Design and Performance Evaluation of the Energy Subsystem of a Hybrid Light and Wave Energy Harvester
Abstract
:1. Introduction
- Decreased dependence on sunlight and improved energy generation as the wave energy component ensures a steady power output, decreasing the unstable PV source component. WECs can harvest the energy when solar conditions are insufficient, and PVPs can harvest it when the water is calm;
- Potential to generate more electricity in maritime and coastal areas with access to both sunlight and ocean waves;
- Wave energy converters play a vital role in the hybrid system, capturing the kinetic energy of ocean waves and converting it into electricity.
2. Solar Irradiance and Photovoltaic Technologies Analysis for Maritime Application
3. Mobile and Wireless Distributed Communication Use Case
4. Energy Subsystem of the Hybrid Energy Harvester
5. Experimental Research
6. Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AM | Air mass |
APC | Article processing charges |
a-Si | Amorphous silicon |
DC | Direct current |
DSSC | Dye-sensitized solar cells |
EPD | Electronic paper display |
EH | Energy harvester |
ES | Energy subsystem |
HEH | Hybrid energy harvester |
IoT | Internet of Things |
IPSC | Inorganic perovskite solar cells |
LDO | Low dropout |
MOSFET | Metal-oxide semiconductor field-effect transistor |
NREL | National Renewable Energy Laboratory |
PCE | Power conversion efficiency |
PEC | Prototype power electronic circuit |
PM | Piezoelectric material |
PSC | Perovskite solar cells |
PVP | Photovoltaic panel |
PZT | Lead zirconate titanate |
WEC | Wave energy converter |
References
- Girard, P.; Girard, S. BREVET D’INVENTION DE QÙINZE ANS, Pour divers moyens d’employer les vagues de la mer, comme moteurs. Paris 1799, 349, 13. [Google Scholar]
- Clément, A.; McCullen, P.; Falcão, A.; Fiorentino, A.; Gardner, F.; Hammarlund, K.; Lemonis, G.; Lewis, T.; Nielsen, K.; Petroncini, S.; et al. Wave energy in Europe: Current status and perspectives. Renew. Sustain. Energy Rev. 2002, 6, 5. [Google Scholar] [CrossRef]
- Lagoun, M.S.; Benalia, A.; Benbouzid, M.E.H. Ocean wave converters: State of the art and current status. In Proceedings of the 2010 IEEE ENERGYCON, Manama, Bahraïn, 18–22 December 2010; pp. 636–642. [Google Scholar]
- Jusoh, M.A.; Ibrahim, M.Z.; Daud, M.Z.; Albani, A.; Mohd Yusop, Z. Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review. Energies 2019, 12, 4510. [Google Scholar] [CrossRef]
- Maria-Arenas, A.; Garrido, A.J.; Rusu, E.; Garrido, I. Control Strategies Applied to Wave Energy Converters: State of the Art. Energies 2019, 12, 3115. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Farshidianfar, A.; Afsharfard, A.; Khodaparast, H.H. An ocean wave-based piezoelectric energy harvesting system using breaking wave force. Int. J. Mech. Sci. 2019, 151, 498–507. [Google Scholar] [CrossRef]
- Chiba, S.; Waki, M. Innovative power generator using dielectric elastomers (creating the foundations of an environmentally sustainable society). Sustain. Chem. Pharm. 2020, 15, 100205. [Google Scholar] [CrossRef]
- Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT). In Proceedings of the 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September 2015; pp. 219–224. [Google Scholar] [CrossRef]
- Agarwal, K.; Agarwal, A.; Misra, G. Review and Performance Analysis on Wireless Smart Home and Home Automation using IoT. In Proceedings of the 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 12–14 December 2019; pp. 629–633. [Google Scholar] [CrossRef]
