Biomethane Production from the Two-Stage Anaerobic Co-Digestion of Cow Manure: Residual Edible Oil with Two Qualities of Waste-Activated Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Co-Substrate Preparation
2.2. Experimental Design
2.3. Statistical Analyses
3. Results and Discussion
3.1. Effect of Waste-Activated Sludge and Co-Substrate
3.2. Biomethane Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bond, T.; Templeton, M.R. History and future of domestic biogas plants in the developing world. Energy Sustain. Dev. 2011, 15, 347–354. [Google Scholar] [CrossRef]
- Romulo, H.G.J.; Jovani, T.S.; Fabio, N.P.; Cassiano, M.P.; Antonio, C.F. Biodigester location problems, its economic-environmental-social aspects and techniques: Areas yet to be explored. Energy Rep. 2021, 7, 3998–4008. [Google Scholar]
- Díaz, I.; Pérez, S.I.; Ferrero, E.M.; Fdz-Polanco, M. Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters. Bioresour. Technol. 2011, 102, 3768–3775. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.A.; Almeida, F.T.S.; Marotta, H.; Guiller, J.F.M.; Aparecida, C.F.R.; Fatima, D.C.; Batista, S.F. New compact biodigester model for organic waste treatment in urban residences and buildings. J. Environ. Eng. 2021, 147, 04020156. [Google Scholar]
- Wang, X.; Gou, M.; Koppelaar, R.H.E.M.; Van Dam, K.H.; Triantafyllidis, C.P.; Shah, N.A. Nexus approach for sustainable urban energy-water-systems planning and operation. Environ. Sci. Technol. 2018, 52, 3257–3266. [Google Scholar] [CrossRef] [PubMed]
- Nerini, F.F.; Tomei, J.; To, L.S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Castán Broto, V.; Anandarajah, G.; et al. Mapping synergies and trade-offs between energy and the sustainable development goals. Nat. Energy 2018, 3, 10–15. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Wainaina, S.; Awasthi, M.K.; Sarsaiya, S.; Chen, H.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S.K.; Liu, T.; Duan, Y. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour. Technol. 2020, 301, 122778. [Google Scholar] [CrossRef]
- Loizia, P.; Neofytou, N.; Zorpas, A.A. The concept of circular economy strategy in food waste management for the optimization of energy production through anaerobic digestion. Environ. Sci. Pollut. Res. 2019, 26, 14766–14773. [Google Scholar] [CrossRef]
- Ribic, B.; Voca, N.; Ilakovac, B. Concept of sustainable waste management in the city of Zagreb: Towards the implementation of circular economy approach. J. Air Waste Manag. Assoc. 2016, 67, 241–259. [Google Scholar] [CrossRef]
- Langer, S.G.; Gabris, C.; Einfalt, D.; Wemheuer, B.; Kazda, M.; Bengelsdorf, F.R. Different response of bacteria, archaea and fungi to process parameters in nine full-scale anaerobic digesters. Microb. Biotechnol. 2016, 12, 1210–1225. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Bittencourt, P.; Casimir, L.; Jimenez, E.; Wang, M.; Zhang, Q.; Ergas, S.J. Biogas production from high solids anaerobic co-digestion of food waste, yard waste and waste activated sludge. Waste Manag. 2019, 95, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Seiple, T.E.; Coleman, A.M.; Skaggs, R.L. Municipal wastewater sludge as a sustainable bioresource in the United States. J. Environ. Manag. 2017, 197, 673–680. [Google Scholar] [CrossRef] [PubMed]
- SEMARNAT. Informe del Medio Ambiente. Sistema Nacional de Información Ambiental y de Recursos Naturales 2018. Available online: https://apps1.semarnat.gob.mx:8443/dgeia/informe18/tema/cap6.html (accessed on 5 December 2022).
