Techno-Economic Assessment of a Full-Chain Hydrogen Production by Offshore Wind Power
Abstract
:1. Introduction
2. Methods
2.1. Economic Model
2.2. Hydrogen Production
2.3. Hydrogen Delivery
2.4. Hydrogen Distribution
2.5. Submarine Cable
3. Results
3.1. Economic Performance of Hydrogen Supply Chain Stages
3.2. The Cost of Different Energy Supply Chains
3.3. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Phrase | Abbreviations |
Alkaline electrolyzer | AE |
Proton exchange membrane electrolysis | PEME |
Reverse osmosis membrane | RO |
Ion exchange | IX |
Toluene-methylcyclohexane | TOL-MCH |
Dibenzyltoluene-perhydro-dibenzyltoluene | H0DBT-H18DBT |
Levelized cost of hydrogen | LCOH |
Operation and maintenance | O&M |
High voltage alternating current | HVAC |
Low-frequency alternating current | LFAC |
High voltage direct current | HVDC |
References
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Designing the next Generation of Proton-Exchange Membrane Fuel Cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Tashie-Lewis, B.C.; Nnabuife, S.G. Hydrogen Production, Distribution, Storage and Power Conversion in a Hydrogen Economy—A Technology Review. Chem. Eng. J. Adv. 2021, 8, 100172. [Google Scholar] [CrossRef]
- Ji, J.; Chi, Y.; Yin, X. The blue treasure of hydrogen energy: A research of offshore wind power industry policy in China. Int. J. Hydrogen Energy 2024, 62, 99–108. [Google Scholar] [CrossRef]
- Liu, G.; Kong, Z.; Sun, W.; Li, J.; Qi, Z.; Wu, C.; Li, C. Impacts of Offshore Wind Power Development on China’s Marine Economy and Environment: A Study from 2006 to 2019. J. Clean. Prod. 2023, 423, 138618. [Google Scholar] [CrossRef]
- Groenemans, H.; Saur, G.; Mittelsteadt, C.; Lattimer, J.; Xu, H. Technoeconomic Analysis of Offshore Wind PEM Water Electrolysis for H2 Production. Curr. Opin. Chem. Eng. 2022, 37, 100828. [Google Scholar] [CrossRef]
- Hu, X.; Yuan, X.; Li, B.; Ge, Y.; Lin, R. TechnoEconomic Comparison between Power Transmission and Hydrogen Production and Transportation for OffshoreWind. In Proceedings of the 2022 2nd International Conference on Electrical Engineering and Control Science (IC2ECS), Nanjing, China, 16–18 December 2022; pp. 275–281. [Google Scholar]
- Gomez, J.R.; Baca, J.; Garzon, F. Technoeconomic Analysis and Life Cycle Assessment for Electrochemical Ammonia Production Using Proton Conducting Membrane. Int. J. Hydrogen Energy 2020, 45, 721–737. [Google Scholar] [CrossRef]
- Makhloufi, C.; Kezibri, N. Largescale Decomposition of Green Ammonia for Pure Hydrogen Production. Int. J. Hydrogen Energy 2021, 46, 34777–34787. [Google Scholar] [CrossRef]
- Dokhani, S.; Assadi, M.; Pollet, B.G. Technoeconomic Assessment of Hydrogen Production from Seawater. Int. J. Hydrogen Energy 2023, 48, 9592–9608. [Google Scholar] [CrossRef]
- Weimann, L.; Gabrielli, P.; Boldrini, A.; Kramer, G.J.; Gazzani, M. Optimal Hydrogen Production in a Wind-Dominated Zero-Emission Energy System. Adv. Appl. Energy 2021, 3, 100032. [Google Scholar] [CrossRef]
- Ferrario, M.; Bartolini, A.; Manzano, S.; Vivas, F.J.; Comodi, G.; McPhail, S.J.; Andujar, J.M. A Modelbased Parametric and Optimal Sizing of a Battery/Hydrogen Storage of a Real Hybrid Microgrid Supplying a Residential Load: Towards Island Operation. Adv. Appl. Energy 2021, 3, 100048. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, H.; Martinez, A.; Hong, P.; Xu, H.; Bockmiller, F.R. Polymer Electrolyte Membrane Fuel Cell and Hydrogen Station Networks for Automobiles: Status, Technology, and Perspectives. Adv. Appl. Energy 2021, 2, 100011. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, Y.; Ma, J.; Qian, C.; Yan, X. An MILP Method for Optimal Offshore Oilfield Gathering System. Ocean. Eng. 2017, 141, 25–34. [Google Scholar] [CrossRef]
