Emergency Decision Support Techniques for Nuclear Power Plants: Current State, Challenges, and Future Trends
Abstract
:1. Introduction
2. Theoretical Foundations of Emergency Decision Support Technologies for Nuclear Power Plants
2.1. Fundamental Knowledge of Decision Support Systems and Applications in Nuclear Power Plant Emergency Management
- Passive Support: This category provides decision-makers with DSS tools that are familiar and user friendly, enabling them to make decisions autonomously;
- Traditional Support: DSS tools are integrated into the decision-making process, enhancing and refining decisions;
- Extended Support: The DSS actively presents alternative decisions to the decision-makers;
- Normative Support: This represents the most involved level of support, where the DSS essentially leads the decision-making process.
- The chaos at the onset of the Three Mile Island accident (1979) [5] and initial misjudgments about the issue led to delayed and ineffective response measures;
- Following the Chernobyl accident (1986) [6], the lack of transparency and immediate international communication contributed to sluggish emergency response. Effective emergency plans were not adhered to initially in addressing the accident, and the severity of the situation was initially underestimated;
- The Fukushima [7] accident (2011) was triggered by the Great East Japan Earthquake and the subsequent tsunami. The scale and complexity of the accident exceeded expectations, making it difficult to implement some planning measures. The emergency response following the Fukushima incident faced criticism, particularly regarding the disclosure of information and evacuation planning.
2.2. A Brief History of Nuclear Power Plant Emergency Decision Support Systems
2.2.1. Early History
2.2.2. Exponential Growth Phase
2.2.3. Steady Development
3. Key Technologies in Emergency Decision Support Systems for Nuclear Power Plants
3.1. Training Operators and Emergency Management
3.2. Risk Assessment
3.2.1. Traditional Risk Assessment Methods
3.2.2. Domain-Specific Mathematical Equation Risk Modeling
3.3. Fault Detection and Diagnosis
3.3.1. Monitoring and Detection
3.3.2. Fault Diagnosis
3.4. Multi-Criteria Decision Support
3.5. Accident Consequence Assessment and Calculation for Nuclear Power Plants
3.5.1. The Principles of Radiation Release from Nuclear Power Plants
3.5.2. Off-Site Consequence Calculation Model
3.5.3. Dosimetric Calculations for Humans and the Environment
4. Case Studies of Nuclear Emergency Decision Support Systems
4.1. Emergency Decision Support Systems for Nuclear Power Plants in Some Countries
4.2. Profiles of Prominent Emergency Decision Systems for Nuclear Power Plants
4.2.1. RODOS: The Real-Time Online Decision Support System for Nuclear Power Plant Emergencies
4.2.2. ARGOS: The Accident Reporting and Guiding Operational System
4.2.3. Severa: The Decision Support Tool for Severe Accidents
5. Existing Challenges and Issues in Nuclear Emergency Management
- The integration between the current NPP emergency DSSs and risk assessment is insufficient. There has been a considerable underutilization of fault trees, event trees, and other PSA results;
- The emergency decision support system for current NPPs lacks comprehensiveness in accident response, notably missing a resource allocation module. Despite incorporating evacuation studies related to traffic and fire scenarios, the system has yet to integrate these elements;
- The methods for education, training, and the popularization of nuclear safety culture also require enhancement. Despite the availability of 3D training technologies, practical applications in the workplace are limited due to economic and technical challenges. The integration of digital humans, embodied intelligence, and robotics technologies could offer significant improvements [249,250,251];
- The simulation calculation module is notably time consuming. Conducting consequence analysis is time intensive and complex, indicating a significant need for optimization. To address this, the introduction of AI methods is an excellent approach. Furthermore, the advanced merging capabilities of popular LLMs, which mimic human behavior to the extent of passing the Turing test [252], indicate their potential to substitute human roles in certain contexts, thereby reducing the risks associated with human errors;
- Despite the widespread acknowledgment of the importance of sharing experiences related to NPP incidents, the gap between this recognition and reality is substantial. The significant risks posed by NPPs, exemplified by the Japanese wastewater discharge incident [253], highlight a challenge too vast for any nation to tackle alone. There is an urgent demand for enhanced cooperation and communication among nations, which would ensure a collective capacity to address and mitigate the risks associated with NPPs.
