Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil
2.2. Zea mays
2.3. Characteristics of Petroleum-Derived Substances
2.4. Vermiculite Characteristics
2.5. Dolomite Characteristics
2.6. Research Design
2.7. Determination of the Heat of Combustion and Elemental Composition of Zea mays Biomass
2.8. Physicochemical and Chemical Soil Indicators
2.9. Calculations and Statistical Analyses
3. Results
3.1. Zea mays Biomass and Its Energetic Value
3.2. Soil Enzyme Activity
3.3. Interactions between Zea mays Biomass and Energy Efficiency and Soil Enzymatic Activity
4. Discussion
4.1. The Biomass of Zea mays and Its Energy Value
4.2. Soil Biochemical Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- IEA 50: Bioenergy. Available online: https://www.iea.org/energy-system/renewables/bioenergy (accessed on 8 February 2024).
- Gül, T.; Cozzi, L. Petr Havlik What Does Net-Zero Emissions by 2050 Mean for Bioenergy and Land Use?—Analysis. Available online: https://www.iea.org/articles/what-does-net-zero-emissions-by-2050-mean-for-bioenergy-and-land-use (accessed on 8 February 2024).
- Tracking Clean Energy Progress 2023—Analysis. Available online: https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed on 8 February 2024).
- Rivero, R.M.; Mittler, R.; Blumwald, E.; Zandalinas, S.I. Developing Climate-Resilient Crops: Improving Plant Tolerance to Stress Combination. Plant J. 2022, 109, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Králík, T.; Knápek, J.; Vávrová, K.; Outrata, D.; Romportl, D.; Horák, M.; Jandera, J. Ecosystem Services and Economic Competitiveness of Perennial Energy Crops in the Modelling of Biomass Potential—A Case Study of the Czech Republic. Renew. Sustain. Energy Rev. 2023, 173, 113120. [Google Scholar] [CrossRef]
- Abdullah, S.R.S.; Al-Baldawi, I.A.; Almansoory, A.F.; Purwanti, I.F.; Al-Sbani, N.H.; Sharuddin, S.S.N. Plant-Assisted Remediation of Hydrocarbons in Water and Soil: Application, Mechanisms, Challenges and Opportunities. Chemosphere 2020, 247, 125932. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.M.; Khan, A.H.; Nicholls, C.; Sohoo, I.; Otterpohl, R. Using Landfill Sites and Marginal Lands for Socio-Economically Sustainable Biomass Production through Cultivation of Non-Food Energy Crops: An Analysis Focused on South Asia and Europe. Sustainability 2023, 15, 4923. [Google Scholar] [CrossRef]
- Günal, A.Ç.; Tunca, S.K.; Arslan, P.; Gül, G.; Dinçel, A.S. How Does Sublethal Permethrin Effect Non-Target Aquatic Organisms? Environ. Sci. Pollut. Res. 2021, 28, 52405–52417. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. Sensitivity of Zea mays and Soil Microorganisms to the Toxic Effect of Chromium (VI). Int. J. Mol. Sci. 2023, 24, 178. [Google Scholar] [CrossRef] [PubMed]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Prasanna, B.M.; Cairns, J.E.; Zaidi, P.H.; Beyene, Y.; Makumbi, D.; Gowda, M.; Magorokosho, C.; Zaman-Allah, M.; Olsen, M.; Das, A.; et al. Beat the Stress: Breeding for Climate Resilience in Maize for the Tropical Rainfed Environments. Theor. Appl. Genet. 2021, 134, 1729–1752. [Google Scholar] [CrossRef]
- Bellon, M.R.; Hodson, D.; Bergvinson, D.; Beck, D.; Martinez-Romero, E.; Montoya, Y. Targeting Agricultural Research to Benefit Poor Farmers: Relating Poverty Mapping to Maize Environments in Mexico. Food Policy 2005, 30, 476–492. [Google Scholar] [CrossRef]
- Erenstein, O.; Chamberlin, J.; Sonder, K. Estimating the Global Number and Distribution of Maize and Wheat Farms. Glob. Food Secur. 2021, 30, 100558. [Google Scholar] [CrossRef]
- Pechanova, O.; Takáč, T.; Šamaj, J.; Pechan, T. Maize Proteomics: An Insight into the Biology of an Important Cereal Crop. Proteomics 2013, 13, 637–662. [Google Scholar] [CrossRef] [PubMed]
- Bonner, I.J.; Cafferty, K.G.; Muth, D.J.; Tomer, M.D.; James, D.E.; Porter, S.A.; Karlen, D.L. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability. Energies 2014, 7, 6509–6526. [Google Scholar] [CrossRef]
