An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells
Abstract
:1. Introduction
- A multi-strategy tuna swarm optimization (MS-TSO) is proposed to determine the optimal parameters of PEMFCs;
- Based on the measured data, a comprehensive comparison between MS-TSO and competing algorithms including DE, PSO, WOA, HHO, SSA, and SMA confirms that MS-TSO has lower SSE and converges towards the optimized solution faster during iteration, among which these competing algorithms have significant advantages in computational cost, stability, and accuracy, as mentioned above.
2. PEMFC Modeling
2.1. Principle of PEMFC
2.2. PEMFC Modeling
3. Multi-Strategy Tuna Swarm Optimization (MS-TSO)
3.1. An Introduction to Tuna Swarm Optimization (TSO)
3.1.1. Initialization
3.1.2. Spiral Foraging
3.1.3. Parabolic Foraging
3.2. Mathematical Model of Multi-Strategy Tuna Swarm Optimization (MS-TSO)
3.2.1. Multi-Strategy Tuna Swarm Optimization
3.2.2. Model Solving
- i.
- Initialize the maximum number of iterations and the population size, set the lower and upper bounds of the seven identified parameters, and preliminarily assign values to and in (25). Preliminarily initialize the seven parameters by taking random numbers within their respective upper and lower bounds.
- ii.
- Based on the initial values taken in i, substitute it into (2)–(14) to calculate the initial . Substitute the actual polarization curve data and the calculated V into (27) to obtain the initial objective function value, and take the minimum as the best fitness. The corresponding seven parameters are the currently optimal solution.
- iii.
- Starting from the first iteration, take a uniform random number for γ and compare it with 0.5 to indicate the probability of using (23) or (25). Then, calculate the corresponding fitness after obtaining . If the fitness is lower than the previous one, update it; if the fitness is higher than the previous one, return to the previous state.
- iv.
- Stop the loop when the maximum iteration number is reached, and output the best fitness and optimum position.
4. Results and Discussion
4.1. 25 cm2 Single Fuel Cell
4.1.1. Introduction to the Experimental Platform
4.1.2. Analysis of Experimental Results
4.2. BCS500W, NedStackPS6, and Horizon500w
4.3. Nedstack PS6
4.4. BCS500W
4.5. Horizon500W
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgement
Conflicts of Interest
References
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, P.; Cavinato, G.; Nale, A.; Bang, Y.H.; Di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhang, Y.; Xu, S. Temperature sensitivity characteristics of PEM fuel cell and output performance improvement based on optimal active temperature control. Int. J. Heat Mass Transf. 2023, 206, 123966. [Google Scholar] [CrossRef]
- Chen, D.; Pei, P.; Li, Y.; Ren, P.; Meng, Y.; Song, X.; Wu, Z. Proton exchange membrane fuel cell stack consistency: Evaluation methods, influencing factors, membrane electrode assembly parameters and improvement measures. Energy Convers. Manag. 2022, 261, 115651. [Google Scholar] [CrossRef]
