Evaluation of the Significance of Agriculture in Renewable Energy Production in the Member States of the EU
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- Best performing countries: ;
- Performing above average: ;
- Performing below average: ;
- Poorly performing countries: .
4. Results
4.1. Presentation of Sub-Indicators Evaluating the Significance and Potential of Agriculture in Renewable Energy Production
4.2. Synthetic Index of the Importance of Agriculture as a Source for Renewable Energy Production
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bentsen, N.S.; Felby, C. Biomass for energy in the European Union—A review of bioenergy resource assessments. Biotechnol. Biofuels 2012, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Bańkowska, K.; Gradziuk, P. Renewable Energy—Implications for agriculture and rural development in Poland. Wieś I Rol. 2017, 3, 121–146. [Google Scholar] [CrossRef] [PubMed]
- Stiglitz, J.E. Participation and development: Perspectives from the comprehensive development paradigm. Rev. Dev. Econ. 2022, 6, 163–182. [Google Scholar] [CrossRef]
- Rokicki, T.; Ratajczak, M.; Bórawski, P.; Bełdycka-Bórawska, A.; Gradziuk, B.; Gradziuk, P.; Siedlecka, A. Energy Self-Subsistence of Agriculture in EU Countries. Energies 2021, 14, 3014. [Google Scholar] [CrossRef]
- Castillo, P.C.; Hormigos Feliu, C.; Dorati, C.; Kakoulaki, G.; Peeters, L.; Quaranta, E.; Taylor, N.; Uihlein, A.; Auteri, D.; Dijkstra, L. Renewable Energy Production and Potential in EU Rural Areas; JRC135612; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar] [CrossRef]
- Florea, N.M.; Bădîrcea, R.M.; Pîrvu, R.C.; Manta, A.G.; Doran, M.D.; Elena Jianu, E. The impact of agriculture and renewable energy on climate change in Central and East European Countries. Agric. Econ. 2020, 66, 444–457. [Google Scholar] [CrossRef]
- Hernandez-Escobedo, Q.; Muñoz-Rodríguez, D.; Vargas-Casillas, A.; Juárez Lopez, J.M.; Aparicio-Martínez, P.; Martínez-Jiménez, M.P.; Perea-Moreno, A.-J. Renewable Energies in the Agricultural Sector: A Perspective Analysis of the Last Three Years. Energies 2023, 16, 345. [Google Scholar] [CrossRef]
- Paris, B.; Vandorou, F.; Balafoutis, A.T.; Vaiopoulos, K.; Kyriakarakos, G.; Manolakos, D.; Papadakis, G. Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption. Renew. Sustain. Energy Rev. 2022, 158, 112098. [Google Scholar] [CrossRef]
- European Commission, Context Indicators. Available online: https://agridata.ec.europa.eu/extensions/DataPortal/context_indicators.html (accessed on 21 March 2024).