- Mattioni, B.; Kessler-Mathieu, M.; Wang, D.; Tilley, M. Ancient Grains: A Key Solution to Address Climate Change and Food Security. In Sustainable Agricultural Practices and Product Design; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2023; Volume 1449, pp. 51–75. [Google Scholar]
- Migut, D.; Buczek, J.; Jańczak-Pieniążek, M.; Szpunar-Krok, E. Industrial and energy use of maize plants. Pol. J. Sustain. Dev. 2021, 25, 57–64. [Google Scholar] [CrossRef]
- Abreu, M.; Silva, L.; Ribeiro, B.; Ferreira, A.; Alves, L.; Paixão, S.M.; Gouveia, L.; Moura, P.; Carvalheiro, F.; Duarte, L.C.; et al. Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review. Energies 2022, 15, 4348. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Kucharski, M.; Kucharski, J. The Role of Dactylis Glomerata and Diesel Oil in the Formation of Microbiome and Soil Enzyme Activity. Sensors 2020, 20, 3362. [Google Scholar] [CrossRef] [PubMed]
- Hawrot-Paw, M.; Koniuszy, A.; Zając, G.; Szyszlak-Bargłowicz, J. Ecotoxicity of Soil Contaminated with Diesel Fuel and Biodiesel. Sci. Rep. 2020, 10, 16436. [Google Scholar] [CrossRef]
- Hidalgo, K.J.; Sierra-Garcia, I.N.; Dellagnezze, B.M.; de Oliveira, V.M. Metagenomic Insights Into the Mechanisms for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Oil Supply Chain. Front. Microbiol. 2020, 11, 561506. [Google Scholar] [CrossRef] [PubMed]
- Baghaie, A.; Jabari, A.; Sattari, R. The Effect of Corn and White Clover Intercropping on Biodegradation of Diesel Oil in Arsenic Contaminated Soil in the Presence of Piriformospora Indica. J. Hum. Environ. Health Promot. 2020, 6, 53–59. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J. Remediation of Soil Contaminated with Diesel Oil. J. Elem. 2018, 23, 767–788. [Google Scholar] [CrossRef]
- Jiang, W.; Gao, J.; Cheng, Z.; Zhai, W.; Liu, D.; Zhou, Z.; Wang, P. The Influence of Oxytetracycline on the Degradation and Enantioselectivity of the Chiral Pesticide Beta-Cypermethrin in Soil. Environ. Pollut. 2019, 255, 113215. [Google Scholar] [CrossRef]
- Iqbal, A.; Mukherjee, M.; Rashid, J.; Khan, S.A.; Ali, M.A.; Arshad, M. Development of Plant-Microbe Phytoremediation System for Petroleum Hydrocarbon Degradation: An Insight from Alkb Gene Expression and Phytotoxicity Analysis. Sci. Total Environ. 2019, 671, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. Evaluation of the Usefulness of Sorbents in the Remediation of Soil Exposed to the Pressure of Cadmium and Cobalt. Materials 2022, 15, 5738. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. Calorific Value of Zea mays Biomass Derived from Soil Contaminated with Chromium (VI) Disrupting the Soil’s Biochemical Properties. Energies 2023, 16, 3788. [Google Scholar] [CrossRef]
- Kulichkova, G.; Ivanova, T.; Köttner, M.; Volodko, O.; Spivak, S.; Tsygankov, S.; Blume, Y. Plant Feedstocks and Their Biogas Production Potentials. Open Agric. J. 2020, 14, 219–234. [Google Scholar] [CrossRef]
- Chomczyńska, M.; Pawłowska, M.; Szczepaniak, O.; Duma, E. Biogas Generation from Maize and Cocksfoot Growing in Degraded Soil Enriched with New Zeolite Substrate. Energies 2022, 15, 377. [Google Scholar] [CrossRef]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a Sustainable Bioeconomy: An Overview of World Biomass Production and Utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Dahiya, A. Bioenergy: Biomass to Biofuels and Waste to Energy; Academic Press: Cambridge, MA, USA, 2020; ISBN 978-0-12-815498-4. [Google Scholar]
- Margida, M.G.; Lashermes, G.; Moorhead, D.L. Estimating Relative Cellulolytic and Ligninolytic Enzyme Activities as Functions of Lignin and Cellulose Content in Decomposing Plant Litter. Soil Biol. Biochem. 2020, 141, 107689. [Google Scholar] [CrossRef]
- Silva, J.P.; Ticona, A.R.P.; Hamann, P.R.V.; Quirino, B.F.; Noronha, E.F. Deconstruction of Lignin: From Enzymes to Microorganisms. Molecules 2021, 26, 2299. [Google Scholar] [CrossRef] [PubMed]