- Catenacci, M.; Verdolini, E.; Bosetti, V.; Fiorese, G. Going Electric: Expert Survey on the Future of Battery Technologies for Electric Vehicles. Energy Policy 2013, 61, 403–413. [Google Scholar] [CrossRef]
- Pingkuo, L.; Xue, H. Comparative Analysis on Similarities and Differences of Hydrogen Energy Development in the World’s Top 4 Largest Economies: A Novel Framework. Int. J. Hydrogen Energy 2022, 47, 9485–9503. [Google Scholar] [CrossRef]
- Rashid, M.; Al Mesfer, M.; Naseem, H.; Danish, M. Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis. Int. J. Eng. Adv. Technol. (IJEAT) 2015, 4, 80–93. [Google Scholar]
- Tschiggerl, K.; Sledz, C.; Topic, M. Considering Environmental Impacts of Energy Storage Technologies: A Life Cycle Assessment of Powertogas Business Models. Energy 2018, 160, 1091–1100. [Google Scholar] [CrossRef]
- Holm, T.; BorsboomHanson, T.; Herrera, O.E.; Mérida, W. Hydrogen Costs from Water Electrolysis at High Temperature and Pressure. Energy Convers. Manag. 2021, 237, 114106. [Google Scholar] [CrossRef]
- Vincent, I.; Bessarabov, D. Low Cost Hydrogen Production by Anion Exchange Membrane Electrolysis: A Review. Renew. Sustain. Energy Rev. 2018, 81, 1690–1704. [Google Scholar] [CrossRef]
- Niklas Hausmann, J.; Schlögl, R.; Menezes, P.W.; Driess, M. Is Direct Seawater Splitting Economically Meaningful? Energy Environ. Sci. 2021, 14, 3679–3685. [Google Scholar] [CrossRef]
- Curto, D.; Franzitta, V.; Guercio, A. A Review of the Water Desalination Technologies. Appl. Sci. 2021, 11, 670. [Google Scholar] [CrossRef]
- Currenti, F. Techno-Economic Evaluation of Alkaline Electrolyzers for Green H2 Production from Seawater. Webthesisbibliopolitoit. 2023. Available online: https://webthesis.biblio.polito.it/26113/ (accessed on 28 February 2024).
- Yan, Y.; Zhang, H.; Liao, Q.; Liang, Y.; Yan, J. Roadmap to Hybrid Offshore System with Hydrogen and Power Cogeneration. Energy Convers. Manag. 2021, 247, 114690. [Google Scholar] [CrossRef]
- Lee, J.; Cherif, A.; Yoon, H.; Seo, S.; Bae, J.; Shin, H.; Lee, C.; Kwon, H.; Lee, C. Largescale Overseas Transportation of Hydrogen: Comparative Technoeconomic and Environmental Investigation. Renew. Sustain. Energy Rev. 2022, 165, 112556. [Google Scholar] [CrossRef]
- d’AmoreDomenech, R.; Meca, V.L.; Pollet, B.G.; Leo, T.J. On the Bulk Transport of Green Hydrogen at Sea: Comparison between Submarine Pipeline and Compressed and Liquefied Transport by Ship. Energy 2023, 267, 126621. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, Q.; Xue, J.; Tang, Z.; Sun, Y.; Wu, Q. Comparative Technoeconomic Study of Solar Energy Integrated Hydrogen Supply Pathways for Hydrogen Refueling Stations in China. Energy Convers. Manag. 2020, 223, 113240. [Google Scholar] [CrossRef]
- Olateju, B.; Kumar, A.; Secanell, M. A Technoeconomic Assessment of Large Scale Windhydrogen Production with Energy Storage in Western Canada. Int. J. Hydrogen Energy 2016, 41, 8755–8776. [Google Scholar] [CrossRef]
- Wei, X.; Qiu, R.; Liang, Y.; Liao, Q.; Klemeš, J.J.; Xue, J.; Zhang, H. Roadmap to Carbon Emissions Neutral Industrial Parks: Energy, Economic and Environmental Analysis. Energy 2022, 238, 121732. [Google Scholar] [CrossRef]
- Miao, B.; Giordano, L.; Chan, S.H. Longdistance Renewable Hydrogen Transmission via Cables and Pipelines. Int. J. Hydrogen Energy 2021, 46, 18699–18718. [Google Scholar] [CrossRef]
- IRENA Renewable Power Generation Costs in 2019. Available online: https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019 (accessed on 25 February 2024).