- Mitra, U.; Arya, A.; Gupta, S. A comprehensive and comparative review on parameter estimation methods for modelling proton exchange membrane fuel cell. Fuel 2023, 335, 127080. [Google Scholar] [CrossRef]
- Giner-Sanz, J.J.; Ortega, E.M.; Pérez-Herranz, V. Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell. J. Power Sources 2018, 379, 328–337. [Google Scholar] [CrossRef]
- Busquet, S.; Hubert, C.E.; Labbe, J.; Mayer, D.; Metkemeijer, R. A new approach to empirical electrical modelling of a fuel cell, an electrolyser or a regenerative fuel cell. J. Power Sources 2004, 134, 41–48. [Google Scholar] [CrossRef]
- Yang, F.; Li, Y.; Chen, D.; Hu, S.; Xu, X. Parameter identification of PEMFC steady-state model based on p-dimensional extremum seeking via simplex tuning optimization method. Energy 2024, 292, 130601. [Google Scholar] [CrossRef]
- Li, Y.; Yang, F.; Chen, D.; Hu, S.; Xu, X. Thermal-physical modeling and parameter identification method for dynamic model with unmeasurable state in 10-kW scale proton exchange membrane fuel cell system. Energy Convers. Manag. 2023, 276, 116580. [Google Scholar] [CrossRef]
- Hu, P.; Cao, G.Y.; Zhu, X.J.; Li, J. Modeling of a proton exchange membrane fuel cell based on the hybrid particle swarm optimization with Levenberg–Marquardt neural network. Simul. Model. Pract. Theory 2010, 18, 574–588. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, S.; Shi, L. Research on PEMFC cathode circulation under low-load conditions and its optimal control in FCV power system for long-term durability. Int. J. Hydrog. Energy 2024, 61, 1015–1027. [Google Scholar] [CrossRef]
- Amphlett, J.C.; Baumert, R.M.; Mann, R.F.; Peppley, B.A.; Roberge, P.R.; Harris, T.J. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell: I. Mechanistic model development. J. Electrochem. Soc. 1995, 142, 1. [Google Scholar] [CrossRef]
- He, P.; Zhou, X.; Liu, M.; Xu, K.; Meng, X.; Yang, B. Generalized Regression Neural Network Based Meta-Heuristic Algorithms for Parameter Identification of Proton Exchange Membrane Fuel Cell. Energies 2023, 16, 5290. [Google Scholar] [CrossRef]
- El-Fergany, A.A. Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET Renew. Power Gener. 2018, 12, 9–17. [Google Scholar] [CrossRef]
- Gouda, E.A.; Kotb, M.F.; El-Fergany, A.A. Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis. Energy 2021, 221, 119836. [Google Scholar] [CrossRef]
- Alqahtani, A.H.; Hany, M.; Hasanien, M.A.; Sun, C. Parameters estimation of proton exchange membrane fuel cell model based on an improved Walrus optimization algorithm. IEEE Access 2024, 12, 74979–74992. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rezazadeh, A. An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model. IEEE Trans. Ind. Electron. 2011, 59, 3473–3480. [Google Scholar] [CrossRef]
- Fathy, A.; Abdel Aleem, S.H.E.; Rezk, H. A novel approach for PEM fuel cell parameter estimation using LSHADE-EpSin optimization algorithm. Int. J. Energy Res. 2021, 45, 6922–6942. [Google Scholar] [CrossRef]
