Performance Evaluation of Air-Based Photovoltaic Thermal Collector Integrated with Dual Duct and Semicircular Turbulator in Actual Climate Conditions
Abstract
:1. Introduction
2. Experimental Setup and Procedure
2.1. Description of Air-Based PVTC
2.2. Experimental Procedure
2.3. Uncertainty Analysis
2.4. Performance Index
3. Results and Discussion
3.1. Weather Conditions
3.2. Thermal Performance
3.3. Electrical Performance
3.4. Overall Efficiency
3.5. Total Energy Output
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | |
A | Area (m2) |
Specific heat capacity (J/kg°C) | |
G | Solar radiation (W/m2) |
I | Ampere (A) |
Q | Heat transfer rate (W) |
T | Temperature (°C) |
V | Voltage (V) |
W | Power (W) |
e | Height of semicircular turbulator (m) |
h | Height of air channel (m) |
p | Pitch of turbulator (m) |
e/h | Relative height of semicircular turbulator (-) |
p/e | Relative pitch of turbulator (-) |
Mass flow rate (kg/s) | |
Greek symbols | |
Efficiency (%) | |
α | Increase ratio of semicircular turbulator (-) |
Subscripts | |
in | Inlet |
out | Outlet |
pv | Photovoltaic module |
pvtc | Photovoltaic thermal collector |
th | Thermal |
e | Electrical |
o | Overall |
References
- Piliougine, M.; Oukaja, A.; Sidrach-de-Cardona, M.; Spagnuolo, G. Temperature Coefficients of Degraded Crystalline Silicon Photovoltaic Modules at Outdoor Conditions. Prog. Photovolt. Res. Appl. 2021, 29, 558–570. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, J.; Zhang, F.; Shao, Y.; Xue, Y. Current Status and Future Development of Hybrid PV/T System with PCM Module: 4E (Energy, Exergy, Economic and Environmental) Assessments. Renew. Sustain. Energy Rev. 2022, 158, 112147. [Google Scholar] [CrossRef]
- Wolf, M. Performance Analyses of Combined Heating and Photovoltaic Power Systems for Residences. Energy Convers. Manag. 1976, 16, 79–90. [Google Scholar] [CrossRef]
- Yadav, A.S.; Bhagoria, J.L. A CFD Based Thermo-Hydraulic Performance Analysis of an Artificially Roughened Solar Air Heater Having Equilateral Triangular Sectioned Rib Roughness on the Absorber Plate. Int. J. Heat Mass Transf. 2014, 70, 1016–1039. [Google Scholar] [CrossRef]
- Yadav, A.S.; Bhagoria, J.L. A Numerical Investigation of Square Sectioned Transverse Rib Roughened Solar Air Heater. Int. J. Therm. Sci. 2014, 79, 111–131. [Google Scholar] [CrossRef]
- Kumar, A.; Kim, M.-H. Thermal Hydraulic Performance in a Solar Air Heater Channel with Multi V-Type Perforated Baffles. Energies 2016, 9, 564. [Google Scholar] [CrossRef]
- Kumar, R.; Goel, V.; Kumar, A. Investigation of Heat Transfer Augmentation and Friction Factor in Triangular Duct Solar Air Heater Due to Forward Facing Chamfered Rectangular Ribs: A CFD Based Analysis. Renew. Energy 2018, 115, 824–835. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; An, B.; Kim, Y.; Son, C.; Yoon, J.; Choi, K. Heat Transfer Performance and Pressure Drop Analysis According to Shape Conditions of Turbulent Promoters and Flow Conditions in Air-Type PV/T Collectors. J. Korean Sol. Energy Soc. 2022, 42, 87–101. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; An, B.; Choi, H.; Choi, K. Evaluation of Heat Transfer Performance Depending on Semicircular Turbulence Promoter Shape Conditions and Flow Conditions in the Air-Type PV/T Collector. J. Korean Sol. Energy Soc. 2022, 42, 47–61. [Google Scholar] [CrossRef]
- Jha, P.; Das, B.; Gupta, R. An Experimental Study of a Photovoltaic Thermal Air Collector (PVTAC): A Comparison of a Flat and the Wavy Collector. Appl. Therm. Eng. 2019, 163, 114344. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Hamed, M.H.; Omara, Z.M.; Kandeal, A.W. Solar Air Heaters: Design Configurations, Improvement Methods and Applications—A Detailed Review. Renew. Sustain. Energy Rev. 2017, 70, 1189–1206. [Google Scholar] [CrossRef]
- Varun Kumar, B.; Manikandan, G.; Rajesh Kanna, P.; Taler, D.; Taler, J.; Nowak-Ocłón, M.; Mzyk, K.; Toh, H.T. A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review. Energies 2018, 11, 3104. [Google Scholar] [CrossRef]
- Singh, V.P.; Jain, S.; Karn, A.; Kumar, A.; Dwivedi, G.; Meena, C.S.; Dutt, N.; Ghosh, A. Recent Developments and Advancements in Solar Air Heaters: A Detailed Review. Sustainability 2022, 14, 12149. [Google Scholar] [CrossRef]
- Sopian, K.; Yigit, K.S.; Liu, H.T.; Kakaç, S.; Veziroglu, T.N. Performance Analysis of Photovoltaic Thermal Air Heaters. Energy Convers. Manag. 1996, 37, 1657–1670. [Google Scholar] [CrossRef]
