Evaluation of Lateral Sealing of Faults Based on Porosity: A Case Study of the F1 Fault of the Nanpu No. 5 Structure in the Nanpu Sag
Abstract
:1. Introduction
2. Geological Setting
3. Methods
3.1. Mechanism of Fault Lateral Sealing and Its Influencing Factors
3.2. Method for Evaluating Lateral Sealing of Faults
4. Results
4.1. Evaluation of Lateral Sealing of the F1 Fault
4.2. Relationship between Lateral Sealing of the F1 Fault and Oil and Water Distribution
5. Discussion
6. Conclusions
- (1)
- The lateral sealing of faults can be evaluated by comparing the porosity of fault rocks and reservoir rocks. If the difference between the two is greater than 0, the faults are laterally closed, and vice versa;
- (2)
- The porosity of the lower Ed2 reservoir rocks ranges from 3.23% to 4.65%, while that of the F1 Fault rocks in lower Ed2 ranges from 3.10% to 3.77%. The F1 Fault remains open laterally at lines L1~L3 but is closed at lines L4~L10, which is consistent with the oil and water distribution in the sand bodies of lower Ed2 near the F1 Fault;
- (3)
- The method is primarily applicable to the evaluation of lateral sealing of faults with developed fault rocks in clastic strata dominated by mechanical compaction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Xie, X.N.; Jiang, T.; Liu, X.F. Hydrocarbon migration and accumulation along a long-term growth fault: Example from the BZ25-1 oilfield of Bohai basin, eastern China. J. Geochem. Explor. 2006, 89, 460–464. [Google Scholar] [CrossRef]
- Xu, C.G.; Peng, J.S.; Wu, Q.X.; Sun, Z.; Ye, T. Vertical dominant migration channel and hydrocarbon migration in the complex fault zone, Bohai Bay sag, China. Pet. Explor. Dev. 2019, 46, 720–728. [Google Scholar] [CrossRef]
- Needham, T.; Li, A.; Carr, C. Faulting and fault sealing in the TAGI Formation of the Ourhoud Field, Algeria. Pet. Geosci. 2008, 14, 379–388. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, K.Y.; Wang, X.; Pei, Y.W.; Liu, B.; Guo, J.X. Geochemical characteristics of fault core and damage zones of the Hong-Che Fault Zone of the Junggar Basin (NW China) with implications for the fault sealing process. J. Asian Earth Sci. 2017, 143, 141–155. [Google Scholar] [CrossRef]
- Wen, Z.; Fu, X.F.; Lü, Y.F. Evaluation of fault seal and hydrocarbon potential prediction of fault traps. J. Cent. South Univ. (Sci. Technol.) 2016, 47, 1209–1218. [Google Scholar] [CrossRef]
- Fu, X.F.; Song, X.Q.; Wang, H.X.; Liu, H.T.; Wang, S.Y.; Meng, L.D. Comprehensive evaluation on hydrocarbon-bearing availability of fault traps in a rift basin: A case study of the Qikou sag in the Bohai Bay Basin, China. Pet. Explor. Dev. 2021, 48, 787–797. [Google Scholar] [CrossRef]
- Fisher, Q.J.; Knipe, R.J. The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf. Mar. Pet. Geol. 2001, 18, 1063–1081. [Google Scholar] [CrossRef]
- Fu, X.F.; Pan, G.Q.; He, X.Y.; Xuan, C.J.; Lü, Y.J. Lateral sealing of faults for shallow biogas in Heidimiao Formation of the southern Daqing placanticlin. Acta Pet. Sin. 2009, 30, 678–684. [Google Scholar] [CrossRef]
- Allan, U.S. Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bull. 1989, 73, 803–811. [Google Scholar] [CrossRef]