6. From Review to Innovation: Proposing a Hybrid Probabilistic Safety Assessment and Decision Support System for Emergency Management in Nuclear Power Plants
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AHP | Analytic hierarchy process |
AI | Artificial intelligence |
AIGC | Artificial general intelligence and computing |
ARGOS | The Accident Reporting and Guiding Operational System |
ASY | Analysis subsystem |
CFD | Computational fluid dynamics |
COPRAS | Complex proportional assessment |
COSYMA | Code System From Maria |
CSY | Countermeasure subsystem |
DSA | Deterministic safety analysis |
DSS | Decision support system |
ERMIN | European Model For Inhabited Areas |
ESY | Evaluation subsystem |
ETA | Event tree analysis |
FDI | Fault detection and isolation |
FEMA | Federal Emergency Management Agency |
FMEA | Failure mode and effect analysis |
FTA | Fault tree analysis |
GIS | Geographic Information System |
HAZOP | Hazard and operability study |
IAEA | International Atomic Energy Agency |
INL | Idaho National Laboratory |
IVE | Immersive Virtual Environments |
LLMs | Large language models |
MACCS | MELCOR Accident Consequence Code System |
MAUT | Multi-attribute utility theory |
MBD | Model-based diagnosis |
MIS | Management information systems |
NARSIS | The New Approach To Reactor Safety Improvements |
NPPs | Nuclear power plants |
NRC | U.S. Nuclear Regulatory Commission |
PROMETHEE | Preference ranking organization method for enrichment evaluations |
PSA | Probabilistic safety assessment |
RASCAL | Radiological assessment system for consequence analysis |
RAVEN | Reactor Analysis and Virtual Control Environment |
RODOS | Real-Time Online Decision Support System for Nuclear Emergencies |
SAW | Simple additive weighting |
SWOT | Strengths, weaknesses, opportunities, and threats |
TOPSIS | Technique for order preference by similarity to ideal solution |
VIKOR | Visekriterijumsko kompromisno rangiranje |
VR | Virtual reality |
References
- Lenzen, M. Current state of development of electricity-generating technologies: A literature review. Energies 2010, 3, 462–591. [Google Scholar] [CrossRef]
- Högberg, L. Root causes and impacts of severe accidents at large nuclear power plants. Ambio 2013, 42, 267–284. [Google Scholar] [CrossRef] [PubMed]
- Ipatyev, V.; Bulavik, I.; Baginsky, V.; Goncharenko, G.; Dvornik, A. Forest and Chernobyl: Forest ecosystems after the Chernobyl nuclear power plant accident: 1986–1994. J. Environ. Radioact. 1999, 42, 9–38. [Google Scholar] [CrossRef]
- Bromet, E.J. Emotional consequences of nuclear power plant disasters. Health Phys. 2014, 106, 206. [Google Scholar] [CrossRef] [PubMed]
- Perrow, C. Normal accident at three mile island. Society 1981, 18, 17–26. [Google Scholar] [CrossRef]
- Cardis, E.; Hatch, M. The Chernobyl accident—An epidemiological perspective. Clin. Oncol. 2011, 23, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Steinhauser, G.; Brandl, A.; Johnson, T.E. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Sci. Total Environ. 2014, 470, 800–817. [Google Scholar] [CrossRef] [PubMed]
- Joskow, P.L.; Parsons, J.E. The future of nuclear power after Fukushima. Econ. Energy Environ. Policy 2012, 1, 99–114. [Google Scholar] [CrossRef]
- Orhan, E. The effects of the Russia-Ukraine war on global trade. J. Int. Trade Logist. Law 2022, 8, 141–146. [Google Scholar]
- Papamichail, K.N.; French, S. Design and evaluation of an intelligent decision support system for nuclear emergencies. Decis. Support Syst. 2005, 41, 84–111. [Google Scholar] [CrossRef]