- Rezk, H.; Wilberforce, T.; Olabi, A.G.; Ghoniem, R.M.; Sayed, E.T.; Abdelkareem, M.A. Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms. Energies 2023, 16, 5246. [Google Scholar] [CrossRef]
- Ali, M.; El-Hameed, M.A.; Farahat, M.A. Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renew. Energy 2017, 111, 455–462. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, N. Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2019, 44, 3075–3087. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G. New parameters identification of Proton exchange membrane fuel cell stacks based on an improved version of African vulture optimization algorithm. Energy Rep. 2022, 8, 3030–3040. [Google Scholar] [CrossRef]
- Zhu, Y.; Yousefi, N. Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm. Int. J. Hydrogen Energy 2021, 46, 9541–9552. [Google Scholar] [CrossRef]
- Sultan, H.M.; Menesy, A.S.; Hassan, M.S.; Jurado, F.; Kamel, S. Standard and Quasi Oppositional bonobo optimizers for parameter extraction of PEM fuel cell stacks. Fuel 2023, 340, 127586. [Google Scholar] [CrossRef]
- Chakraborty, U.K.; Abbott, T.E.; Das, S.K. PEM fuel cell modeling using differential evolution. Energy 2012, 40, 387–399. [Google Scholar] [CrossRef]
- Abdi, H.; Ait Messaoudene, N.; Kolsi, L.; Naceur, M.W. Modeling and optimization of a proton exchange membrane fuel cell using particle swarm algorithm with constriction coefficient. J. Therm. Anal. Calorim. 2021, 144, 1749–1759. [Google Scholar] [CrossRef]
- El-Fergany, A.A.; Hasanien, H.M.; Agwa, A.M. Semi-empirical PEM fuel cells model using whale optimization algorithm. Energy Convers. Manag. 2019, 201, 112197. [Google Scholar] [CrossRef]
- Song, Y.; Tan, X.; Mizzi, S. Optimal parameter extraction of the proton exchange membrane fuel cells based on a new Harris Hawks Optimization algorithm. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–18. [Google Scholar] [CrossRef]
- Fathy, A.; Abdelkareem, M.A.; Olabi, A.G.; Rezk, H. A novel strategy based on salp swarm algorithm for extracting the maximum power of proton exchange membrane fuel cell. Int. J. Hydrog. Energy 2021, 46, 6087–6099. [Google Scholar] [CrossRef]
- Gupta, J.; Nijhawan, P.; Ganguli, S. Optimal parameter estimation of PEM fuel cell using slime mould algorithm. Int. J. Energy Res. 2021, 45, 14732–14744. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, R.; Jiang, D.; Wang, Y.; Lin, A.; Wang, J.; Ruan, B. Parameter identification of proton exchange membrane fuel cell based on swarm intelligence algorithm. Energy 2023, 283, 128935. [Google Scholar] [CrossRef]
- Fathy, A.; Rezk, H. Multi-verse optimizer for identifying the optimal parameters of PEMFC model. Energy 2018, 143, 634–644. [Google Scholar] [CrossRef]
- Sun, S.; Su, Y.; Yin, C.; Jermsittiparsert, K. Optimal parameters estimation of PEMFCs model using converged moth search algorithm. Energy Rep. 2020, 6, 1501–1509. [Google Scholar] [CrossRef]
- Rezaie, M.; Akbari, E.; Ghadimi, N.; Razmjooy, N.; Ghadamyari, M. Model parameters estimation of the proton exchange membrane fuel cell by a Modified Golden Jackal Optimization. Sustain. Energy Technol. Assess. 2022, 53, 102657. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M.; El-Fergany, A.A. Artificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells model. Int. J. Hydrog. Energy 2021, 46, 37612–37627. [Google Scholar] [CrossRef]