- Knipe, R.J. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs. AAPG Bull. 1997, 81, 187–195. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, G.; Sun, Y.H.; Sun, T.W.; Zhou, J.; Zhang, D.W. Comprehensive evaluation of fault lateral sealing ability in Qijia-Yuanyanggou area, Liaohe depression. J. Cent. South Univ. (Sci. Technol.) 2012, 43, 1394–1404. [Google Scholar]
- Wang, C.; Fu, G.; Dong, Y.J.; Yang, D.X.; Cao, L.Z.; Hu, X.L. SGR algorithm-based improvement of fault lateral sealing evaluation method and its application. Acta Geol. Sin. 2017, 91, 1641–1650. [Google Scholar] [CrossRef]
- Hu, X.L.; Lyu, Y.F. Improvement of lateral sealing evaluation of faults based on SGR threshold. J. China Univ. Min. Technol. 2019, 48, 1330–1342. [Google Scholar] [CrossRef]
- Lei, C.; Yuan, X.T.; Yang, X.Y.; Xu, Q.Y.; Wang, M.; She, J.F. Quantitative characterization of fault lateral sealing capacity based on 3-D SGR model-A case from M field, Niger. Oil Gas Geol. 2019, 40, 1317–1323. [Google Scholar] [CrossRef]
- Lü, Y.F.; Huang, J.S.; Fu, G.; Fu, X.F. Quantitative study on fault sealing ability in sandstone and mudstone thin interbed. Acta Pet. Sin. 2009, 30, 824–829. [Google Scholar] [CrossRef]
- Song, G.Q.; Xiang, L.H.; Hao, X.F.; Shang, B.; Ning, F.X.; Huang, R. Quantitatively forecasting on lateral sealing performance of fault by displacement pressure method-case of Jiyang depression. Pet. Geol. Recovery Effic. 2011, 18, 1–3+111. [Google Scholar] [CrossRef]
- Lyu, Y.F.; Wang, W.; Hu, X.L.; Fu, G.; Shi, J.J.; Wang, C.; Liu, Z.; Jiang, W.Y. Quantitative evaluation method of fault lateral sealing. Pet. Explor. Dev. 2016, 43, 340–347. [Google Scholar] [CrossRef]
- Li, Q.; Tian, X.P.; He, J.; Jia, H.S.; Zhang, G.K. Quantitative characterization of fault sealing and its control on hydrocarbon accumulation. J. Southwest Pet. Univ. Sci. Technol. Ed. 2018, 40, 40–50. [Google Scholar] [CrossRef]
- Fu, G.; Shi, J.J.; Lyu, Y.F. Study of ancient displacement pressure of fault rock recovery and its sealing characteristics. J. China Univ. Min. Technol. 2013, 42, 996–1001. [Google Scholar] [CrossRef]
- Fu, G.; Wang, M.C.; Li, S.Z. A method for determining the sealing capacity evolution stage of fault rocks and its application. Nat. Gas Ind. 2017, 37, 11–16. [Google Scholar] [CrossRef]
- Wang, S.Q.; Xian, B.Z.; Wan, J.F.; Li, Z.P.; Yu, Q.C. Reservoir characteristics and controlling factors in the offshore areas the Eocene period of the Nanpu sag. J. Northeast Pet. Univ. 2015, 39, 54–62+87+9. [Google Scholar] [CrossRef]
- Liang, M.G.; Fu, G.; Li, Q.Q.; Guo, H.Y.; Zhang, B.W. Fault evolution and its effect on the sealing ability of mudstone cap rocks. Energies 2022, 15, 7676. [Google Scholar] [CrossRef]
- Peng, Q.H.; Zhou, J.Y.; Jie, Y.X. Erosion thickness restoration of Dongying Formation reservoir in Nanpu Depression by using interval transit time method. Fault Block Oil Gas Field 2009, 16, 50–53. [Google Scholar]
- Xian, B.Z.; Wan, J.F.; Dong, Y.L.; Ma, Q.; Zhang, J.G. Sedimentary characteristics, origin and model of lacustrine deepwater massive sandstone: An example from Dongying Formation in Nanpu depression. Acta Petrol. Sin. 2013, 29, 3287–3299. [Google Scholar]