- Hussain, M.; Mehboob, K.; Ilyas, S.Z.; Shaheen, S. Decision-making during urgent phase of a nuclear accident under extreme conditions. Saf. Sci. 2023, 164, 106158. [Google Scholar] [CrossRef]
- Nasstrom, J.S.; Sugiyama, G.; Baskett, R.L.; Larsen, S.C.; Bradley, M.M. The National Atmospheric Release Advisory Center modelling and decision-support system for radiological and nuclear emergency preparedness and response. Int. J. Emerg. Manag. 2007, 4, 524–550. [Google Scholar] [CrossRef]
- Perko, T.; Van Gorp, B.; Turcanu, C.; Thijssen, P.; Carle, B. Communication in nuclear emergency preparedness: A closer look at information reception. Risk Anal. 2013, 33, 1987–2001. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.G.; Chang, S.H. The safety assessment of OPR-1000 nuclear power plant for station blackout accident applying the combined deterministic and probabilistic procedure. Nucl. Eng. Des. 2014, 275, 142–153. [Google Scholar] [CrossRef]
- Watkins, S.M.; Perrotta, D.M.; Stanbury, M.; Heumann, M.; Anderson, H.; Simms, E.; Huang, M. State-level emergency preparedness and response capabilities. Disaster Med. Public Health Prep. 2011, 5, S134–S142. [Google Scholar] [CrossRef] [PubMed]
- Lindell, M.K. Nuclear Power Plant Emergency Warning: How Would the Public; HRRC Publication: College Station, TX, USA, 1983. [Google Scholar]
- Landry, M.; Pascot, D.; Briolat, D. Can DSS evolve without changing our view of the concept of ‘problem’? Decis. Support Syst. 1985, 1, 25–36. [Google Scholar] [CrossRef]
- Collier, D.; King, W.R. Achieving the potential of decision support systems. J. Bus. Strategy 1983, 3, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.B.; Lee, S.M.; Kim, E.B.; Somarajan, C. A survey of decision support system applications (1988–1994). J. Oper. Res. Soc. 1998, 49, 109–120. [Google Scholar] [CrossRef]
- Arnott, D.; Pervan, G. A critical analysis of decision support systems research. Formul. Res. Methods Inf. Syst. 2015, 2, 127–168. [Google Scholar]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Mayo, L.H. New Technology and National Goals Some Implications for Legal-Policy Decision Making. Notre Dame Law 1961, 37, 33. [Google Scholar]
- Keeney, R.L.; Nair, K. 14 Selecting Nuclear Power Plant Sites in the Pacific Northwest Using Decision Analysis. CONFLICTING 1977, 298. [Google Scholar]
- Keeney, R.L.; Nair, K. Evaluating potential nuclear power plant sites in the Pacific Northwest using decision analysis. IIASA Prof. Pap. 1976, 76-001. [Google Scholar]
- Keeney, R.L.; Nair, K. Decision analysis for the siting of nuclear power plants—The relevance of multiattribute utility theory. Proc. IEEE 1975, 63, 494–501. [Google Scholar] [CrossRef]
- Keeney, R.L.; Robilliard, G.A. Assessing and evaluating environmental impacts at proposed nuclear power plant sites. J. Environ. Econ. Manag. 1977, 4, 153–166. [Google Scholar] [CrossRef]
- Newmark, N.M.; Hall, W.J. Development of Criteria for Seismic Review of Selected Nuclear Power Plants; NUREG/CR-0098; U.S. Department of Energy: Washington, DC, USA, 1978.
- Collins, H.E.; Grimes, B.K.; Galpin, F. Planning Basis for the Development of State and Local Government Radiological Emergency Response Plans in Support of Light Water Nuclear Power Plants; No. NUREG-0396; EPA-520/1-78-016; US Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation; Environmental Protection Agency (EPA), Office of Radiation Programs: Washington, DC, USA, 1978.
