quintella CM, Rodrigues PD, Nicoleti JL, Ramos-de-Souza E, Carvalho EB, Hanna SA. EOR Technology (Patents) and Science (Articles) Assessment of BRICS and nonBRICS with Growth Rates and Specializations within Responsible Global Energy Transition: A Critical Review. Energies. 2024; 17(13):3197. https://doi.org/10.3390/en17133197
Chicago/Turabian StyleQuintella, C. M., P. D. Rodrigues, J. L. Nicoleti, E. Ramos-de-Souza, E. B. Carvalho, and S. A. Hanna. 2024. "EOR Technology (Patents) and Science (Articles) Assessment of BRICS and nonBRICS with Growth Rates and Specializations within Responsible Global Energy Transition: A Critical Review" Energies 17, no. 13: 3197. https://doi.org/10.3390/en17133197
APA StyleQuintella, C. M., Rodrigues, P. D., Nicoleti, J. L., Ramos-de-Souza, E., Carvalho, E. B., & Hanna, S. A. (2024). EOR Technology (Patents) and Science (Articles) Assessment of BRICS and nonBRICS with Growth Rates and Specializations within Responsible Global Energy Transition: A Critical Review. Energies, 17(13), 3197. https://doi.org/10.3390/en17133197