- Wang, E.Z.; Liu, G.Y.; Pang, X.Q.; Wu, Z.Y.; Li, C.R.; Bai, H.; Zhang, Z.H. Sedimentology, diagenetic evolution, and sweet spot prediction of tight sandstone reservoirs: A case study of the third member of the Upper Paleogene Shahejie Formation, Nanpu Sag, Bohai Bay Basin, China. J. Pet. Sci. Eng. 2020, 186, 106718. [Google Scholar] [CrossRef]
- Zhang, L.; Xiang, C.F.; Dong, Y.X.; Zhang, M.Y.; Lyu, Y.; Zhao, Z.X.; Long, H.S.; Chen, S. Abnormal pressure system and its origin in the Nanpu Sag, Bohai Bay Basin. Oil Gas Geol. 2018, 39, 664–675. [Google Scholar] [CrossRef]
- Xia, J.S.; Liu, X.H.; Wang, Z.J.; Wen, W.; Tang, X.Y. Sedimentary characteristics of sandy debris flow in the 3rd Member of Dongying Formation and the 1st Member of Shahejie Formation of the western Nanpu sag, Bohai Bay Basin and its significance in hydrocarbon exploration. Acta Pet. Sin. 2017, 38, 399–413. [Google Scholar] [CrossRef]
- Caine, J.S.; Evans, J.P.; Forster, C.B. Fault zone architecture and permeability structure. Geology 1996, 24, 1025–1028. [Google Scholar] [CrossRef]
- Liu, G.D. Petroleum Geology, 5th ed.; Petroleum Industry Press: Beijing, China, 2018; pp. 43–44. [Google Scholar]
- Dzevanshir, R.D.; Buryakovskiy, L.A.; Chilingarian, G.V. Simple quantitative evaluation of porosity of argillaceous sediments at various depths of burial. Sediment. Geol. 1986, 46, 169–175. [Google Scholar] [CrossRef]
- Sha, Z.X.; Sun, Y.; Wen, Q.; Yu, D. Prediction method and its application for burial depth of fault rock compaction diagenesis in sandstone and shale strata. Fault Block Oil Gas Field 2022, 29, 654–658. [Google Scholar]
- Wu, G.P.; Su, J.Y.; Cheng, S.; Huang, J.Z. A method for obtaining shaliness using Wiener Filtering based on logging data natural gamma ray. Earth Sci. 2008, 33, 572–576. [Google Scholar] [CrossRef]
- Yielding, G.; Freeman, B.; Needham, D.T. Quantitative fault seal prediction. AAPG Bull. 1997, 81, 897–917. [Google Scholar] [CrossRef]
- Tan, K.J.; Wei, P.S.; Lü, X.M.; Mu, Z.H. Research on quantitative resumption method of stratum paleothickness and its application–Taking Ludong area in Zhunge’er Basin as an example. Nat. Gas Ind. 2005, 25, 48–50+59+9. [Google Scholar]
- Torabi, A.; Balsamo, F.; Nogueira, F.C.C.; Vasconcelos, D.L.; Silva, A.C.E.; Bezerra, F.H.R.; Souza, J.A.B. Variation of thickness, internal structure and petrophysical properties in a deformation band fault zone in siliciclastic rocks. Mar. Pet. Geol. 2021, 133, 105297. [Google Scholar] [CrossRef]
- Silva, M.E.; Nogueira, F.C.C.; Pérez, Y.A.R.; Vasconcelos, D.L.; Stohler, R.C.; Sanglard, J.C.D.; Balsamo, F.; Bezerra, F.H.R.; Carvalho, B.R.B.M.; Souza, J.A.B. Permeability modeling of a basin-bounding fault damage zone in the Rio do Peixe Basin, Brazil. Mar. Pet. Geol. 2022, 135, 105409. [Google Scholar] [CrossRef]
Well Name | Stratum | Burial Depth/m | Shale Content | Porosity/% | Well Name | Stratum | Burial Depth/m | Shale Content | Porosity/% |
---|---|---|---|---|---|---|---|---|---|
B10 | Ed3 | 3383.87 | 0.48 | 2.5 | M11 | Ed1 | 2362.9 | 0.51 | 7.3 |
B13 | Ed1 | 2707.31 | 0.28 | 3.1 | M15 | Ed1 | 2807.9 | 0.41 | 8.1 |