- Bathaei, A.; Štreimikiené, D. Renewable Energy and Sustainable Agriculture: Review of Indicators. Sustainability 2023, 15, 14307. [Google Scholar] [CrossRef]
- Czyżewski, A.; Michałowska, M. The Impact of Agriculture on Greenhouse Gas Emissions in the Visegrad Group Countries after the World Economic Crisis of 2008. Comparative Study of the Researched Countries. Energies 2022, 15, 2268. [Google Scholar] [CrossRef]
- Janiszewska, D.; Ossowska, L. Diversification of European Union member states due to the production of renewable energy from agriculture and forestry. Scientific Journal Warsaw University of Life Sciences—SGGW. Probl. World Agric. 2018, 18, 95–104. [Google Scholar] [CrossRef]
- Sutherland, L.A.; Peter, S.; Zagata, L. Conceptualising multi-regime interactions: The role of the agriculture sector in renewable energy transitions. Res. Policy 2015, 44, 1543–1554. [Google Scholar] [CrossRef]
- Bielski, S.; Marks-Bielska, R.; Zielinska-Chmielewska, A.; Romaneckas, K.; Šarauskis, E. Importance of Agriculture in Creating Energy Security—A Case Study of Poland. Energies 2021, 14, 2465. [Google Scholar] [CrossRef]
- Janiszewska, D.; Ossowska, L. The role of agricultural biomass as a renewable energy source in European Union countries. Energies 2022, 15, 6756. [Google Scholar] [CrossRef]
- Monforti, F.; Bódis, K.; Scarlat, N.; Dallemand, J.F. The possible contribution of agricultural crop residues to renewable Energy targets in Europe: A spatially explicit study. Renew. Sustain. Energy Rev. 2013, 19, 666–677. [Google Scholar] [CrossRef]
- Avcıoğlu, A.O.; Dayıoğlu, M.A.; Türker, U. Assessment of the energy potential of agricultural biomass residues in Turkey. Renew. Energy 2019, 138, 610–619. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Jacobsson, S.; Bergek, A.; Finon, D.; Lauber, V.; Mitchell, C.; Toke, D.; Verbruggen, A. EU renewable energy support policy: Faith or facts? Energy Policy 2009, 37, 2143–2146. [Google Scholar] [CrossRef]
- Inglesi-Lotz, R. The impact of renewable energy consumption to economic growth: A panel data application. Energy Econ. 2016, 53, 58–63. [Google Scholar] [CrossRef]
- Sulewski, P.; Majewski, E.; Wąs, A. The importance of agriculture in the renewable energy production in Poland and the EU. Probl. Agric. Econ. 2017, 350, 50–74. [Google Scholar] [CrossRef]
- Marks-Bielska, R.; Bielski, S.; Novikova, A.; Romaneckas, K. Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland. Sustainability 2019, 11, 4714. [Google Scholar] [CrossRef]
- Gradziuk, P. Potential and forecast for use of agricultural biogas in Poland. Ann. PAAAE 2017, 19, 64–70. [Google Scholar] [CrossRef]
- Schweiger, A.H.; Pataczek, L. How to reconcile renewable energy and agricultural production in a drying world. Plants People Planet 2023, 5, 650–661. [Google Scholar] [CrossRef]
- Adeh, E.H.; Selker, J.S.; Higgins, C.W. Remarkable agrivoltaics influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef] [PubMed]
- Ossowska, L.J. Consequences of the energy policy in member states of the European Union—The renewable energy sources targets. Energy Policy J. 2019, 22, 21–32. [Google Scholar] [CrossRef]
- European Commission (EC). Renewable Energy Targets. 2023. Available online: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en (accessed on 10 April 2024).
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online: https://eur-lex.europa.eu/eli/dir/2009/28/oj (accessed on 26 March 2024).
- Burrell, A. Renewable Energies from the Rural Sector: The Policy Challenges. Available online: http://www.oecd.org/greengrowth/sustainable-agriculture/48309185.pdf (accessed on 15 April 2024).
- IEA-Bioenergy. Bioenergy—A Sustainable and Reliable Energy Source. A Review of Status and Perspectives, Main Report. 2009. Available online: https://publications.tno.nl/publication/34627904/P1i42V/b10011.pdf (accessed on 15 April 2024).