- Błońska, E.; Piaszczyk, W.; Staszel, K.; Lasota, J. Enzymatic Activity of Soils and Soil Organic Matter Stabilization as an Effect of Components Released from the Decomposition of Litter. Appl. Soil Ecol. 2021, 157, 103723. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Kucharski, M.; Kucharski, J. Implications of Soil Pollution with Diesel Oil and BP Petroleum with ACTIVE Technology for Soil Health. Int. J. Environ. Res. Public Health 2019, 16, 2474. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. The Usability of Sorbents in Restoring Enzymatic Activity in Soils Polluted with Petroleum-Derived Products. Materials 2023, 16, 3738. [Google Scholar] [CrossRef] [PubMed]
- Goma-Tchimbakala, E.J.C.D.; Pietrini, I.; Goma-Tchimbakala, J.; Corgnati, S.P. Use of Shotgun Metagenomics to Assess the Microbial Diversity and Hydrocarbons Degrading Functions of Auto-Mechanic Workshops Soils Polluted with Gasoline and Diesel Fuel. Microorganisms 2023, 11, 722. [Google Scholar] [CrossRef] [PubMed]
- Gospodarek, J.; Rusin, M.; Barczyk, G.; Nadgórska-Socha, A. The Effect of Petroleum-Derived Substances and Their Bioremediation on Soil Enzymatic Activity and Soil Invertebrates. Agronomy 2021, 11, 80. [Google Scholar] [CrossRef]
- Bao, H.; Wang, J.; Zhang, H.; Li, J.; Li, H.; Wu, F. Effects of Biochar and Organic Substrates on Biodegradation of Polycyclic Aromatic Hydrocarbons and Microbial Community Structure in PAHs-Contaminated Soils. J. Hazard. Mater. 2020, 385, 121595. [Google Scholar] [CrossRef] [PubMed]
- Mukome, F.N.D.; Buelow, M.C.; Shang, J.; Peng, J.; Rodriguez, M.; Mackay, D.M.; Pignatello, J.J.; Sihota, N.; Hoelen, T.P.; Parikh, S.J. Biochar Amendment as a Remediation Strategy for Surface Soils Impacted by Crude Oil. Environ. Pollut. 2020, 265, 115006. [Google Scholar] [CrossRef] [PubMed]
- Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Núñez-Delgado, A.; et al. Phytotoxicity of Petroleum Hydrocarbons: Sources, Impacts and Remediation Strategies. Environ. Res. 2021, 197, 111031. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, M.-S.; Kim, J.-G.; Kim, S.-O. Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable Management. Sustainability 2020, 12, 8209. [Google Scholar] [CrossRef]
- Yang, J.; Yang, F.; Yang, Y.; Xing, G.; Deng, C.; Shen, Y.; Luo, L.; Li, B.; Yuan, H. A Proposal of “Core Enzyme” Bioindicator in Long-Term Pb-Zn Ore Pollution Areas Based on Topsoil Property Analysis. Environ. Pollut. 2016, 213, 760–769. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J. Spatial Variability of Soil Properties and Cereal Yield in a Cultivated Field on Sandy Soil. Soil Tillage Res. 2017, 174, 241–250. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Report No 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Yesmin, M.N.; Azad, M.A.K.; Kamuruzzaman, M.; Ali, S. The Potentiality of Bioethanol Production from Corn (Zea mays L.) as a Renewable Source. J. Ecobiotechnol. 2020, 12, 1–4. [Google Scholar] [CrossRef]
- Morales-Máximo, C.N.; López-Sosa, L.B.; Rutiaga-Quiñones, J.G.; Corral-Huacuz, J.C.; Aguilera-Mandujano, A.; Pintor-Ibarra, L.F.; López-Miranda, A.; Delgado-Domínguez, S.N.; Rodríguez-Magallón, M.D.C.; Morales-Máximo, M. Characterization of Agricultural Residues of Zea mays for Their Application as Solid Biofuel: Case Study in San Francisco Pichátaro, Michoacán, Mexico. Energies 2022, 15, 6870. [Google Scholar] [CrossRef]
- Grippi, D.; Clemente, R.; Bernal, M.P. Chemical and Bioenergetic Characterization of Biofuels from Plant Biomass: Perspectives for Southern Europe. Appl. Sci. 2020, 10, 3571. [Google Scholar] [CrossRef]
- Singamsetti, A.; Shahi, J.P.; Zaidi, P.H.; Seetharam, K.; Vinayan, M.T.; Kumar, M.; Singla, S.; Shikha, K.; Madankar, K. Genotype × Environment Interaction and Selection of Maize (Zea mays L.) Hybrids across Moisture Regimes. Field Crops Res. 2021, 270, 108224. [Google Scholar] [CrossRef]
- PN-EN 590:2022-08; Paliwa Do Pojazdów Samochodowych—Oleje Napędowe—Wymagania i Metody Badań. Fuels for Motor Vehicles—Diesel Oils—Requirements and Test Methods. International Standard Confirmed. International Organization for Standardization: Geneva, Switzerland, 2022.
- VERVA ON—Paliwo Premium Diesel—ORLEN. Available online: https://www.orlen.pl/pl/dla-biznesu/produkty/paliwa/oleje-napedowe/verva-on (accessed on 8 February 2024).