- Robles, O.; Almaraz, D.; AzzaroPantel, C.; AzzaroPantel, C. Chapter 2 Hydrogen Supply Chain Design: Key Technological Components and Sustainable Assessment. In Hydrogen Supply Chains; Academic Press: Cambridge, MA, USA, 2018; pp. 37–79. ISBN 9780128111970. [Google Scholar]
- Kumar, S.; Himabindu, V. Hydrogen Production by PEM Water Electrolysis—A Review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Lee, B.; Lim, D.; Lee, H.; Lim, H. Which Water Electrolysis Technology Is Appropriate?: Critical Insights of Potential Water Electrolysis for Green Ammonia Production. Renew. Sustain. Energy Rev. 2021, 143, 110963. [Google Scholar] [CrossRef]
- Kong, L.; Li, L.; Cai, G.; Liu, C.; Ma, P.; Bian, Y.; Ma, T. Technoeconomic Analysis of Hydrogen Energy for Renewable Energy Power Smoothing. Int. J. Hydrogen Energy 2021, 46, 2847–2861. [Google Scholar] [CrossRef]
- Battersby, A. World’s First Offshore Green Hydrogen Project on Working Platform. Available online: https://www.upstreamonline.com/hydrogen/world-s-first-offshore-green-hydrogen-project-on-working-platform/2-1-1043280 (accessed on 25 February 2024).
- Li, L.; Wang, B.; Jiao, K.; Ni, M.; Du, Q.; Liu, Y.; Li, B.; Ling, G.; Wang, C. Comparative Technoeconomic Analysis of Largescale Renewable Energy Storage Technologies. Energy AI 2023, 14, 100282. [Google Scholar] [CrossRef]
- Guerra, O.J.; Eichman, J.; Kurtz, J.; Hodge, B. Cost Competitiveness of Electrolytic Hydrogen. Joule 2019, 3, 2425–2443. [Google Scholar] [CrossRef]
- Lin, H.; Wu, Q.; Chen, X.; Yang, X.; Guo, X.; Lv, J.; Lu, T.; Song, S.; McElroy, M. Economic and Technological Feasibility of Using Powertohydrogen Technology under Higher Wind Penetration in China. Renew. Energy 2021, 173, 569–580. [Google Scholar] [CrossRef]
- Deng, T.; He, G.; Miao, P. Cost analysis of hydrogen production from water electrolysis in different application scenarios. Energy Chem. Ind. 2020, 41, 1–5. (In Chinese) [Google Scholar]
- Minutillo, M.; Perna, A.; Forcina, A.; Micco, D.; Jannelli, E. Analyzing the Levelized Cost of Hydrogen in Refueling Stations with Onsite Hydrogen Production via Water Electrolysis in the Italian Scenario. Eur. Fuel Cell Conf. Exhib. 2021, 46, 13667–13677. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Hao, W.; Li, N. Research on Construction Mode of Large-Scale Offshore Wind Power Centralized Transmission. South. Energy Constr. 2023, 10, 13–20. (In Chinese) [Google Scholar] [CrossRef]
- Lümmen, N.; Karouach, A.; Tveitan, S. Thermoeconomic Study of Waste Heat Recovery from Condensing Steam for Hydrogen Production by PEM Electrolysis. Energy Convers. Manag. 2019, 185, 21–34. [Google Scholar] [CrossRef]
- DOE H2A Delivery Analysis: DOE Hydrogen Program. Available online: https://www.hydrogen.energy.gov/h2a_delivery.html (accessed on 25 February 2024).