- Janas, M.; Zawadzka, A. Assessment of environmental impact of agricultural biogas plants. Acta Innov. 2018, 27, 24–30. [Google Scholar] [CrossRef]
- Igliński, B.; Piechota, G.; Iwański, P.; Skarzatek, M.; Pilarski, G. 15 Years of the Polish agricultural biogas plants: Their history, current status, biogas potential and perspectives. Clean Technol. Environ. Policy 2020, 22, 281–307. [Google Scholar] [CrossRef]
- Czekala, W. Biogas as a Sustainable and Renewable Energy Source. In Clean Fuels for Mobility; Springer: Singapore, 2022; pp. 201–214. [Google Scholar] [CrossRef]
- Tymińska, M.; Skibko, Z.; Borusiewicz, A. The Effect of Agricultural Biogas Plants on the Quality of Farm Energy Supply. Energies 2023, 16, 4600. [Google Scholar] [CrossRef]
- Piwowar, A. Circular and low-carbon development in Poland. Energies 2020, 13, 1733. [Google Scholar] [CrossRef]
- Seljak, T.; Buffi, M.; Chong, C.T.; Valera-Medina, A.; Chiaramonti, D.; Katrasnik, T. Bioliquids and their use in power generation—A technology review. Renew. Sustain. Energy Rev. 2020, 129, 109930. [Google Scholar] [CrossRef]
- Kuznetsov, G.; Dorokhov, V.; Vershinina, K.; Kerimbekova, S.; Romanov, D.; Kartashova, K. Composite Liquid Biofuels for Power Plants and Engines: Review. Energies 2023, 16, 5939. [Google Scholar] [CrossRef]
- Mahapatra, S.; Kumar, D.; Singh, B.; Sachan, P.K. Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus 2021, 4, 100036. [Google Scholar] [CrossRef]
- Priya, P.S.; Verma, Y.; Muhal, R.A.; Goswami, C.; Singh, T. Biofuels: An alternative to conventional fuel and energy source. Mater. Today 2022, 48, 1178–1184. [Google Scholar] [CrossRef]
- Nair, L.G.; Agrawal, K.; Verma, P. An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus 2022, 6, 100086. [Google Scholar] [CrossRef]
- Quevedo-Amador, R.A.; Escalera-Velasco, B.P.; Arias, A.M.R.; Reynel-Ávila, H.E.; Moreno-Piraján, J.C.; Giraldo, L.; Bonilla-Petriciolet, A. Application of waste biomass for the production of biofuels and catalysts: A review. Clean Technol. Environ. Policy 2024, 26, 943–997. [Google Scholar] [CrossRef]
- Kumari, D.; Singh, R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sustain. Energy Rev. 2018, 90, 877–891. [Google Scholar] [CrossRef]
- Azizi, K.; Keshavarz Moraveji, M.; Abedini Najafabadi, H. A review on biofuel production from microalgal biomass by using pyrolysis method. Renew. Sustain. Energy Rev. 2018, 82, 3046–3059. [Google Scholar] [CrossRef]
- Saltelli, A. Composite indicators between analysis and advocacy. Soc. Indic. Res. 2007, 81, 65–77. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Bhowmik, C.; Kaviani, M.A.; Ray, A.; Ocampo, L. An integrated entropy-TOPSIS methodology for evaluating green energy sources. Int. J. Bus. Anal. 2020, 7, 44–70. [Google Scholar] [CrossRef]
- Kamari, M.L.; Isvand, H.; Nazari, M.A. Applications of Multi-Criteria Decision-Making (MCDM) Methods in Renewable Energy Development: A Review. Renew. Energy Res. Appl. 2020, 1, 47–54. [Google Scholar] [CrossRef]
- Rathore, N.; Debasis, K.; Singh, M.P. Selection of optimal renewable energy resources using TOPSIS-Z methodology. In Advances in Communication and Computational Technology: Select Proceedings of ICACCT 2019; Springer: Singapore, 2021; pp. 967–977. [Google Scholar]