- Garrick, B.J.; Gekler, W.C.; Goldfisher, L.; Karcher, R.H.; Shimizu, B.; Wilson, J.H. Reliability Analysis of Nuclear Power Plant Protective Systems; Holmes and Narver, Inc.: Los Angeles, CA, USA, 1967; No. HN-190. [Google Scholar]
- Copson, H.R.; Berry, W.E. Qualification of inconel for nuclear power plant applications. Corrosion 1960, 16, 79t–85t. [Google Scholar] [CrossRef]
- Wallace, W.A.; De Balogh, F. Decision support systems for disaster management. Public Adm. Rev. 1985, 45, 134–146. [Google Scholar] [CrossRef]
- Bonczek, R.H.; Holsapple, C.W.; Whinston, A.B. A generalized decision support system using predicate calculus and network data base management. Oper. Res. 1981, 29, 263–281. [Google Scholar] [CrossRef]
- Brill, E.D.; Flach, J.M.; Hopkins, L.D.; Ranjithan, S.M.G.A. MGA: A decision support system for complex, incompletely defined problems. IEEE Trans. Syst. Man Cybern. 1990, 20, 745–757. [Google Scholar] [CrossRef]
- Rasmussen, J. The role of hierarchical knowledge representation in decisionmaking and system management. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 234–243. [Google Scholar] [CrossRef]
- Silver, M.S. Descriptive Analysis for Computer-Based Decision Support: Special Focus Article. Oper. Res. 1988, 36, 904–916. [Google Scholar] [CrossRef]
- Nelson, W.R. REACTOR: An expert system for diagnosis and treatment of nuclear reactor accidents. AAAI 1982, 82, 296–301. [Google Scholar]
- Gallanti, M.; Guida, G. Intelligent Decision Aids for Process Environments: An Expert System Approach. In Intelligent Decision Support in Process Environments; Springer: Berlin/Heidelberg, Germany, 1986; pp. 373–394. [Google Scholar]
- Ligeza, A. Expert systems approach to decision support. Eur. J. Oper. Res. 1988, 37, 100–110. [Google Scholar] [CrossRef]
- Vedder, R.G.; Mason, R.O. An expert system application for decision support in law enforcement. Decis. Sci. 1987, 18, 400–414. [Google Scholar] [CrossRef]
- Yang, Y.O.; Chang, S.H. A diagnostic expert system for the nuclear power plant based on the hybrid knowledge approach. IEEE Trans. Nucl. Sci. 1989, 36, 2450–2458. [Google Scholar] [CrossRef]
- Naito, N.; Sakuma, A.; Shigeno, K.; Mori, N. A real-time expert system for nuclear power plant failure diagnosis and operational guide. Nucl. Technol. 1987, 79, 284–296. [Google Scholar] [CrossRef]
- Hassberger, J.A.; Lee, J.C. A simulation-based expert system for nuclear power plant diagnostics. Nucl. Sci. Eng. 1989, 102, 153–171. [Google Scholar] [CrossRef]
- Djokic, D. Toward a general-purpose decision support system using existing technologies. GIS Environ. Model. 1996, 353–356. [Google Scholar]
- Cox, P.G. Some issues in the design of agricultural decision support systems. Agric. Syst. 1996, 52, 355–381. [Google Scholar] [CrossRef]
- Wadsworth, R.A.; Brown, M.J. A spatial decision support system to allow the investigation of the impact of emissions from major point sources under different operating policies. Water Air Soil Pollut. 1995, 85, 2649–2654. [Google Scholar] [CrossRef]
- Schlenzig, C. Energy planning and environmental management with the information and decision support system MESAP. Int. J. Glob. Energy Issues 1999, 12, 81–91. [Google Scholar] [CrossRef]
- Jungthirapanich, C.; Benjamin, C.O. A knowledge-based decision support system for locating a manufacturing facility. IIE Trans. 1995, 27, 789–799. [Google Scholar] [CrossRef]
- Capros, Y.A.P. Decision support system framework of the PRIMES energy model of the European Commission. Int. J. Glob. Energy Issues 1999, 12, 92–119. [Google Scholar]
- Mowrer, H.T. Uncertainty in natural resource decision support systems: Sources, interpretation, and importance. Comput. Electron. Agric. 2000, 27, 139–154. [Google Scholar] [CrossRef]
- Ross, J.; Staw, B.M. Organizational escalation and exit: Lessons from the Shoreham nuclear power plant. Acad. Manag. J. 1993, 36, 701–732. [Google Scholar] [CrossRef]
- De Silva, F.N.; Eglese, R.W. Integrating simulation modelling and GIS: Spatial decision support systems for evacuation planning. J. Oper. Res. Soc. 2000, 51, 423–430. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, Y.; Li, Y.; Wang, H. An Intelligent Decision Support System for Spare Parts Joint Replenishment. In Proceedings of the 2006 International Conference on Hybrid Information Technology, Cheju, Republic of Korea, 9–11 November 2006; IEEE: Piscataway, NJ, USA, 2006; Volume 1, pp. 514–519. [Google Scholar]