- Kiselev, A.; Magaril, E.; Magaril, R.; Panepinto, D.; Ravina, M.; Zanetti, M.C. Towards circular economy: Evaluation of sewage sludge biogas solutions. Resources 2019, 8, 91. [Google Scholar] [CrossRef]
- Mattioli, A.; Gatti, G.B.; Mattuzzi, G.P.; Cecchi, F.; Bolzonella, D. Co-digestion of the organic fraction of municipal solid waste and sludge improves the energy balance of wastewater treatment plants: Rovereto case study. Renew. Energy 2017, 113, 980–988. [Google Scholar] [CrossRef]
- Ruiz-Marin, A.; Campos-Garcia, S.; Zavala-Loria, J.; Canedo-Lopez, Y. Hydrological aspects of the lagoons of Atasta and Pom, Mexico. Trop. Subtrop. Agroecosyst. 2009, 10, 63–74. [Google Scholar]
- Salgado, L.D.; Marques, A.E.M.L.; Kramer, R.D.; de Oliveira, F.G.; Moretto, S.L.; de Lima, B.A.; Prodocimo, M.M.; Cestari, M.M.; de Azevedo, J.C.R.; de Assis, H.C.S. Integrated assessment of sediment contaminant levels and biological responses in sentinel fish species Atherinella brasiliensis from a subtropical estuary in south Atlantic. Chemosphere 2019, 219, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Norma Oficial Mexicana NOM-021-RECNAT-2000; Que Establece las Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. Estudios, Muestreo y Análisis; Diario Oficial de La Federación: Mexico City, Mexico, 2002.
- Norma Mexicana. NMX-AA-034-SCFI-2015. Análisis de Agua—Medición de Sólidos y Sales Disueltas en Aguas Naturales, Residuales y Residuales Tratadas—Método de Prueba. Diario Oficial de La Federación 2015. Available online: https://www.gob.mx/cms/uploads/attachment/file/166146/nmx-aa-034-scfi-2015.pdf (accessed on 5 December 2022).
- Ellacuriaga, M.; Garcia-Cascallana, J.; Gomez, X. Biogas production from organic wastes: Integrating concepts of circular economy. Fuels 2021, 2, 144–167. [Google Scholar] [CrossRef]
- Yen, H.; Brune, D.E. Anaerobic Co-Digestion of Algal Sludge and Waste Paper to Produce Methane. Bioresour. Technol. 2007, 98, 130–134. [Google Scholar] [CrossRef]
- Wang, X.; Yang, G.; Li, F.; Feng, Y.; Ren, G.; Han, X. Evaluation of two statistical methods for optimizing the feeding composition in anaerobic co-digestion: Mixture design and central composite design. Bioresour. Technol. 2013, 131, 172–178. [Google Scholar] [CrossRef]
- Dareioti, M.A.; Dokianakis, S.N.; Stamatelatou, K.; Zafiri, C.; Kornaros, M. Biogas production from anaerobic co-digestion of agroindustrial wastewaters under mesophilic conditions in a two-stage process. Desalination 2009, 248, 891–906. [Google Scholar] [CrossRef]
- Yenigún, O.; Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013, 48, 901–911. [Google Scholar] [CrossRef]
- Chan, P.C.; Lu, Q.; de Toledo, R.A.; Gu, J.D.; Shim, H. Improved anaerobic co-digestion of food waste and domestic wastewater by copper supplementation—Microbial community change and enhanced effluent quality. Sci. Total Environ. 2019, 670, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Cabbai, V.; Ballico, M.; Aneggi, E.; Goi, D. BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Manag. 2013, 33, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, K.; Aslanzadeh, S.; Johansson, F.; Taherzadeh, M.J. Experimental and economical evaluation of a novel biogas digester. Energy Convers. Manag. 2013, 74, 183–191. [Google Scholar] [CrossRef]