- Moghadam, A.D.; Ghanaat, N.; Ranji, A.; Sharafshade, B.M. Ranking effective factors of training in basis of sustainable agriculture promotion using TOPSIS method. Life Sci. J. 2012, 9, 886–890. [Google Scholar]
- Wang, Z.; Wang, J.; Zhang, G.; Wang, Z. Evaluation of agricultural extension service for sustainable agricultural development using a hybrid entropy and TOPSIS method. Sustainability 2021, 13, 347. [Google Scholar] [CrossRef]
- Davarpanah, S.; Bonab, S.H.; Khodaverdizadeh, M. Assessment and comparison of sustainable agriculture approach using a combination of AHP and TOPSIS. Int. Acad. J. Econ. 2016, 3, 7–18. [Google Scholar]
- Vega, A.; Aguarón, J.; García-Alcaraz, J.; Moreno-Jiménez, J.M. Notes on dependent attributes in TOPSIS. Procedia Comput. Sci. 2014, 31, 308–317. [Google Scholar] [CrossRef]
- Venkatkumar, I.A.; Shardaben, S.J.K. Comparative study of data mining clustering algorithms. In Proceedings of the International Conference on Data Science and Engineering (ICDSE), Cochin, India, 23–25 August 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Mydlarz, K. The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources. Energies 2022, 15, 9601. [Google Scholar] [CrossRef]
- Klikocka, H.; Jarosz-Angowska, A.; Nowak, A.; Skwaryło-Bednarz, B. Assessment of Poland food security in the context of agricultural production in 2010–2020. Agron. Sci. 2022, 77, 101–122. [Google Scholar] [CrossRef]
- Pawlak, K.; Smutka, L.; Kotyza, P. Agricultural potential of the EU Countries: How far are they from the USA? Agriculture 2021, 11, 282. [Google Scholar] [CrossRef]
- Nowak, A.; Różańska-Boczula, M. Differentiation in the production potential and efficiency of farms in the member states of the European Union. Agric. Econ. 2019, 65, 395–403. [Google Scholar] [CrossRef]
- Tłuczak, A. Diversity of the selected elements of agricultural potential in the European Union countries. Agric. Econ. 2020, 66, 260–268. [Google Scholar] [CrossRef]
- Pawlak, K.; Kołodziejczak, M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Smędzik-Ambroży, K.; Rutkowska, M.; Hakan, K. Productivity of the Polish agricultural sector compared to European Union member states in 2004–2017 based on FADN farms. Ann. Paaae 2019, 21, 422–431. [Google Scholar] [CrossRef]
- Martín-Retortillo, M.; Pinilla, V. Why Did Agricultural Labour Productivity Not Converge in Europe from 1950 to 2005? EHES Working Papers in Economic History; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Kijek, A.; Kijek, T.; Nowak, A. Club convergence of labour productivity in agriculture: Evidence from EU countries. Agric. Econ. 2020, 66, 391–401. [Google Scholar] [CrossRef]
- Megyesiova, S. Production, employment and productivity of agricultural sector in the European Union. Bulg. J. Agric. Sci. 2021, 27, 846–858. [Google Scholar]
- Kacperska, E.; Łukasiewicz, K.; Pietrzak, P. Use of Renewable Energy Sources in the European Union and the Visegrad Group Countries—Results of Cluster Analysis. Energies 2021, 14, 5680. [Google Scholar] [CrossRef]