- Sarhani, M.; Voß, S.; Jovanovic, R. Initialization of metaheuristics: Comprehensive review, critical analysis, and research directions. Int. Trans. Oper. Res. 2023, 30, 3361–3397. [Google Scholar] [CrossRef]
- Tian, F.; Anderson, A.B. Effective reversible potential, energy loss, and overpotential on platinum fuel cell cathodes. J. Phys. Chem. C 2011, 115, 4076–4088. [Google Scholar] [CrossRef]
- Tirnovan, R.; Giurgea, S. Efficiency improvement of a PEMFC power source by optimization of the air management. Int. J. Hydrog. Energy 2012, 37, 7745–7756. [Google Scholar] [CrossRef]
- Zhang, G.; Qu, Z.; Tao, W.Q.; Wang, X.; Wu, L.; Wu, S.; Xie, X.; Tongsh, C.; Huo, W.; Bao, Z.; et al. Porous flow field for next-generation proton exchange membrane fuel cells: Materials, characterization, design, and challenges. Chem. Rev. 2022, 123, 989–1039. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Y.; Xu, S. Experimental study of PEM fuel cell temperature characteristic and corresponding automated optimal temperature calibration model. Energy 2023, 283, 128456. [Google Scholar] [CrossRef]
- Xie, L.; Han, T.; Zhou, H.; Han, B.; Tang, A. Tuna swarm optimization: A novel swarm-based metaheuristic algorithm for global optimization. Comput. Intell. Neurosci. 2021, 2021, 9210050. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Yang, M.; Shi, L.; Hou, Z.; Xu, S.; Sun, C. Adaptive state-of-health temperature sensitivity characteristics for durability improvement of PEM fuel cells. Chem. Eng. J. 2024, 491, 151951. [Google Scholar] [CrossRef]
- Arora, S.; Anand, P. Chaotic grasshopper optimization algorithm for global optimization. Neural Comput. Appl. 2019, 31, 4385–4405. [Google Scholar] [CrossRef]
- Kandidayeni, M.; Macias, A.; Khalatbarisoltani, A.; Boulon, L.; Kelouwani, S. Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms. Energy 2019, 183, 912–925. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.; Zhang, G.; Jermsittiparsert, K.; Razmjooy, N. Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm. Energy Rep. 2019, 5, 1616–1625. [Google Scholar] [CrossRef]
- Riad, A.J.; Hasanien, H.M.; Turky, R.A.; Yakout, A.H. Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm. Sustainability 2023, 15, 4625. [Google Scholar] [CrossRef]
- Ayyarao, T.S.L.V.; Polumahanthi, N.; Khan, B. An accurate parameter estimation of PEM fuel cell using war strategy optimization. Energy 2024, 290, 130235. [Google Scholar] [CrossRef]
Model Parameters | |||||||
---|---|---|---|---|---|---|---|
Lower bound | −1.19969 | 1 | 3.6 | −2.60 | 10 | 1 | 0.0136 |
Upper bound | −0.8532 | 5 | 9.8 | −0.954 | 24 | 8 | 0.5 |
Physical Parameter | Value | Operating Parameter | Value |
---|---|---|---|
Thickness of the membrane | 0.018 mm | Temperature of the PEMFC | 353 K |
Thickness of the GDL | 0.19 mm | Inlet pressures of the anode | 1 bar |