- Marwa, E.M.M.; Meharg, A.A.; Rice, C.M. The Effect of Heating Temperature on the Properties of Vermiculites from Tanzania with Respect to Potential Agronomic Applications. Appl. Clay Sci. 2009, 43, 376–382. [Google Scholar] [CrossRef]
- Petersen, R.R.; Christensen, J.F.S.; Jørgensen, N.T.; Gustafson, S.; Lindbjerg, L.A.; Yue, Y. Preparation and Thermal Properties of Commercial Vermiculite Bonded with Potassium Silicate. Thermochim. Acta 2021, 699, 178926. [Google Scholar] [CrossRef]
- Ma, T.; Sun, H.; Peng, T.; Zhang, Q. Transformation Process from Phlogopite to Vermiculite under Hydrothermal Conditions. Appl. Clay Sci. 2021, 208, 106094. [Google Scholar] [CrossRef]
- Szadkowski, B.; Marzec, A.; Rybiński, P.; Żukowski, W.; Zaborski, M. Characterization of Ethylene–Propylene Composites Filled with Perlite and Vermiculite Minerals: Mechanical, Barrier, and Flammability Properties. Materials 2020, 13, 585. [Google Scholar] [CrossRef]
- Jafari, F.; Khademi, H.; Shahrokh, V.; Cano, A.F.; Acosta, J.A.; Khormali, F. Biological Weathering of Phlogopite during Enriched Vermicomposting. Pedosphere 2021, 31, 440–451. [Google Scholar] [CrossRef]
- Balidakis, A.; Matsi, T.; Karagianni, A.-G.; Ipsilantis, I. Sewage Sludge Treated with Bentonite, Vermiculite or Biochar Can Improve Soil Properties and Enhance Growth of Grasses. Soil Use Manag. 2023, 39, 1403–1421. [Google Scholar] [CrossRef]
- Vasilyeva, G.; Mikhedova, E.; Zinnatshina, L.; Strijakova, E.; Akhmetov, L.; Sushkova, S.; Ortega-Calvo, J.-J. Use of Natural Sorbents for Accelerated Bioremediation of Grey Forest Soil Contaminated with Crude Oil. Sci. Total Environ. 2022, 850, 157952. [Google Scholar] [CrossRef]
- Cai, W.K.; Liu, J.H.; Zhou, C.H.; Keeling, J.; Glasmacher, U.A. Structure, Genesis and Resources Efficiency of Dolomite: New Insights and Remaining Enigmas. Chem. Geol. 2021, 573, 120191. [Google Scholar] [CrossRef]
- Guo, P.; Wen, H.; Li, C.; He, H.; Sánchez-Román, M. Lacustrine Dolomite in Deep Time: What Really Matters in Early Dolomite Formation and Accumulation? Earth-Sci. Rev. 2023, 246, 104575. [Google Scholar] [CrossRef]
- PN-EN 14780:2017; Solid Biofuels—Sample Preparation. Polish Standardization Committee: Warsaw, Poland, 2020.
- Wyszkowska, J.; Boros-Lajszner, E.; Kucharski, J. Calorific Value of Festuca Rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil. Energies 2022, 15, 3445. [Google Scholar] [CrossRef]
- Kwiatkowski, J.; Graban, Ł.; Stolarski, M.J. The Quality of Virginia Fanpetals Biomass as an Energy Source, Depending on the Type of Propagating Material and Plantation Age. Energies 2024, 17, 218. [Google Scholar] [CrossRef]
- PN-EN ISO 18125:2017-07; Solid Biofuels—Determination of Calorific Value. Polish Standardization Committee: Warsaw, Poland, 2017.
- PN-EN ISO 18122:2016-01; Solid Biofuels—Determination of Ash Content. Polish Standardization Committee: Warsaw, Poland, 2016.
- PN-EN ISO 16948:2015-07; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. Polish Standardization Committee: Warsaw, Poland, 2015.
- PN-EN ISO 16994:2016-10; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. Polish Standard-Ization Committee: Warsaw, Poland, 2016.
- PN-G-04584:2001; Solid Fuels—Determination of Total and Ash Sulfur Content with Automatic Analyzers. Polish Standardization Committee: Warsaw, Poland, 2006.
- Wyszkowska, J.; Borowik, A.; Kucharski, J. The Role of Grass Compost and Zea mays in Alleviating Toxic Effects of Tetracycline on the Soil Bacteria Community. Int. J. Environ. Res. Public Health 2022, 19, 7357. [Google Scholar] [CrossRef] [PubMed]
- Borowik, A.; Wyszkowska, J.; Wyszkowski, M. Resistance of Aerobic Microorganisms and Soil Enzyme Response to Soil Contamination with Ekodiesel Ultra Fuel. Environ. Sci. Pollut. Res. 2017, 24, 24346–24363. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. Mitigation of the Adverse Impact of Copper, Nickel, and Zinc on Soil Microorganisms and Enzymes by Mineral Sorbents. Materials 2022, 15, 5198. [Google Scholar] [CrossRef]
- Citing RStudio. Available online: https://support.posit.co/hc/en-us/articles/206212048-Citing-RStudio (accessed on 8 December 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.r-project.org (accessed on 8 February 2024).
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. Gplots: Various R Programming Tools for Plotting Data. 2022. Available online: https://rdrr.io/cran/gplots/ (accessed on 8 February 2024).
- Krzywinski, M.; Schein, J.; Birol, İ.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An Information Aesthetic for Comparative Genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
- Tibco Software Inc. Statistica, Version 13; Data Analysis Software System; Tibco Software Inc.: Palo Alto, CA, USA, 2021; Available online: http://statistica.io (accessed on 10 July 2023).