- Vishwakarma, S.K.; Upadhyaya, P.; Kumari, B.; Mishra, A.K. Smart Energy Efficient Home Automation System Using IoT. In Proceedings of the 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), Ghaziabad, India, 18–19 April 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Lai, Q.H.; Lai, C.S.; Lai, L.L. Smart Health Based on Internet of Things (IoT) and Smart Devices; Wiley-IEEE Press: Piscataway, NJ, USA, 2023; pp. 425–462. [Google Scholar] [CrossRef]
- Nandi, S.; Mishra, M.; Majumder, S. Usage of AI and Wearable IoT Devices for Healthcare Data: A Study; Wiley-IEEE Press: Piscataway, NJ, USA, 2023; pp. 315–337. [Google Scholar] [CrossRef]
- Becquerel, E. Memoire sur les effets electriques produits sous l’influence des rayons solaires. Comptes Rendus Acad. Des Sci. 1839, 9, 561–567. [Google Scholar]
- Fritts, C.E. On a new form of selenium cell, and some electrical discoveries made by its use. Am. J. Sci. 1883, 156, 465–472. [Google Scholar] [CrossRef]
- Chapin, D.M.; Fuller, C.S.; Pearson, G.L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. 1954, 25, 676–677. [Google Scholar] [CrossRef]
- Fesenko, A.; Matiushkin, O.; Husev, O.; Vinnikov, D.; Strzelecki, R.; Kołodziejek, P. Design and Experimental Validation of a Single-Stage PV String Inverter with Optimal Number of Interleaved Buck-Boost Cells. Energies 2021, 14, 2448. [Google Scholar] [CrossRef]
- Zeadally, S.; Shaikh, F.K.; Talpur, A.; Sheng, Q.Z. Design architectures for energy harvesting in the Internet of Things. Renew. Sustain. Energy Rev. 2020, 128, 109901. [Google Scholar] [CrossRef]
- Spachos, P.; Mackey, A. Energy efficiency and accuracy of solar powered BLE beacons. Comput. Commun. 2018, 119, 94–100. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Liu, G.; Liu, H.; Yang, Q. EcoSense: A hardware approach to on-demand sensing in the internet of things. IEEE Commun. Mag. 2016, 54, 37–43. [Google Scholar] [CrossRef]
- Masoudinejad, M.; Emmerich, J.; Kossmann, D.; Riesner, A.; Roidl, M.; ten Hompel, M. Development of a measurement platform for indoor photovoltaic energy harvesting in materials handling applications. In Proceedings of the IREC2015 The Sixth International Renewable Energy Congress, Sousse, Tunisia, 24–26 March 2015; pp. 1–6. [Google Scholar]
- Bito, J.; Hester, J.G.; Tentzeris, M.M. A fully autonomous ultra-low power hybrid RF/photovoltaic energy harvesting system with −25 dBm sensitivity. In Proceedings of the 2017 IEEE Wireless Power Transfer Conference (WPTC), Taipei, Taiwan, 10–12 May 2017; pp. 1–4. [Google Scholar]
- Bito, J.; Bahr, R.; Hester, J.G.; Nauroze, S.A.; Georgiadis, A.; Tentzeris, M.M. A novel solar and electromagnetic energy harvesting system with a 3-D printed package for energy efficient internet-of-things wireless sensors. IEEE Trans. Microw. Theory Tech. 2017, 65, 1831–1842. [Google Scholar] [CrossRef]
- Huang, T.-C.; Leu, Y.-G.; Huang, C.-W. Powering IoTs with a feedforward quasi universal boost converter energy harvester. Energy 2017, 133, 879–886. [Google Scholar] [CrossRef]
- Hsieh, Y.-T.; Fang, C.-L.; Su, C.-F.; Tsai, H.-H.; Juang, Y.-Z. A hybrid ambient energy harvesting integrated chip (IC) for the Internet of Things (IoT) and portable applications. In Proceedings of the 2016 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, Japan, 13–16 November 2016; pp. 1–4. [Google Scholar]
- Elhebeary, M.R.; Ibrahim, M.A.A.; Aboudina, M.M.; Mohieldin, A.N. Dual-Source Self-Start High-Efficiency Microscale Smart Energy Harvesting System for IoT. IEEE Trans. Ind. Electron. 2018, 65, 342–351. [Google Scholar] [CrossRef]