- Zeng, Y.; Wang, L.; Zhang, J. A web-based fuzzy decision support system for spare parts inventory control. Int. J. Emerg. Manag. 2007, 4, 524–550. [Google Scholar]
- Zeng, Y.; Wang, L. A hybrid decision support system for slow moving spare parts joint replenishment: A case study in a nuclear power plant. Int. J. Comput. Appl. Technol. 2010, 37, 287–296. [Google Scholar] [CrossRef]
- Power, D.J.; Sharda, R. Model-driven decision support systems: Concepts and research directions. Decis. Support Syst. 2007, 43, 1044–1061. [Google Scholar] [CrossRef]
- Zerger, A.; Smith, D.I. Impediments to using GIS for real-time disaster decision support. Comput. Environ. Urban Syst. 2003, 27, 123–141. [Google Scholar] [CrossRef]
- Li, C.; Sánchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D. Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning. Sensors 2016, 16, 895. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, R.; Maniak, T.; Doctor, F.; Karyotis, C. Fault detection and isolation in industrial processes using deep learning approaches. IEEE Trans. Ind. Inform. 2019, 15, 3077–3084. [Google Scholar] [CrossRef]
- Tamilselvan, P.; Wang, P. Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 2013, 115, 124–135. [Google Scholar] [CrossRef]
- Tang, S.; Yuan, S.; Zhu, Y. Deep learning-based intelligent fault diagnosis methods toward rotating machinery. IEEE Access 2019, 8, 9335–9346. [Google Scholar] [CrossRef]
- Garoudja, E.; Chouder, A.; Kara, K.; Silvestre, S. An enhanced machine learning based approach for failures detection and diagnosis of PV systems. Energy Convers. Manag. 2017, 151, 496–513. [Google Scholar] [CrossRef]
- Salahshoor, K.; Kordestani, M.; Khoshro, M.S. Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers. Energy 2010, 35, 5472–5482. [Google Scholar] [CrossRef]
- Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I. Micro-UAV Detection and Classification from RF Fingerprints Using Machine Learning Techniques. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–13. [Google Scholar]
- Saeed, H.A.; Wang, H.; Peng, M.; Hussain, A.; Nawaz, A. Online fault monitoring based on deep neural network& sliding window technique. Prog. Nucl. Energy 2020, 121, 103236. [Google Scholar]
- Wang, W.; Zhao, Z.; Sun, T. GPT-doctor: Customizing Large Language Models for Medical Consultation. arXiv 2023, arXiv:2312.10225. [Google Scholar]
- Yue, S.; Chen, W.; Wang, S.; Li, B.; Shen, C.; Liu, S.; Zhou, Y.; Xiao, Y.; Yun, S.; Huang, X.; et al. Disc-lawllm: Fine-tuning large language models for intelligent legal services. arXiv 2023, arXiv:2309.11325. [Google Scholar]
- Ohba, T.; Tanigawa, K.; Liutsko, L. Evacuation after a nuclear accident: Critical reviews of past nuclear accidents and proposal for future planning. Environ. Int. 2021, 148, 106379. [Google Scholar] [CrossRef]
- Meyer, T.S.; Muething, J.Z.; Lima, G.A.S.; Torres, B.R.R.; Gomes, J.O.; Lambert, J.H. Decision Support System Interface Design for Radiological Emergency Response Coordination in Brazil. In Proceedings of the 2011 IEEE Systems and Information Engineering Design Symposium, Charlottesville, VA, USA, 29 April 2011. [Google Scholar]
- Lee, T.; Harrison, K. Assessing safety culture in nuclear power stations. Saf. Sci. 2000, 34, 61–97. [Google Scholar] [CrossRef]
- Miranda, S.; Caruso, R. A Lack of Knowledge Acquisition Can Impair Nuclear Power Plant Safety. ASME Open J. Eng. 2022, 1, 0110. [Google Scholar] [CrossRef]
- Yim, H.B.; Kim, A.R.; Seong, P.H. Development of a quantitative evaluation method for non-technical skills preparedness of operation teams in nuclear power plants to deal with emergency conditions. Nucl. Eng. Des. 2013, 255, 212–225. [Google Scholar] [CrossRef]
- Swaton, E.; Neboyan, V.; Lederman, L. Human factors in the operation of nuclear power plants. IAEA Bull. 1987, 29, 27–30. [Google Scholar]
- Mumaw, R.J. The Effects of Stress on Nuclear Power Plant Operational Decision Making and Training Approaches to Reduce Stress Effects; No. NUREG/CR–6127; Nuclear Regulatory Commission: Rockville, MA, USA, 1994.