- Esteves, B.; Sen, U.; Pereira, H. Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis. Energies 2023, 16, 4226. [Google Scholar] [CrossRef]
- Puri, L.; Hu, Y.; Naterer, G. Critical Review of the Role of Ash Content and Composition in Biomass Pyrolysis. Front. Fuels 2024, 2, 1378361. [Google Scholar] [CrossRef]
- Melikoglu, M.; Ozdemir, M.; Ates, M. Pyrolysis Kinetics, Physicochemical Characteristics and Thermal Decomposition Behavior of Agricultural Wastes Using Thermogravimetric Analysis. Energy Nexus 2023, 11, 100231. [Google Scholar] [CrossRef]
- Shahbeik, H.; Kazemi Shariat Panahi, H.; Dehhaghi, M.; Guillemin, G.J.; Fallahi, A.; Hosseinzadeh-Bandbafha, H.; Amiri, H.; Rehan, M.; Raikwar, D.; Latine, H.; et al. Biomass to Biofuels Using Hydrothermal Liquefaction: A Comprehensive Review. Renew. Sustain. Energy Rev. 2024, 189, 113976. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Varsha Vuppaladadiyam, S.S.; Sikarwar, V.S.; Ahmad, E.; Pant, K.K.; Murugavel, S.; Pandey, A.; Bhattacharya, S.; Sarmah, A.; Leu, S.-Y. A Critical Review on Biomass Pyrolysis: Reaction Mechanisms, Process Modeling and Potential Challenges. J. Energy Inst. 2023, 108, 101236. [Google Scholar] [CrossRef]
- Allende, S.; Brodie, G.; Jacob, M.V. Breakdown of Biomass for Energy Applications Using Microwave Pyrolysis: A Technological Review. Environ. Res. 2023, 226, 115619. [Google Scholar] [CrossRef] [PubMed]
- Boros-Lajszner, E.; Wyszkowska, J.; Borowik, A.; Kucharski, J. Energetic Value of Elymus elongatus L. and Zea mays L. Grown on Soil Polluted with Ni2+, Co2+, Cd2+, and Sensitivity of Rhizospheric Bacteria to Heavy Metals. Energies 2021, 14, 4903. [Google Scholar] [CrossRef]
- Sobol, Ł.; Wolski, K.; Radkowski, A.; Piwowarczyk, E.; Jurkowski, M.; Bujak, H.; Dyjakon, A. Determination of Energy Parameters and Their Variability between Varieties of Fodder and Turf Grasses. Sustainability 2022, 14, 11369. [Google Scholar] [CrossRef]
- Waliszewska, B.; Grzelak, M.; Gaweł, E.; Spek-Dźwigała, A.; Sieradzka, A.; Czekała, W. Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes. Energies 2021, 14, 1669. [Google Scholar] [CrossRef]
- Cî Cîrlig, N.; Țîței, V.; Iurcu-Străistaru, E.; Guțu, A.; Cozari, S.; Teleuță, A.; Gudîma, A.; Nazar, B.; Covalciuc, D. Some Physiological Features and the Productivity of the Energy Crops Miscanthus X Giganteus and Sorghum Almum under the Conditions of the Republic of Moldova. Symp. Agric. Food Eng. 2022, 65, 103–108. [Google Scholar]
- Stolarski, M.; Krzyżaniak, M.; Śnieg, M.; Słomińska, E.; Piórkowski, M.; Filipkowski, R. Thermophysical and Chemical Properties of Perennial Energy Crops Depending on Harvest Period. Int. Agrophysics 2014, 28, 201–211. [Google Scholar] [CrossRef]
- Papamatthaiakis, N.; Laine, A.; Haapala, A.; Ikonen, R.; Kuittinen, S.; Pappinen, A.; Kolström, M.; Mola-Yudego, B. New Energy Crop Alternatives for Northern Europe: Yield, Chemical and Physical Properties of Giant Knotweed (Fallopia Sachalinensis Var. ‘Igniscum’) and Virginia Mallow (Sida Hermaphrodita). Fuel 2021, 304, 121349. [Google Scholar] [CrossRef]
- Bilgili, M.E. Exploitable Potential of Biomass Energy in Electrical Energy Production in the Mediterranean Region of Turkey. J. Agric. Sci. 2022, 28, 666–676. [Google Scholar] [CrossRef]
- Chandel, R.; Narang, M.K.; Thakur, S.S.; Chandel, R.; Narang, M.K.; Thakur, S.S. Scaling Mechanization and Profitability in Maize Cultivation through Innovative Maize Planters along with Agroforestry Approach: Sustainable and Climate Smart Approach to Diversify Rice Based Cereal Systems in Various Regions. In New Prospects of Maize; IntechOpen: London, UK, 2023; ISBN 978-1-83768-632-2. [Google Scholar]
- Shakouri, M.; Exstrom, C.L.; Ramanathan, S.; Suraneni, P.; Vaux, J.S. Pretreatment of Corn Stover Ash to Improve Its Effectiveness as a Supplementary Cementitious Material in Concrete. Cem. Concr. Compos. 2020, 112, 103658. [Google Scholar] [CrossRef]