- Raman, V.; Centre, G.N.T. A Comparison Study of Energy and Exergy Performance of a Hybrid Photovoltaic Double-Pass and Single-Pass Air Collector. Int. J. Energy Res. 2009, 33, 605–617. [Google Scholar] [CrossRef]
- Kumar, R.; Rosen, M.A. Performance Evaluation of a Double Pass PV/T Solar Air Heater with and without Fins. Appl. Therm. Eng. 2011, 31, 1402–1410. [Google Scholar] [CrossRef]
- Amori, K.E.; Abd-AlRaheem, M.A. Field Study of Various Air Based Photovoltaic/Thermal Hybrid Solar Collectors. Renew. Energy 2014, 63, 402–414. [Google Scholar] [CrossRef]
- Hegazy, A.A. Comparative Study of the Performances of Four Photovoltaic/Thermal Solar Air Collectors. Energy Convers. Manag. 2000, 41, 861–881. [Google Scholar] [CrossRef]
- Hussain, F.; Othman, M.Y.H.; Sopian, K.; Yatim, B.; Ruslan, H.; Othman, H. Design Development and Performance Evaluation of Photovoltaic/Thermal (PV/T) Air Base Solar Collector. Renew. Sustain. Energy Rev. 2013, 25, 431–441. [Google Scholar] [CrossRef]
- Ooshaksaraei, P.; Sopian, K.; Zaidi, S.H.; Zulkifli, R. Performance of Four Air-Based Photovoltaic Thermal Collectors Configurations with Bifacial Solar Cells. Renew. Energy 2017, 102, 279–293. [Google Scholar] [CrossRef]
- Chaibi, Y.; El Rhafiki, T.; Simón-Allué, R.; Guedea, I.; Luaces, S.C.; Gajate, O.C.; Kousksou, T.; Zeraouli, Y. Air-Based Hybrid Photovoltaic/Thermal Systems: A Review. J. Clean. Prod. 2021, 295, 126211. [Google Scholar] [CrossRef]
- Othman, M.Y.; Yatim, B.; Sopian, K.; Abu Bakar, M.N. Performance Studies on a Finned Double-Pass Photovoltaic-Thermal (PV/T) Solar Collector. Desalination 2007, 209, 43–49. [Google Scholar] [CrossRef]
- Choi, H.U.; Choi, K.H. Performance Evaluation of PV/T Air Collector Having a Single-Pass Double-Flow Air Channel and Non-Uniform Cross-Section Transverse Rib. Energies 2020, 13, 2203. [Google Scholar] [CrossRef]
- Alam, T.; Meena, C.S.; Balam, N.B.; Kumar, A.; Cozzolino, R. Thermo-Hydraulic Performance Characteristics and Optimization of Protrusion Rib Roughness in Solar Air Heater. Energies 2021, 14, 3159. [Google Scholar] [CrossRef]
- Zhang, J.; Diao, Y.H.; Zhao, Y.H.; Zhang, Y.N. An Experimental Study of the Characteristics of Fluid Flow and Heat Transfer in the Multiport Microchannel Flat Tube. Appl. Therm. Eng. 2014, 65, 209–218. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Size of module (mm) | 2011 × 1042 × 40 |
Electrical efficiency (%) | 20.2 |
Temperature coefficient (%/°C) | −0.27 |
Maximum output power (W) | 450 |
Output voltage at maximum power (V) | 40.91 |
Output current at maximum power (A) | 11.01 |
Parameters | Value | |
---|---|---|
PVTC | Width (mm) | 1042 |
Length (mm) | 2017 | |
Height (mm) | 200 | |
Upper- and lower channel height (h) (mm) | 80 | |
Semicircular turbulator | α (-) | 1.11 |
e/h (-) | 0.116 | |
p/e (-) | 17.94 |
Device | Model | Range | Uncertainty |
---|---|---|---|
Pyranometer | MS-802 | 0–4000 W/m2 | ±2% |
Voltmeter | MT4Y-DV-43 | 0–50 V | ±0.56% |
Ampere meter | MT4Y-DA-43 | 0–5 A | ±0.56% |
Thermocouple | T-type | −281–370 °C | ±1 °C |
Anemometer | Kanomax 6531-2G | 0.01–9.99 m/s | ±2% |
Data logger | Agilent 34972A | - | - |
Parameter | Uncertainty |
---|---|
±2.26% | |
±3.02% | |
±0.97% | |
±2.22% | |
±3.17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, B.-H.; Kim, S.-B.; Choi, H.-U.; Choi, K.-H. Performance Evaluation of Air-Based Photovoltaic Thermal Collector Integrated with Dual Duct and Semicircular Turbulator in Actual Climate Conditions. Energies 2024, 17, 2752. https://doi.org/10.3390/en17112752
An B-H, Kim S-B, Choi H-U, Choi K-H. Performance Evaluation of Air-Based Photovoltaic Thermal Collector Integrated with Dual Duct and Semicircular Turbulator in Actual Climate Conditions. Energies. 2024; 17(11):2752. https://doi.org/10.3390/en17112752
Chicago/Turabian StyleAn, Byeong-Hwa, Seong-Bhin Kim, Hwi-Ung Choi, and Kwang-Hwan Choi. 2024. "Performance Evaluation of Air-Based Photovoltaic Thermal Collector Integrated with Dual Duct and Semicircular Turbulator in Actual Climate Conditions" Energies 17, no. 11: 2752. https://doi.org/10.3390/en17112752
APA StyleAn, B. -H., Kim, S. -B., Choi, H. -U., & Choi, K. -H. (2024). Performance Evaluation of Air-Based Photovoltaic Thermal Collector Integrated with Dual Duct and Semicircular Turbulator in Actual Climate Conditions. Energies, 17(11), 2752. https://doi.org/10.3390/en17112752