- Østergaard, P.A.; Duic, N.; Noorollahi, Y.; Kalogirou, S. Advances in renewable energy for sustainable development. Renew. Energy 2023, 219, 119377. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J.; Siwiec, D.; Ulewicz, R.; Bindzár, P. Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential. Energies 2020, 13, 6643. [Google Scholar] [CrossRef]
Energy Resource Originating in Agriculture | Type of Resource | Competing Non- Energy Demands for Same Resource | Type of Energy Produced | Final Energy Market |
---|---|---|---|---|
Agricultural crops | Grains, sugar crops, edible parts of other starchy commodities Vegetable oils | Food Other non-food non-energy industrial uses | Biofuels (1st generation) - ethanol - biodiesel | Transport fuel |
Grains | Biogas | Electricity, heat, natural gas | ||
Dedicated energy crops | Grasses, short rotation coppice (willow, poplar, etc.) Any other ligno-cellulosic biomass | No competing food demand, but other industrial demands and possible competition for land | Biofuels (2nd generation) | Transport fuel |
(Direct combustion of primary solid biomass) | Electricity, heat | |||
Biogas | Natural gas | |||
Agricultural residues and wastes | Straw, any kind of ligno-cellulosic waste Animal manure | Can directly use as fertiliser on farm | Biofuels (2nd generation) | Transport fuel |
Biogas | Natural gas | |||
(Direct combustion of primary solid biomass) | Heat, electricity |
Variable | Name of Indicator | Stimulant/Destimulant |
---|---|---|
X1 | Renewable energy production from agriculture in tonnes of oil equivalent per 1000 inhabitants (tonnes of oil equivalent per 1000 inhabitants) | S |
X2 | Share of agriculture in renewable energy production (%) | S |
X3 | Cropland (UAA per capita) (ha per capita) | S |
X4 | Labour productivity of agriculture (gross farm income per agricultural worker) (EUR/AWU) | S |
X5 | Land productivity (agricultural output value per 1 ha of UAA) (EUR/1 ha) | S |
X6 | Trade coverage ratio for SITC 0 agricultural products (TCR%) | S |
X7 | Bioethanol export (thousand tonnes) | S |
X8 | Biodiesel export (thousand tonnes) | S |
Descriptive Statistics | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
2010 | ||||||||
mean | 24.56 | 8.04% | 0.43 | 17,451.50 | 2733.18 | 106.12 | 25.43 | 95.23 |
SD | 20.01 | 6.51% | 0.25 | 15,152.57 | 2893.01 | 69.46 | 64.36 | 245.30 |
V [%] | 81.47 | 80.93 | 57.55 | 86.83 | 105.85 | 65.45 | 253.12 | 257.59 |
max | 83.77 Germany | 24.07% Belgium | 1.00 Ireland | 62,711.20 Netherlands | 13,103.10 Netherlands | 316.91 Hungary | 302.35 France | 1258.00 Germany |
2021 | ||||||||
mean | 49.25 | 8.71% | 0.43 | 26,547.78 | 2986.86 | 121.98 | 55.30 | 328.02 |
SD | 36.00 | 6.43% | 0.27 | 29,843.62 | 2951.68 | 80.54 | 110.76 | 620.68 |
V [%] | 73.10 | 73.88 | 62.51 | 112.41 | 98.82 | 66.03 | 200.27 | 189.22 |
max | 136.55 Netherlands | 30.07% Netherlands | 1.05 Lithuania | 141,006.92 Denmark | 14,398.07 Netherlands | 384.62 Bulgaria | 466.00 Hungary | 2597.54 Spain |
2010–2021 | ||||||||
mean | 37.98 | 9.40% | 0.43 | 21,895.40 | 2855.19 | 116.88 | 48.37 | 212.03 |
SD | 28.06 | 7.52% | 0.26 | 20,626.08 | 2895.00 | 77.49 | 90.80 | 406.51 |
V [%] | 73.88 | 79.96 | 60.75 | 94.20 | 101.39 | 66.30 | 187.73 | 191.72 |
max | 116.62 Germany | 33.88% Netherlands | 1.01 Lithuania | 86,172.50 Denmark | 13,829.66 Netherlands | 349.55 Bulgaria | 324.34 France | 1568.25 Germany |