- Pinto, C.W.; Barth, G.; Molin, R.; Silva, D.A.D.; Pauletti, V. Characterization of oat biomass for energy production. Rev. Caatinga 2021, 34, 537–547. [Google Scholar] [CrossRef]
- Qu, J.; Xue, J.; Sun, M.; Li, K.; Wang, J.; Zhang, G.; Wang, L.; Jiang, Z.; Zhang, Y. Superefficient Non-Radical Degradation of Benzo[a]Pyrene in Soil by Fe-Biochar Composites Activating Persulfate. Chem. Eng. J. 2024, 481, 148585. [Google Scholar] [CrossRef]
- Korpaniuk, T.; Ishchenko, Y.; Koval, N. Backgrounds for Improving Resource Management of Agricultural Enterprises Based on Economic Diagnostics of Biofuel Consumption. J. Soc. Sci. Res. 2019, 5, 367–380. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Przybył, J.; Czajkowski, Ł.; Majka, J.; Pawłowski, A. Effects of Harvest Maturity on the Chemical and Energetic Properties of Corn Stover Biomass Combustion. Materials 2022, 15, 2831. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, M.A.; Adetifa, B.O.; Adekomaya, S.; Lawal, N.S.; Adama, O. Experimental Characterization of Maize Cob and Stalk-Based Pellets for Energy Use. Eng. J. 2019, 23, 117–128. [Google Scholar] [CrossRef]
- Yahya, A.M.; Adeleke, A.A.; Nzerem, P.; Ikubanni, P.P.; Ayuba, S.; Rasheed, H.A.; Gimba, A.; Okafor, I.; Okolie, J.A.; Paramasivam, P. Comprehensive Characterization of Some Selected Biomass for Bioenergy Production. ACS Omega 2023, 8, 43771–43791. [Google Scholar] [CrossRef] [PubMed]
- Baldelli, M.; Bartolucci, L.; Cordiner, S.; D’Andrea, G.; De Maina, E.; Mulone, V. Biomass to H2: Evaluation of the Impact of PV and TES Power Supply on the Performance of an Integrated Bio-Thermo-Chemical Upgrading Process for Wet Residual Biomass. Energies 2023, 16, 2966. [Google Scholar] [CrossRef]
- Galhano dos Santos, R.; Bordado, J.C.; Mateus, M.M. Estimation of HHV of Lignocellulosic Biomass towards Hierarchical Cluster Analysis by Euclidean’s Distance Method. Fuel 2018, 221, 72–77. [Google Scholar] [CrossRef]
- Morissette, R.; Savoie, P.; Villeneuve, J. Combustion of Corn Stover Bales in a Small 146-kW Boiler. Energies 2011, 4, 1102–1111. [Google Scholar] [CrossRef]
- Kvesitadze, G.; Khatisashvili, G.; Sadunishvili, T.; Kvesitadze, E. Plants for Remediation: Uptake, Translocation and Transformation of Organic Pollutants. In Plants, Pollutants and Remediation; Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M.S.A., Hakeem, K.R., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 241–308. ISBN 978-94-017-7194-8. [Google Scholar]
- Bakina, L.G.; Polyak, Y.M.; Gerasimov, A.O.; Mayachkina, N.V.; Chugunova, M.V.; Khomyakov, Y.V.; Vertebny, V.A. Mutual Effects of Crude Oil and Plants in Contaminated Soil: A Field Study. Environ. Geochem. Health 2022, 44, 69–82. [Google Scholar] [CrossRef]
- Hussein, Z.; Hamido, N.; Hegazy, A.; El-Dessouky, M.; Mohamed, N.; Safwat, G. Phytoremediation of Crude Petroleum Oil Pollution: A Review. Egypt. J. Bot. 2022, 62, 611–640. [Google Scholar] [CrossRef]
- Huang, J.; Fisher, P.R.; Argo, W.R. Container Substrate-pH Response to Differing Limestone Type and Particle Size. HortScience 2007, 42, 1268–1273. [Google Scholar] [CrossRef]
- von Wilpert, K.; Lukes, M. Ecochemical Effects of Phonolite Rock Powder, Dolomite and Potassium Sulfate in a Spruce Stand on an Acidified Glacial Loam. Nutr. Cycl. Agroecosyst. 2003, 65, 115–127. [Google Scholar] [CrossRef]
- Wu, H.; Hu, J.; Shaaban, M.; Xu, P.; Zhao, J.; Hu, R. The Effect of Dolomite Amendment on Soil Organic Carbon Mineralization Is Determined by the Dolomite Size. Ecol. Process. 2021, 10, 8. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Chong, K.P. Effects of Liming on Soil Properties and Its Roles in Increasing the Productivity and Profitability of the Oil Palm Industry in Malaysia. Agriculture 2022, 12, 322. [Google Scholar] [CrossRef]