- Nistor, S.; Dave, S.; Fan, Z.; Sooriyabandara, M. Technical and Economic Analysis of Hydrogen Refuelling. Appl. Energy 2016, 167, 211–220. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, A. Life Cycle Assessment of Hydrogen Production from Underground Coal Gasification. Appl. Energy 2015, 147, 556–568. [Google Scholar] [CrossRef]
- Kaiser, M.J. Offshore Pipeline Construction Cost in the U.S. Gulf of Mexico. Mar. Policy 2017, 82, 147–166. [Google Scholar] [CrossRef]
- Watson, N.R.; Watson, J.D. An Overview of HVDC Technology. Energies 2020, 13, 4342. [Google Scholar] [CrossRef]
Routes | Power | Delivery and Storage | Power | Distribution | Destination | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydrogen | Electricity | Pipeline | Liquid Ship | Gas Ship | Cable | Hydrogen | Gas Trailer | Liquid Trailer | Pipeline | Refueling Station | Industrial Factory | |
R1 | √ | √ | √ | √ | ||||||||
R2 | √ | √ | √ | √ | ||||||||
R3 | √ | √ | √ | √ | ||||||||
R4 | √ | √ | √ | √ | ||||||||
R5 | √ | √ | √ | √ | ||||||||
R6 | √ | √ | √ | √ | ||||||||
F1 | √ | √ | √ | √ | ||||||||
F2 | √ | √ | √ | √ | ||||||||
F3 | √ | √ | √ | √ | ||||||||
F4 | √ | √ | √ | √ | ||||||||
F5 | √ | √ | √ | √ | ||||||||
F6 | √ | √ | √ | √ | ||||||||
C1 | √ | √ | √ | √ | √ | |||||||
C2 | √ | √ | √ | √ | √ | |||||||
C3 | √ | √ | √ | √ | √ |
Parameters | Values | Ref. |
---|---|---|
Project life | 30 years | |
Capacity of offshore wind farm | 1000 MW | |
Discount rate | 0.08 | |
Electricity price | 0.05 USD/kWh | |
Hydrogen heating value | 33.33 kWh/kg H2 | |
Average load factor of wind farm | 0.34 | [30] |
The 95th percentile loader factor | 0.53 | [30] |
The ratio between USD and RMB | USD 1 = RMB 7.19 |
Subsystem | Components | Cost | Ref. |
---|---|---|---|
Alkaline electrolyzer (AE) | Capital cost | 866 USD/kW | [34,36] |
Operation and maintenance cost | 19 USD/kW per year | [36] | |
Replacement cost | 52 USD/kW | [36] | |
System efficiency | 0.65 | [37] | |
Operation time | 24 h per day and 365 days per year | [38] | |
Life | 7 years | [39] | |
Proton exchange membrane electrolyzer (PEME) | Capital cost | 1543 USD/kW | [36] |
Operation and maintenance cost | 68 USD/kW per year | [36] | |
Replacement cost | 52 USD/kW | [36] | |
System efficiency | 0.7 | [40] | |
Operation time | 24 h per day and 365 days per year | [36] | |
Life | 7 years | [39] | |
Storage system | Storage pressure | 350 MPa | [36] |
Life year | 15 years | [36] | |
Capacity of one tank | 300 kg | [36] | |
Capital cost | USD 227,638 per tank | [36] | |
Operation and maintenance cost | USD 2000 per year per tank | [36] | |
Replacement time | 7.5 years | [36] | |
Replacement cost | USD 227,638 per tank | ||
Desalination system | Water mass flow per unit | 2000 m3/day | |
Life | 15 years | [9] | |
Capital cost | USD 9,125,000 | [9] | |
Operation and maintenance cost | %3 of capital cost | [9] | |
Offshore platform | Hydrogen flow | 400 kg/day | [35] |
Capital cost | USD 100,000,000 | [35] | |
Life year | 30 years | [35] | |
Operation and maintenance cost | %1 of capital cost | [41] |
Facilities | Parameter | Values | Ref. |
---|---|---|---|
Compressor | z | 1.28216 | [43] |
R | 8.3144 | [43] | |
T | 300 | [43] | |
n | 2~3 | [43] | |
k | 1.4 | [43] | |
0.75 | [43] | ||
O&M | %3 of capital cost | [26] | |
High-pressure gas ship | Life year | 15 | [25] |
Load capacity | 2000 ton | [25] | |
Average speed | 32 km/m | [25] | |
Mass loss | 0.1%/day | [25] | |
Capital cost | USD 33 million | [25] | |
O&M | 5550 USD/day | [25] | |
Dessel consumption | 13.6 ton/day | [25] | |
Disel cost | 358.3 USD/ton | [25] | |
Labor cost | 30 million/year | [25] | |
Indirect cost | 45% capital cost | [25] | |
Loading cost | 0.21 USD/kg | [24] | |
Receiving | 0.28 | [24] | |
Storage tank | Mass capacity | 300 kg | [25] |