- Nwaigwe, K.N.; Enweremadu, C.C. Comparative análisis of a locally developed biogas digester using selected substrates. In Proceedings of the ASME 2016 10th International Conference on Energy Sustainability Collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, Charlotte, NC, USA, 26–30 June 2016; ASTM: New York, NY, USA, 2016. [Google Scholar]
- Walker, M.; Theaker, H.; Yaman, R.; Poggio, D.; Nimmo, W.; Bywater, A.; Blanch, G.; Pourkashanian, M. Assessment of micro-scale anaerobic digestion for management of urban organic waste. A case study in London, UK. Waste Manag. 2017, 61, 258–268. [Google Scholar] [CrossRef]
Reactor | Clue | Treatment |
---|---|---|
Substrate (control) | SLB50 | Waste-activated sludge (Efficiency 50%) |
Substrate (control) | SLB90 | Waste-activated sludge (Efficiency 90%) |
Co-substrate 1 | CEV50 | SLB50 + cow manure (CEV) |
Co-substrate 1 | CEV90 | SLB90 +cow manure (CEV) |
Co-substrate 2 | CAV50 | SLB50 + residual edible oil (CAV) |
Co-substrate 2 | CAV90 | SLB90 + residual edible oil (CAV) |
Control Factors | Units |
---|---|
pH | 6–8 |
Mixture (sludge: water) | 1:1 |
Co-substrate | 25% |
Agitation | 120 rpm |
Hydraulic holding time | 30 days |
Initial C/N | ~20 |
Temperature | 20–30 °C |
Parameter | Units | SLB90 | SLB50 | CEV |
---|---|---|---|---|
pH | - | 7.04 ± 0.084 | 7.30 ± 0.014 | 7.4 ± 0.091 |
TS | g L−1 | 35.58 ± 0.056 | 44.91 ± 0.056 | 156 ± 0.02 |
VS | g L−1 | 24.24 ± 0.339 | 11.56 ± 0.346 | 32.5 ± 0.02 |
OC | % | 18.82 ± 0.542 | 8.22 ± 0.433 | 18.99 ± 0.051 |
OM | % | 32.46 ± 0.362 | 14.17 ± 0.544 | 32.74 ± 0.089 |
TN | % | 20.11 ± 0.829 | 11.46 ± 1.965 | 1.11 ± 0.0003 |
TP | g kg−1 | 1.76 ± 0.016 | 1.74 ± 0.001 | 10.97 ± 0.001 |
C/N | - | 3.080 | 0.558 | 17.01 |
Parameter | Units | CEV90 | CEV50 | CAV90 | CAV50 |
---|---|---|---|---|---|
pH | - | 7.04 ± 0.084 | 7.30 ± 0.014 | 7.4 ± 0.091 | 7.4 ± 0.091 |
TS | g L−1 | 27.85 ± 0.026 | 26.46 ± 0.056 | 22.87 ± 0.02 | 56.21 ± 0.02 |
VS | g L−1 | 11.56 ± 0.029 | 23.15 ± 0.034 | 21.81 ± 0.02 | 45.16 ± 0.02 |
OC | % | 23.39 ± 0.054 | 17.56 ± 0.423 | 18.55 ± 0.051 | 12.46 ± 0.051 |
OM | % | 40.34 ± 0.32 | 30.28 ± 0.544 | 31.99 ± 0.089 | 21.48 ± 0.089 |
TN | % | 2.52 ± 0.082 | 18.12 ± 0.465 | 4.74 ± 0.06 | 21.48 ± 0.06 |
TP | g kg−1 | 23.80 ± 0.014 | 18.72 ± 0.011 | 1.73 ± 0.021 | 1.72 ± 0.019 |
C/N | - | 23.16 | 6.26 | 6.16 | 0.58 |
Day | SLB90 | CAV90 | CEV90 | SLB50 | CAV50 | CEV50 |
---|---|---|---|---|---|---|
1 | 9.10 | 66.96 | 26.94 | |||
2 | 13.94 | 223.72 | 26.87 | |||
3 | 65.52 | 239.90 | 175.42 | |||
4 | 186.01 | 375.6 | 534.33 | |||
5 | 177.22 | 701.76 | 589.48 | |||
6 | 307 | 141.02 | 971.66 | 566.08 | ||
7 | 455.58 | 574.89 | 925.34 | 571.01 | ||
8 | 466.47 | 865.53 | 838.56 | 547.66 | ||
9 | 409.05 | 945.45 | 820.22 | 481.64 | ||
10 | 360.55 | 1266.76 | 870.57 | 420.98 | ||
11 | 350.26 | 969.79 | 1097.08 | 88.01 | 390.24 | |
12 | 365.31 | 1305.41 | 1497.52 | 155.81 | 396.11 | |
13 | 344.65 | 1410.62 | 1670.73 | 174.07 | 399.07 | |