- Ptáček, P.; Šoukal, F.; Opravil, T. Thermal Decomposition of Ferroan Dolomite: A Comparative Study in Nitrogen, Carbon Dioxide, Air and Oxygen. Solid State Sci. 2021, 122, 106778. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, Z.; Wang, G.; Lou, G.; Liu, X. Kinetic Analyses of Coke Combustion and Thermal Decompositions of Limestone and Dolomite Based on the Sintering Atmosphere. Fuel 2021, 289, 119870. [Google Scholar] [CrossRef]
- Filep, T.; Kincses, I.; Nagy, P. Dissolved Organic Carbon (Doc) and Dissolved Organic Nitrogen (Don) Content of an Arenosol as Affected by Liming in a Pot Experiment. Arch. Agron. Soil Sci. 2003, 49, 111–117. [Google Scholar] [CrossRef]
- Polyak, Y.M.; Bakina, L.G.; Mayachkina, N.V.; Chugunova, M.V.; Bityutskii, N.P.; Yakkonen, K.L.; Shavarda, A.L. Long-Term Effects of Oil Contamination on Soil Quality and Metabolic Function. Environ. Geochem. Health 2023, 46, 13. [Google Scholar] [CrossRef] [PubMed]
- Adipah, S. Introduction of Petroleum Hydrocarbons Contaminants and Its Human Effects. J. Environ. Sci. Public Health 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Macci, C.; Peruzzi, E.; Doni, S.; Masciandaro, G. Monitoring of a Long Term Phytoremediation Process of a Soil Contaminated by Heavy Metals and Hydrocarbons in Tuscany. Environ. Sci. Pollut. Res. 2020, 27, 424–437. [Google Scholar] [CrossRef] [PubMed]
- Dindar, E.; Topaç Şağban, F.O.; Başkaya, H.S. Variations of Soil Enzyme Activities in Petroleum-Hydrocarbon Contaminated Soil. Int. Biodeterior. Biodegrad. 2015, 105, 268–275. [Google Scholar] [CrossRef]
- Hewelke, E.; Szatyłowicz, J.; Hewelke, P.; Gnatowski, T.; Aghalarov, R. The Impact of Diesel Oil Pollution on the Hydrophobicity and CO2 Efflux of Forest Soils. Water. Air. Soil Pollut. 2018, 229, 51. [Google Scholar] [CrossRef]
- Jakubauskaite, V.; Zukauskaite, A.; Kryzevicius, Z.; Khan, M.J.H. Model-Centric Optimisation of Biochemical Remediation of Petroleum Hydrocarbon Contaminated Soil. Soil Use Manag. 2024, 40, e12983. [Google Scholar] [CrossRef]
- Kim, P.-G.; Tarafdar, A.; Kwon, J.-H. Effect of Soil pH on the Sorption Capacity of Soil Organic Matter for Polycyclic Aromatic Hydrocarbons in Unsaturated Soils. Pedosphere 2023, 33, 365–371. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Kucharski, J.; Wałdowska, E. The Influence of Diesel Oil Contamination on Soil Enzymes Activity. Rostl. Vyroba 2002, 48, 58–62. [Google Scholar] [CrossRef]
- Moeskops, B.; Sukristiyonubowo; Buchan, D.; Sleutel, S.; Herawaty, L.; Husen, E.; Saraswati, R.; Setyorini, D.; De Neve, S. Soil Microbial Communities and Activities under Intensive Organic and Conventional Vegetable Farming in West Java, Indonesia. Appl. Soil Ecol. 2010, 45, 112–120. [Google Scholar] [CrossRef]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil Enzyme Activity: A Brief History and Biochemistry as a Basis for Appropriate Interpretations and Meta-Analysis. Biol. Fertil. Soils 2018, 54, 11–19. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Wolny-Koładka, K.; Gondek, K.; Gałązka, A.; Gawryjołek, K. Effect of Coapplication of Biochar and Nutrients on Microbiocenotic Composition, Dehydrogenase Activity Index and Chemical Properties of Sandy Soil. Waste Biomass Valorization 2020, 11, 3911–3923. [Google Scholar] [CrossRef]
- Piotrowska-Długosz, A.; Długosz, J.; Kalisz, B.; Gąsiorek, M. Soil Microbial and Enzymatic Properties in Luvisols as Affected by Different Types of Agricultural Land-Use Systems and Soil Depth. Agronomy 2024, 14, 83. [Google Scholar] [CrossRef]