B22 × 1 | Es1 | 4061.8 | 0.58 | 1.9 | M17-1 | Ed1 | 2723.85 | 0.19 | 7 |
B3 | Ed1 | 2776.61 | 0.64 | 5.9 | M22 | Ng | 2066.01 | 0.13 | 10.1 |
B32 × 1 | Ng | 1946.45 | 0.1 | 12.1 | M24 | Ed1 | 2303 | 0.5 | 9 |
B5 | Es1 | 4219.4 | 0.36 | 3 | M28 × 1 Deep | Ed3 | 3268.6 | 0.59 | 3.9 |
B6 | Ed2 | 3196.3 | 0.47 | 3.4 | M28 × 1 Shallow | Ed2 | 2813.3 | 0.36 | 4.7 |
B6 × 1 | Ed2 | 3093.5 | 0.32 | 1 | M30 | Ed1 | 2355.01 | 0.3 | 5.7 |
B7 | Ed3 | 3597.58 | 0.39 | 5.8 | M38 × 1 | Ed3 | 3318.7 | 0.49 | 1.9 |
G23 | Es3 | 3119.2 | 0.26 | 4.6 | M5 | Ed2 | 2768.36 | 0.51 | 5.4 |
G3104 | Es3 | 3637.13 | 0.24 | 3.6 | M7 | Ng | 1891 | 0.23 | 15.8 |
G3106 | Es3 | 3899.5 | 0.37 | 1.2 | NP1 | Es1 | 4244.6 | 0.44 | 0.5 |
G4 | Es3 | 2663.9 | 0.33 | 2.5 | NP1-22 | Ng | 2696.38 | 0.25 | 6.4 |
G62 | Es3 | 4054.6 | 0.35 | 1.4 | NP1-4 | Ed3 | 3386.72 | 0.52 | 2 |
L12 | Es3 | 3557.05 | 0.17 | 3.3 | NP206 | Ed1 | 2540.68 | 0.14 | 9.8 |
L15 | Es3 | 2633.49 | 0.46 | 7.3 | NP4-51 Deep | Es1 | 3745.48 | 0.42 | 1.2 |
L21-2 | Nm | 1730.1 | 0.08 | 22.6 | NP4-51 Shallow | Ed1 | 2449.79 | 0.55 | 5.1 |
L21-5 | Es3 | 3110.31 | 0.26 | 5.4 | NP509 | Ed3 | 3221.86 | 0.14 | 11.2 |
LP1 Deep | Ed2 | 3055.5 | 0.07 | 8 | NP5-10 | Ed3 | 3320 | 0.32 | 4.1 |
LPN1 | Ed1 | 2647.4 | 0.06 | 12.8 | NP5-6 | Ed3 | 3445.05 | 0.57 | 2.7 |
M1 | Ed2 | 3432.04 | 0.66 | 0.5 | NP5 × 6 | Ed3 | 3447.9 | 0.31 | 2.5 |
M10 | Ed2 | 2678.7 | 0.3 | 5.9 | PG1 | Es1 | 3272.14 | 0.57 | 1.8 |
M108 × 1 | Ed3 | 3345.3 | 0.46 | 3.3 |
Line Number | Burial Depth/m | Reservoir Rock | Fault Rock | Porosity Difference/% | ||
---|---|---|---|---|---|---|
Shale Content | Porosity/% | Shale Content | Porosity/% | |||
L1 | 3172 | 0.35 | 3.47 | 0.42 | 3.77 | −0.30 |
L2 | 3141 | 0.33 | 3.63 | 0.44 | 3.70 | −0.07 |
L3 | 3132 | 0.33 | 3.63 | 0.43 | 3.76 | −0.13 |
L4 | 3137 | 0.29 | 4.09 | 0.43 | 3.76 | 0.33 |
L5 | 3128 | 0.29 | 4.08 | 0.46 | 3.58 | 0.49 |
L6 | 3150 | 0.25 | 4.65 | 0.49 | 3.34 | 1.31 |
L7 | 3139 | 0.29 | 4.05 | 0.51 | 3.27 | 0.78 |
L8 | 3136 | 0.34 | 3.60 | 0.50 | 3.33 | 0.28 |
L9 | 3162 | 0.38 | 3.23 | 0.53 | 3.10 | 0.13 |
L10 | 3180 | 0.30 | 3.91 | 0.52 | 3.14 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yu, Y.; Zhang, Y.; Yuan, H. Evaluation of Lateral Sealing of Faults Based on Porosity: A Case Study of the F1 Fault of the Nanpu No. 5 Structure in the Nanpu Sag. Energies 2024, 17, 2468. https://doi.org/10.3390/en17112468
Zhang Y, Yu Y, Zhang Y, Yuan H. Evaluation of Lateral Sealing of Faults Based on Porosity: A Case Study of the F1 Fault of the Nanpu No. 5 Structure in the Nanpu Sag. Energies. 2024; 17(11):2468. https://doi.org/10.3390/en17112468
Chicago/Turabian StyleZhang, Yuwei, Yinghua Yu, Yaxiong Zhang, and Hongqi Yuan. 2024. "Evaluation of Lateral Sealing of Faults Based on Porosity: A Case Study of the F1 Fault of the Nanpu No. 5 Structure in the Nanpu Sag" Energies 17, no. 11: 2468. https://doi.org/10.3390/en17112468
APA StyleZhang, Y., Yu, Y., Zhang, Y., & Yuan, H. (2024). Evaluation of Lateral Sealing of Faults Based on Porosity: A Case Study of the F1 Fault of the Nanpu No. 5 Structure in the Nanpu Sag. Energies, 17(11), 2468. https://doi.org/10.3390/en17112468