Country | 2010 | Ranking in 2010 | 2021 | Ranking in 2021 | Ranking from 2010 to 2021 | |
---|---|---|---|---|---|---|
Austria | 0.326 | 11 | 0.243 | 17 | 0.289 | 15 |
Belgium | 0.341 | 9 | 0.337 | 8 | 0.351 | 10 |
Bulgaria | 0.322 | 12 | 0.373 | 4 | 0.380 | 6 |
Croatia | 0.174 | 27 | 0.175 | 24 | 0.183 | 26 |
Cyprus | 0.244 | 19 | 0.214 | 19 | 0.236 | 21 |
Czechia | 0.247 | 18 | 0.215 | 18 | 0.275 | 17 |
Denmark | 0.313 | 13 | 0.367 | 5 | 0.381 | 5 |
Estonia | 0.269 | 16 | 0.279 | 13 | 0.304 | 13 |
Finland | 0.339 | 10 | 0.300 | 11 | 0.289 | 16 |
France | 0.403 | 2 | 0.257 | 15 | 0.380 | 8 |
Germany | 0.385 | 4 | 0.291 | 12 | 0.346 | 11 |
Greece | 0.240 | 20 | 0.200 | 21 | 0.242 | 19 |
Hungary | 0.346 | 8 | 0.374 | 3 | 0.399 | 4 |
Ireland | 0.373 | 5 | 0.311 | 9 | 0.380 | 7 |
Italy | 0.190 | 26 | 0.178 | 23 | 0.190 | 25 |
Latvia | 0.369 | 6 | 0.363 | 6 | 0.409 | 2 |
Lithuania | 0.399 | 3 | 0.358 | 7 | 0.408 | 3 |
Luxembourg | 0.234 | 21 | 0.153 | 26 | 0.230 | 22 |
Malta | 0.349 | 7 | 0.300 | 10 | 0.335 | 12 |
Netherlands | 0.446 | 1 | 0.441 | 1 | 0.519 | 1 |
Poland | 0.210 | 24 | 0.204 | 20 | 0.223 | 23 |
Portugal | 0.233 | 22 | 0.171 | 25 | 0.204 | 24 |
Romania | 0.285 | 15 | 0.279 | 14 | 0.300 | 14 |
Slovakia | 0.258 | 17 | 0.200 | 22 | 0.267 | 18 |
Slovenia | 0.202 | 25 | 0.148 | 27 | 0.169 | 27 |
Spain | 0.300 | 14 | 0.390 | 2 | 0.363 | 9 |
Sweden | 0.227 | 23 | 0.252 | 16 | 0.240 | 20 |
Country | Class in 2010 | Class in 2021 | Average from 2010 to 2021 |
---|---|---|---|
Netherlands | I | I | I |
France | I | III | II |
Lithuania | I | I | I |
Germany | I | II | II |
Ireland | I | II | II |
Latvia | II | I | I |
Malta | II | II | II |
Hungary | II | I | I |
Belgium | II | II | II |
Finland | II | II | III |
Austria | II | III | III |
Bulgaria | II | I | II |
Denmark | II | I | II |
Spain | II | I | II |
Romania | III | II | III |
Estonia | III | II | III |
Slovakia | III | III | III |
Czechia | III | III | III |
Cyprus | III | III | III |
Greece | III | III | III |
Luxembourg | III | IV | III |
Portugal | III | IV | IV |
Sweden | III | III | III |
Poland | IV | III | III |
Slovenia | IV | IV | IV |
Italy | IV | IV | IV |
Croatia | IV | IV | IV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krukowski, A.; Nowak, A.; Jarosz-Angowska, A.; Różańska-Boczula, M. Evaluation of the Significance of Agriculture in Renewable Energy Production in the Member States of the EU. Energies 2024, 17, 2973. https://doi.org/10.3390/en17122973
Krukowski A, Nowak A, Jarosz-Angowska A, Różańska-Boczula M. Evaluation of the Significance of Agriculture in Renewable Energy Production in the Member States of the EU. Energies. 2024; 17(12):2973. https://doi.org/10.3390/en17122973
Chicago/Turabian StyleKrukowski, Artur, Anna Nowak, Aneta Jarosz-Angowska, and Monika Różańska-Boczula. 2024. "Evaluation of the Significance of Agriculture in Renewable Energy Production in the Member States of the EU" Energies 17, no. 12: 2973. https://doi.org/10.3390/en17122973
APA StyleKrukowski, A., Nowak, A., Jarosz-Angowska, A., & Różańska-Boczula, M. (2024). Evaluation of the Significance of Agriculture in Renewable Energy Production in the Member States of the EU. Energies, 17(12), 2973. https://doi.org/10.3390/en17122973