- Yu, M.; Wu, M.; Secundo, F.; Liu, Z. Detection, Production, Modification, and Application of Arylsulfatases. Biotechnol. Adv. 2023, 67, 108207. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, M.; Wu, L.; Peng, Q.; van Zwieten, L.; Chhajro, M.A.; Wu, Y.; Lin, S.; Ahmed, M.M.; Khalid, M.S.; Abid, M.; et al. Influence of Ameliorating Soil Acidity with Dolomite on the Priming of Soil C Content and CO2 Emission. Environ. Sci. Pollut. Res. 2017, 24, 9241–9250. [Google Scholar] [CrossRef]
- Zainab, R.; Hasnain, M.; Ali, F.; Dias, D.A.; El-Keblawy, A.; Abideen, Z. Exploring the Bioremediation Capability of Petroleum-Contaminated Soils for Enhanced Environmental Sustainability and Minimization of Ecotoxicological Concerns. Environ. Sci. Pollut. Res. 2023, 30, 104933–104957. [Google Scholar] [CrossRef] [PubMed]
- Kanungo, J.; Sahoo, T.; Bal, M.; Behera, I.D. Performance of Bioremediation Strategy in Waste Lubricating Oil Pollutants: A Review. Geomicrobiol. J. 2024, 41, 360–373. [Google Scholar] [CrossRef]
- Varjani, S.J.; Upasani, V.N. A New Look on Factors Affecting Microbial Degradation of Petroleum Hydrocarbon Pollutants. Int. Biodeterior. Biodegrad. 2017, 120, 71–83. [Google Scholar] [CrossRef]
Objects | Aerial Parts (Ya) | Roots (Yr) | Ya/Yr | Greenness Index (SPAD) 6th Leaf Phase |
---|---|---|---|---|
g dm of Pot−1 | ||||
C | 75.000 a | 17.133 a | 4.378 | 36.916 bc |
V | 72.668 b | 13.970 b | 5.202 | 40.309 ab |
D | 75.859 a | 11.247 c | 6.745 | 43.472 a |
DO | 8.563 c | 2.779 d | 3.081 | 33.659 cd |
V_DO | 9.663 c | 2.399 d | 4.028 | 34.375 cd |
D_DO | 6.049 d | 1.452 d | 4.166 | 33.266 d |
Objects * | Heat of Combustion | Heating Value | Energy Yield of Plant Biomass MJ kg−1 |
---|---|---|---|
MJ kg−1 Air-Dry Matter Plants | |||
C | 18.710 bc | 15.115 bc | 0.354 b |
V | 18.769 b | 15.163 b | 0.344 c |
D | 19.250 a | 15.563 a | 0.369 a |
DO | 18.624 d | 15.043 d | 0.040 e |
V_DO | 18.688 c | 15.096 c | 0.046 d |
D_DO | 18.599 d | 15.022 d | 0.028 f |
Objects * | Ash | Carbon (C) | Hydrogen (H) | Sulfur (S) | Nitrogen (N) | Oxygen (O) |
---|---|---|---|---|---|---|
% d.m. | ||||||
C | 4.97 c | 51.12 a | 5.73 a | 0.09 de | 2.04 e | 36.04 a |
V | 4.97 c | 51.32 a | 5.79 a | 0.08 e | 1.94 f | 35.90 a |
D | 5.71 b | 50.87 a | 5.54 a | 0.10 d | 2.68 d | 35.10 b |
DO | 8.51 a | 48.33 c | 5.66 a | 0.33 a | 3.39 b | 33.78 c |
V_DO | 8.48 a | 47.85 c | 5.55 a | 0.29 b | 3.24 c | 34.59 b |
D_DO | 8.39 a | 49.79 b | 5.60 a | 0.15 c | 4.09 a | 31.98 d |
Plants | Heating Values MJ kg−1 Air-Dry Matter Plants | References |
---|---|---|
Elymus elongatus | 15.05–16.89 | [25,83] |
Festuca rubra | 16.31–17.69 | [25,80] |
Festuca pratensis | 16.55–17.17 | [84] |
Lolium perenne | 17.59–17.70 | [84] |
Phleum pratense | 17.80–17.86 | [84] |
Poa pratensis | 16.69–17.78 | [84] |
Dacylis glomerata | 16.13 | [85] |
Sorghum almum | 17.30–17.45 | [86] |
Miscathus × giganteus | 18.99–19.20 | [86] |
Spartina pectinate | 19.09 | [87] |
Reynoutria sachalinensis | 19.02–19.97 | [87,88] |
Triticum aestivum | 19.90 | [89] |
Zea mays | 17.00–18.75 | [89,90,91] |
Hordeum vulgare | 17.050 | [89] |
Secale cereale | 17.050 | [89] |
Avena sativa | 17.40–18.40 | [89,92] |
Glycine max | 19.40 | [89] |
Oryza sativa | 14.50 | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowik, A.; Wyszkowska, J.; Zaborowska, M.; Kucharski, J. Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil. Energies 2024, 17, 2552. https://doi.org/10.3390/en17112552
Borowik A, Wyszkowska J, Zaborowska M, Kucharski J. Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil. Energies. 2024; 17(11):2552. https://doi.org/10.3390/en17112552
Chicago/Turabian StyleBorowik, Agata, Jadwiga Wyszkowska, Magdalena Zaborowska, and Jan Kucharski. 2024. "Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil" Energies 17, no. 11: 2552. https://doi.org/10.3390/en17112552
APA StyleBorowik, A., Wyszkowska, J., Zaborowska, M., & Kucharski, J. (2024). Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil. Energies, 17(11), 2552. https://doi.org/10.3390/en17112552