Capital cost | USD 227,638 | [43] | |
O&M | 2000 USD/year | [24] | |
Liquid hydrogen ship | Mass load | 11,000 ton/day | [24] |
Average speed | 32 km/h | [24] | |
Disel consumption | 21 ton/day | [24] | |
Mass loss | 0.1%/day | [24] | |
Capital cost | 412 million | [24] | |
O&M | USD 5550 | [24] | |
Life year | 15 years | [24] | |
Loading cost | 0.25 USD/kg H2 | [24] | |
Receiving cost | 0.31 USD/kg H2 | [24] | |
Submarine pipeline | Inlet pressure | 10 MPa | [24] |
Life year | 30 years | [25] | |
Outlet pressure | 7.8 MPa | [25] | |
Capital payback year | 10 years | [25] | |
Transportation Efficiency | 99.8% | [25] | |
O&M cost | 3% capital cost per year | [25] | |
Submarine cables | Cable | 3.195 million USD/km | [25] |
Offshore converter | 236 million USD/GW | [25] | |
Onshore converter | 139 million USD/GW | [25] |
Parameter | Value | Ref. |
---|---|---|
Service life | 10 years | [26] |
Speed | 60 km/h | [26] |
Fuel type | Diesel | [26] |
Capacity (20 MPa) | 350 kg per tube trailer | [43] |
Capacity (Liquid hydrogen) | 4000 kg per liquid trailer | [43] |
Capacity (Methanol trailer) | 25 ton | [26] |
Distribution distance | 200 km | |
Fuel economy (20 MPa, liquid) | 25 L per 100 km | [26] |
Fuel economy (Methanol trailer) | 29 L per 100 km | [26] |
Trailer’s work hour | 16 h per day | [36] |
Tractor cost | 58,823 USD each unit | [26] |
Tube tank trailer (350 kg, 200 bar) | 176,470 USD each unit | [26] |
Liquid trailer (For methanol) | 115,000 USD each unit | [26] |
Liquid tank trailer (4000 kg H2) | 950,000 USD each unit | [26] |
Diesel price | 1 USD/L | [36] |
Variable rate of diesel | 0.03 per year | [36] |
Drivers for every trailer | 2 | |
Drivers’ salary | 15,000 USD per year | [36] |
Maintenance cost | %5 of capital cost per year | [26] |
Applications | Components |
---|---|
Refueling station (High pressure) | Compressor (2 stages) High-pressure tank (SF = 2) Dispenser |
Refueling station (Pipeline) | Compressor (3 stages) High-pressure tank (SF = 2) Dispenser |
Refueling station (Liquid) | Liquid pump High-pressure tank (SF = 2) Dispenser |
Refueling Station | Scale | Value | Ref. |
---|---|---|---|
Service life | -- | 15 years | [43] |
(Flow rate) | 700 kg per day | (Supply 2000 cars) | [36] |
Compressor | 78 kW | USD 40,035 × ()0.6038 | [43] |
Low-pressure buffer | 700 kg | 1001 USD/kg | [36] |
High-pressure tank | MmeanSF kg | 1495 USD/kg | [36] |
Dispenser (with pre-cooling unit) | 2 | USD 170,000 each one | [36] |
Liquid pump | 120 kW | 991.89 × cryogenic tank capacity (kg H2)0.6929 | [43] |
Fixed O&M cost | Counts 15% of capital cost | [36] | |
Other O&M cost | -- | Counts 11% of capital cost | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, J.; Zhang, H.; Pan, J.; Zhuo, Y.; Chen, A.; Chen, W.; Yang, Z.; Feng, K.; Li, L.; Wang, B.; et al. Techno-Economic Assessment of a Full-Chain Hydrogen Production by Offshore Wind Power. Energies 2024, 17, 2447. https://doi.org/10.3390/en17112447
Lei J, Zhang H, Pan J, Zhuo Y, Chen A, Chen W, Yang Z, Feng K, Li L, Wang B, et al. Techno-Economic Assessment of a Full-Chain Hydrogen Production by Offshore Wind Power. Energies. 2024; 17(11):2447. https://doi.org/10.3390/en17112447
Chicago/Turabian StyleLei, Jinyong, Hang Zhang, Jun Pan, Yu Zhuo, Aijun Chen, Weize Chen, Zeyu Yang, Keying Feng, Lincai Li, Bowen Wang, and et al. 2024. "Techno-Economic Assessment of a Full-Chain Hydrogen Production by Offshore Wind Power" Energies 17, no. 11: 2447. https://doi.org/10.3390/en17112447
APA StyleLei, J., Zhang, H., Pan, J., Zhuo, Y., Chen, A., Chen, W., Yang, Z., Feng, K., Li, L., Wang, B., Jiao, L., & Jiao, K. (2024). Techno-Economic Assessment of a Full-Chain Hydrogen Production by Offshore Wind Power. Energies, 17(11), 2447. https://doi.org/10.3390/en17112447