- Drzewiecki, M.; Guziński, J. Design of autonomous IoT node powered by a perovskite-wased wave energy converter. Pol. Marit. Res. 2023, 3, 142–152. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, T.; Jin, Z.; Li, M.; Zhang, D.; Duan, L.; Zhao, Z.; Wang, C. Tough, stable and self-healing luminescent perovskite-polymer matrix applicable to all harsh aquatic environments. Nat. Commun. 2022, 13, 1338. [Google Scholar] [CrossRef] [PubMed]
- Röhr, J.A.; Sartor, B.E.; Lipton, J.; Taylor, A.D. A dive into underwater solar cells. Nat. Photon. 2023, 17, 747–754. [Google Scholar] [CrossRef]
- Kageshima, Y.; Shinagawa, T.; Kuwata, T.; Nakata, J.; Minegishi, T.; Takanabe, K.; Domen, K. A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells. Sci. Rep. 2020, 6, 24633. [Google Scholar] [CrossRef]
- Liu, C.; Dong, H.; Zhang, Z.; Chai, W.; Li, L.; Chen, D.; Zhu, W.; Xi, H.; Zhang, J.; Zhang, C.; et al. Promising applications of wide bandgap inorganic perovskites in underwater photovoltaic cells. Sol. Energy 2022, 233, 489–493. [Google Scholar] [CrossRef]
- Mpicosys Low Power Innovators Invent, Design & Produce for You. Available online: https://www.mpicosys.com/ (accessed on 19 June 2024).
- Pervasive Displays 2.71” E-Ink Display, E2271CS021. Available online: https://www.pervasivedisplays.com/product/2-71-e-ink-display/ (accessed on 19 June 2024).
- STM32WL55JC Sub-GHz Wireless Microcontrollers. Dualcore Arm Cortex-M4/M0+ @48 MHz with 256 Kbytes of Flash memory, 64 Kbytes of SRAM. LoRa, (G)FSK, (G)MSK, BPSK Modulations. AES 256-Bit. Multiprotocol Systemon-Chip. Available online: https://www.st.com/en/microcontrollers-microprocessors/stm32wl55jc.html (accessed on 19 June 2024).
- Drzewiecki, M.; Guziński, J. Design and Evaluation of the Compact and Autonomous Energy Subsystem of a Wave Energy Converter. Energies 2023, 16, 7699. [Google Scholar] [CrossRef]
- Chiba, S.; Waki, M.; Wada, T.; Hirakawa, Y.; Masuda, K.; Ikoma, T. Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators. Appl. Energy 2013, 104, 497–502. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
ES energy harvested with WEC | 67.5 | mJ |
ES energy delivered with WEC | 37.2 | mJ |
ES efficiency for WEC | 55.1 | % |
ES energy harvested with PVP | 67.5 | mJ |
ES energy delivered with PVP | 50.6 | mJ |
ES efficiency for PVP | 75.0 | % |
Use case energy demand | 26.3 | mJ |
ES energy surplus over demand for WEC | 10.9 | mJ |
ES relative energy surplus for WEC | 41.5 | % |
ES energy surplus over demand for PVP | 24.3 | mJ |
ES relative energy surplus for PVP | 92.4 | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drzewiecki, M.; Kołodziejek, P.; Guziński, J. Design and Performance Evaluation of the Energy Subsystem of a Hybrid Light and Wave Energy Harvester. Energies 2024, 17, 3034. https://doi.org/10.3390/en17123034
Drzewiecki M, Kołodziejek P, Guziński J. Design and Performance Evaluation of the Energy Subsystem of a Hybrid Light and Wave Energy Harvester. Energies. 2024; 17(12):3034. https://doi.org/10.3390/en17123034
Chicago/Turabian StyleDrzewiecki, Marcin, Piotr Kołodziejek, and Jarosław Guziński. 2024. "Design and Performance Evaluation of the Energy Subsystem of a Hybrid Light and Wave Energy Harvester" Energies 17, no. 12: 3034. https://doi.org/10.3390/en17123034
APA StyleDrzewiecki, M., Kołodziejek, P., & Guziński, J. (2024). Design and Performance Evaluation of the Energy Subsystem of a Hybrid Light and Wave Energy Harvester. Energies, 17(12), 3034. https://doi.org/10.3390/en17123034