Thickness of the CL | 0.015 mm | Inlet pressures of the cathode | 1 bar |
Thickness of the coolant channel | 1.0 mm | Relative humidity of water vapor at the anode | 100% |
Thickness of the endplate | 20.0 mm | Relative humidity of water vapor at the cathode | 100% |
Channel length | 20.0 mm | Maximum current density | 2.8 A/cm2 |
Channel width | 1.0 mm | ||
Number of gas channels | 10 | ||
Effective reaction area | 25 cm2 |
Algorithms | Model Parameters | SSE | ||||||
---|---|---|---|---|---|---|---|---|
ξ1 | ξ2 × 10−3 | ξ3 × 10−5 | ξ4 × 10−4 | λ | RC × 10−4 | B | ||
MS-TSO | −1.1665 | 4.1599 | 9.8000 | −1.4741 | 24.0000 | 8.0000 | 0.0857 | 1.42963 × 10−4 |
PSO | −0.9293 | 2.5426 | 3.6975 | −1.8013 | 12.7077 | 8.0000 | 0.0136 | 5.5275 × 10−4 |
HHO | −0.8832 | 3.0265 | 7.5790 | −1.6918 | 14.0454 | 7.0393 | 0.0392 | 3.6607 × 10−4 |
SMA | −1.1997 | 3.8435 | 7.0089 | −1.8356 | 12.5193 | 8.0000 | 0.0136 | 1.4 × 10−3 |
DE | −1.1353 | 3.9779 | 9.5008 | −1.5087 | 16.3609 | 1.9321 | 0.0682 | 1.5 × 10−3 |
SSA | −1.1837 | 4.0859 | 8.6705 | −1.7902 | 19.8999 | 5.0261 | 0.0710 | 4.8414 × 10−4 |
WOA | −0.8555 | 2.9357 | 7.7370 | −1.6786 | 11.6851 | 1.2320 | 0.0228 | 1.8 × 10−3 |
N | Experimental Data | Model Simulated Data | N | Experimental Data | Model Simulated Data | ||||
---|---|---|---|---|---|---|---|---|---|
Vexp (A) | Iexp (V) | Vmod (V) | (Vexp − Vmod)2 | Vexp (A) | Iexp (V) | Vmod (V) | (Vexp − Vmod)2 | ||
1 | 0.82841 | 2.50002 | 0.8333 | 2.39 × 10−5 | 12 | 0.621 | 30.00015 | 0.6216 | 3.6 × 10−7 |
2 | 0.79031 | 5.00002 | 0.791 | 4.76 × 10−7 | 13 | 0.60679 | 32.49986 | 0.6076 | 6.56 × 10−7 |
3 | 0.76523 | 7.49997 | 0.7635 | 2.99 × 10−6 | 14 | 0.59203 | 35.00021 | 0.5933 | 1.61 × 10−6 |
4 | 0.74675 | 9.99987 | 0.7419 | 2.35 × 10−5 | 15 | 0.57695 | 37.5 | 0.5786 | 2.72 × 10−6 |
5 | 0.7272 | 12.49989 | 0.7235 | 1.37 × 10−5 | 16 | 0.5613 | 40.00002 | 0.5632 | 3.61 × 10−6 |
6 | 0.70946 | 15 | 0.7069 | 6.55 × 10−6 | 17 | 0.54464 | 42.49997 | 0.547 | 5.57 × 10−6 |
7 | 0.69263 | 17.49979 | 0.6916 | 1.06 × 10−6 | 18 | 0.5267 | 44.99999 | 0.5299 | 1.02 × 10−5 |
8 | 0.67752 | 20.0002 | 0.677 | 2.7 × 10−7 | 19 | 0.5089 | 47.50002 | 0.5115 | 6.76 × 10−6 |
9 | 0.66221 | 22.49999 | 0.6629 | 4.76 × 10−7 | 20 | 0.49082 | 49.99997 | 0.4914 | 3.36 × 10−7 |
10 | 0.64874 | 24.99979 | 0.6491 | 1.3 × 10−7 | 21 | 0.47125 | 52.49992 | 0.4693 | 3.8 × 10−6 |
11 | 0.63482 | 27.50012 | 0.6354 | 3.36 × 10−7 | 22 | 0.45012 | 55.00002 | 0.4443 | 3.39 × 10−5 |
SSE | 1.42963 × 10−4 |
PEMFC Stacks | (cm2) | (μm) | (A/cm2) | (K) | (atm) | (atm) | Ref. | |
---|---|---|---|---|---|---|---|---|
NedStackPS6 | 65 | 240 | 178 | 5 | 343 | 1 | 1 | [43] |
BCS500W | 32 | 64 | 178 | 0.469 | 333 | 1 | 0.2075 | [34] |
Horizon500W | 36 | 52 | 25 | 0.51923 | ≤338.15 | 0.55 | 1 | [44] |
N | Experimental Data | Model Simulated Data | N | Experimental Data | Model Simulated Data | ||||
---|---|---|---|---|---|---|---|---|---|
Iexp (A) | Vexp (V) | Vmod (V) | (Vexp − Vmod)2 | Iexp (A) | Vexp (V) | Vmod (V) | (Vexp − Vmod)2 | ||
1 | 2.25 | 61.64 | 62.3558 | 0.51237 | 16 | 110.30 | 47.52 | 47.6361 | 0.013479 |