14 | 390.62 | 621.79 | 1909.77 | 175.55 | 343.15 | |
15 | 413.67 | 619.52 | 2232.19 | 172.69 | 317.50 | |
16 | 435.88 | 599.02 | 2325.74 | 165.21 | 321.53 | |
17 | 428.84 | 523.44 | 2425.05 | 173.94 | 326.26 | |
18 | 388.91 | 636.09 | 2255.23 | 214.02 | 364.84 | |
19 | 342 | 498.14 | 2066.54 | 250.32 | 348.62 | |
20 | 379.19 | 569.66 | 2097.6 | 219.91 | 333.18 | |
21 | 384.21 | 540.48 | 1944.67 | 196.62 | 362.03 | |
22 | 315.9 | 726.28 | 1873.15 | 187.69 | 403.05 | |
23 | 296.19 | 929.47 | 1609.2 | 198.19 | 430.84 | |
24 | 234.04 | 784.51 | 1742.88 | 223.74 | 463.14 | |
25 | 88.07 | 782.4 | 1836.52 | 1.062 | 222.53 | 498.18 |
26 | 0.74 | 865.63 | 1853.66 | 2.843 | 235.04 | 569.71 |
27 | - | 742.56 | 1747.72 | 4.549 | 269.82 | 626.36 |
28 | - | 893.47 | 1427.95 | 5.628 | 283.32 | 654.67 |
29 | - | 881.76 | 1416.91 | 6.229 | 291.48 | 699.17 |
30 | - | 489.50 | 1358.4 | 5.68 | 330.54 | 693.39 |
∑CH4 | 7599.82 a | 19,183.19 b | 42,422.8 c | 25.99 a | 4228.5 a | 12,881.45 ab |
Media | 303.99 | 767.32 | 1414.09 | 4.33 | 211.42 | 429.38 |
SD | 149.39 | 344.37 | 676.62 | 2.00 | 55.53 | 167.04 |
Digestion | SLB90 | CAV90 | CEV90 | [28] | [29] | [30] | [5] |
---|---|---|---|---|---|---|---|
Predominant substrate | Waste-activated sludge | Waste edible oil | Waste-activated sludge | Municipal solid waste | Vegetable waste | Food waste | Food waste |
Inoculum | - | Waste-activated sludge | Cow manure | Cow manure | Cow manure | Cattle slurry | Bovine manure |
Biomethane yield (m3 d−1) | 7.59 × 10−3 | 19.18 × 10−3 | 42.42 × 10−3 | 9.30 × 10−3 56.95 × 10−3 | 0.005 × 10−3 | 3.16 | 11.83 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Cruz-Azuara, J.E.; Ruiz-Marin, A.; Canedo-Lopez, Y.; Aguilar-Ucan, C.A.; Ceron-Breton, R.M.; Ceron-Breton, J.G.; Anguebes-Franseschi, F. Biomethane Production from the Two-Stage Anaerobic Co-Digestion of Cow Manure: Residual Edible Oil with Two Qualities of Waste-Activated Sludge. Energies 2024, 17, 2848. https://doi.org/10.3390/en17122848
de la Cruz-Azuara JE, Ruiz-Marin A, Canedo-Lopez Y, Aguilar-Ucan CA, Ceron-Breton RM, Ceron-Breton JG, Anguebes-Franseschi F. Biomethane Production from the Two-Stage Anaerobic Co-Digestion of Cow Manure: Residual Edible Oil with Two Qualities of Waste-Activated Sludge. Energies. 2024; 17(12):2848. https://doi.org/10.3390/en17122848
Chicago/Turabian Stylede la Cruz-Azuara, Jesus Eduardo, Alejandro Ruiz-Marin, Yunuen Canedo-Lopez, Claudia Alejandra Aguilar-Ucan, Rosa Maria Ceron-Breton, Julia Griselda Ceron-Breton, and Francisco Anguebes-Franseschi. 2024. "Biomethane Production from the Two-Stage Anaerobic Co-Digestion of Cow Manure: Residual Edible Oil with Two Qualities of Waste-Activated Sludge" Energies 17, no. 12: 2848. https://doi.org/10.3390/en17122848
APA Stylede la Cruz-Azuara, J. E., Ruiz-Marin, A., Canedo-Lopez, Y., Aguilar-Ucan, C. A., Ceron-Breton, R. M., Ceron-Breton, J. G., & Anguebes-Franseschi, F. (2024). Biomethane Production from the Two-Stage Anaerobic Co-Digestion of Cow Manure: Residual Edible Oil with Two Qualities of Waste-Activated Sludge. Energies, 17(12), 2848. https://doi.org/10.3390/en17122848