2 | 6.75 | 59.57 | 59.7818 | 0.044859 | 17 | 117.00 | 47.10 | 47.0473 | 0.002777 |
3 | 9.00 | 58.94 | 59.0504 | 0.012188 | 18 | 126.00 | 46.48 | 46.2521 | 0.051938 |
4 | 15.75 | 57.54 | 57.4982 | 0.001747 | 19 | 135.00 | 45.66 | 45.4494 | 0.044352 |
5 | 20.25 | 56.80 | 56.7195 | 0.00648 | 20 | 141.80 | 44.85 | 44.8364 | 0.000185 |
6 | 24.75 | 56.13 | 56.0462 | 0.007022 | 21 | 150.80 | 44.24 | 44.0146 | 0.050805 |
7 | 31.50 | 55.23 | 55.1589 | 0.005055 | 22 | 162.00 | 42.45 | 42.9721 | 0.272588 |
8 | 36.00 | 54.66 | 54.6222 | 0.001429 | 23 | 171.00 | 41.66 | 42.1157 | 0.207662 |
9 | 45.00 | 53.61 | 53.6345 | 0.0006 | 24 | 182.30 | 40.68 | 41.0137 | 0.111356 |
10 | 51.75 | 52.86 | 52.9453 | 0.007276 | 25 | 189.00 | 40.09 | 40.3446 | 0.064821 |
11 | 67.50 | 51.91 | 51.4403 | 0.220618 | 26 | 195.80 | 39.51 | 39.6526 | 0.020335 |
12 | 72.00 | 51.22 | 51.0277 | 0.036979 | 27 | 204.80 | 38.73 | 38.7149 | 0.000228 |
13 | 90.00 | 49.66 | 49.4184 | 0.058371 | 28 | 211.50 | 38.15 | 37.9996 | 0.02262 |
14 | 99.00 | 49.00 | 48.627 | 0.139129 | 29 | 220.50 | 37.38 | 37.0139 | 0.134029 |
15 | 105.80 | 48.15 | 48.0308 | 0.014209 | SSE | 2.0655 |
Algorithms | Model Parameters | SSE | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|
MS-TSO | −0.8532 | 2.5834 | 4.9206 | −0.9540 | 12.5734 | 1.0000 | 0.0136 | 2.0655 | This work |
IABC | −0.989151 | 3.55443 | 8.39696 | −9.54002 | 11.8775 | 1.0000 | 0.0136025 | 2.9848 | [31] |
PSO | −0.927807 | 3.59632 | 9.800 | −9.54 | 24 | 6.76895 | 0.0136 | 5.56449 | [31] |
IAEO | −1.20 | 3.41 | 3.60 | −9.54 | 19.79 | 3.6 | 0.01 | 2.15 | [35] |
CGOA | −1.27 | 3.07 | 5.19 | −9.62 | 13.28 | 1.3000 | 0.17 | 3.11 | [43] |
BSOA | −0.89 | 3.42 | 7.76 | −9.55 | 13 | 1.0000 | 0.05 | 2.18 | [45] |
ARO | −1.008511 | 3.0434 | 4.9796 | −9.54 | 13.445704 | 1.0000 | 0.0136 | 2.1112503 | [46] |
N | Experimental Data | Model Simulated Data | N | Experimental Data | Model Simulated Data | ||||
---|---|---|---|---|---|---|---|---|---|
Iexp (A) | Vexp (V) | Vmod (V) | (Vexp − Vmod)2 | Iexp (A) | Vexp (V) | Vmod (V) | (Vexp − Vmod)2 | ||
1 | 0.60 | 29.00 | 28.9972 | 7.84 × 10−6 | 10 | 15.73 | 21.09 | 20.9877 | 1.05 × 10−2 |
2 | 2.10 | 26.31 | 26.3059 | 1.68 × 10−5 | 11 | 17.02 | 20.68 | 20.6945 | 2.10 × 10−4 |
3 | 3.58 | 25.09 | 25.0935 | 1.22 × 10−5 | 12 | 19.11 | 20.22 | 20.231 | 1.21 × 10−4 |
4 | 5.08 | 24.25 | 24.2546 | 2.12 × 10−5 | 13 | 21.20 | 19.76 | 19.771 | 1.21 × 10−4 |
5 | 7.17 | 23.37 | 23.3754 | 2.92 × 10−5 | 14 | 23.00 | 19.36 | 19.366 | 3.60 × 10−5 |
6 | 9.55 | 22.57 | 22.5846 | 2.13 × 10−4 | 15 | 25.08 | 18.86 | 18.8665 | 4.22 × 10−5 |
7 | 11.35 | 22.06 | 22.0713 | 1.28 × 10−4 | 16 | 27.17 | 18.27 | 18.2747 | 2.21 × 10−5 |
8 | 12.54 | 21.75 | 21.7585 | 7.23 × 10−5 | 17 | 28.06 | 17.95 | 17.9533 | 1.09 × 10−5 |
9 | 13.73 | 21.45 | 21.4613 | 1.28 × 10−4 | 18 | 29.26 | 17.30 | 17.2929 | 5.04 × 10−5 |
SSE | 0.011707 |
Algorithms | Model Parameters | SSE | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|
MS-TSO | −1.0214 | 3.4385 | 8.4555 | −1.9302 | 20.8772 | 1.0000 | 0.0161 | 0.011707 | This work |
IABC | −0.946749 | 3.3973 | 7.55889 | −1.92746 | 20.8709 | 1.0000 | 0.0162561 | 0.01171 | [31] |
PSO | −0.853486 | 3.08059 | 7.36225 | −1.89128 | 17.6239 | 1.0000 | 0.0136 | 0.024095 | [31] |
SSO | −1.017 | 2.315 | 5.24 | −1.2815 | 18.8550 | 7.500 | 0.0136 | 7.1889 | [32] |
CMSA | −0.785 | 4.5 | 8.86 | −1.93 | 23.0000 | 3.12 | 0.017 | 0.012 | [33] |
PSO-GJO | −0.851 | 5.07 | 8.80 | −2.94 | 23.0000 | 3.12 | 0.016 | 0.013 | [34] |
N | Experimental Data | Model Simulated Data | N | Experimental Data | Model Simulated Data | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Iexp (A) | Vexp (V) | T(K) | Vmod (V) | (Vexp − Vmod)2 | Iexp (A) | Vexp (V) | T(K) | Vmod (V) | (Vexp − Vmod)2 | ||
1 | 0.6 | 29.370000 | 296.2000 | 29.3807 | 1.14 × 10−4 | 9 | 18.0 | 20.721728 | 309.9944 | 20.7704 | 2.37 × 10−3 |
2 | 2.5 | 26.777390 | 297.8109 | 26.7815 | 1.69 × 10−5 | 10 | 20.0 | 20.026000 | 312.5320 | 20.0337 | 5.93 × 10−5 |
3 | 5.0 | 25.290250 | 299.5201 | 25.2899 | 1.23 × 10−7 | 11 | 21.0 | 19.636350 | 313.9611 | 19.6237 | 1.60 × 10−4 |
4 | 7.5 | 24.281859 | 301.2274 | 24.2477 | 1.17 × 10−3 | 12 | 22.0 | 19.191807 | 315.5014 | 19.1695 | 4.98 × 10−4 |
5 | 10.0 | 23.418000 | 302.9500 | 23.3696 | 2.34 × 10−3 | 13 | 23.0 | 18.663630 | 317.1531 | 18.6491 | 2.11 × 10−4 |
6 | 12.0 | 22.739103 | 304.4043 | 22.7189 | 4.08 × 10−4 | 14 | 24.0 | 18.015227 | 318.9135 | 18.0214 | 3.81 × 10−5 |
7 | 14.0 | 22.058523 | 306.0069 | 22.0839 | 6.44 × 10−4 | 15 | 25.0 | 17.201250 | 320.7766 | 17.1946 | 4.42 × 10−5 |
8 | 16.0 | 21.386148 | 307.8427 | 21.4424 | 3.16 × 10−3 | SSE | 0.0112 |
Algorithms | Model Parameters | SSE | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|
MS-TSO | −0.8532 | 2.7833 | 9.8000 | −1.5516 | 10.0000 | 8.0000 | 0.0477 | 0.0112 | This work |
SFLA | −0.8532 | 2.522 | 7.843743 | −1.63 | 13 | 7.999 | 0.048869 | 0.015622 | [44] |
WSO | −0.85 | 2.78 | 9.80 | −1.55 | 10.00 | 8.00 | 0.05 | 0.01 | [47] |
PSO | −0.8532 | 1.9302 | 3.6 | −1.557 | 10 | 7.9996 | 0.0486 | 0.011787 | This work |
HHO | −0.9586 | 2.5431 | 5.4411 | −1.6658 | 15.2025 | 6.1959 | 0.0534 | 0.0473 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, J.; Meng, X.; Tang, X.; Li, H.; Hasanien, H.; Alharbi, M.; Dong, Z.; Shen, J.; Sun, C.; Fan, F.; et al. An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells. Energies 2024, 17, 2917. https://doi.org/10.3390/en17122917
Mei J, Meng X, Tang X, Li H, Hasanien H, Alharbi M, Dong Z, Shen J, Sun C, Fan F, et al. An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells. Energies. 2024; 17(12):2917. https://doi.org/10.3390/en17122917
Chicago/Turabian StyleMei, Jian, Xuan Meng, Xingwang Tang, Heran Li, Hany Hasanien, Mohammed Alharbi, Zhen Dong, Jiabin Shen, Chuanyu Sun, Fulin Fan, and et al. 2024. "An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells" Energies 17, no. 12: 2917. https://doi.org/10.3390/en17122917
APA StyleMei, J., Meng, X., Tang, X., Li, H., Hasanien, H., Alharbi, M., Dong, Z., Shen, J., Sun, C., Fan, F., Jiang, J., & Song, K. (2024). An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells. Energies, 17(12), 2917. https://doi.org/10.3390/en17122917