- Sui, Y.; Ding, R.; Wang, H. An integrated management system for occupational health and safety and environment in an operating nuclear power plant in East China and its management information system. J. Clean. Prod. 2018, 183, 261–271. [Google Scholar] [CrossRef]
- Hiraoka, K.; Tateishi, S.; Mori, K. Review of health issues of workers engaged in operations related to the accident at the Fukushima Daiichi Nuclear Power Plant. J. Occup. Health 2015, 57, 497–512. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, W.R.; Russell, L.B.; Poteralski, D.C.; Wisenburn, M.R.; Braun, J.C.; Cotton, J.B.; Fries, E.V. The Principles of Nuclear Power Plant Operational Safety. Windsor 1996. [Google Scholar]
- Espinosa-Paredes, G.; Nuñez-Carrera, A.; Laureano-Cruces, A.L.; Vázquez-Rodríguez, A.; Espinosa-Martinez, E.G. Emergency management for a nuclear power plant using fuzzy cognitive maps. Ann. Nucl. Energy 2008, 35, 2387–2396. [Google Scholar] [CrossRef]
- Mendonça, D.; Beroggi, G.E.; Van Gent, D.; Wallace, W.A. Designing gaming simulations for the assessment of group decision support systems in emergency response. Saf. Sci. 2006, 44, 523–535. [Google Scholar] [CrossRef]
- Mól, A.C.A.; Jorge, C.A.F.; Couto, P.M.; Augusto, S.C.; Cunha, G.G.; Landau, L. Virtual environments simulation for dose assessment in nuclear plants. Prog. Nucl. Energy 2009, 51, 382–387. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, J. The visualization of 3D radiation dose field in virtual environment. J. Phys. Conf. Ser. 2021, 1827, 012006. [Google Scholar] [CrossRef]
- Patle, D.S.; Manca, D.; Nazir, S.; Sharma, S. Operator training simulators in virtual reality environment for process operators: A review. Virtual Real. 2019, 23, 293–311. [Google Scholar] [CrossRef]
- Masullo, M.; Pascale, A.; Toma, R.A.; Ruggiero, G.; Maffei, L. Virtual Reality Overhead Crane Simulator. Procedia Comput. Sci. 2022, 200, 205–215. [Google Scholar] [CrossRef]
- Hasan, R.B.; Aziz, F.B.A.; Mutaleb, H.A.A.; Umar, Z. Virtual reality as an industrial training tool: A review. J. Adv. Rev. Sci. Res 2017, 29, 20–26. [Google Scholar]
- Dhalmahapatra, K.; Maiti, J.; Krishna, O.B. Assessment of virtual reality based safety training simulator for electric overhead crane operations. Saf. Sci. 2021, 139, 105241. [Google Scholar] [CrossRef]
- CHAKRABORTY, P.R.; BISE, C.J. A virtual-reality-based model for task-training of equipment operators in the mining industry. Miner. Resour. Eng. 2000, 9, 437–449. [Google Scholar] [CrossRef]
- Lamberti, F.; De Lorenzis, F.; Pratticò, F.G.; Migliorini, M. An Immersive Virtual Reality Platform for Training CBRN Operators. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 12–16 July 2021; pp. 133–137. [Google Scholar]
- Gavish, N.; Gutiérrez, T.; Webel, S.; Rodríguez, J.; Peveri, M.; Bockholt, U.; Tecchia, F. Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact. Learn. Environ. 2015, 23, 778–798. [Google Scholar] [CrossRef]
- Colombo, S.; Nazir, S.; Manca, D. Immersive virtual reality for training and decision making: Preliminary results of experiments performed with a plant simulator. SPE Econ. Manag. 2014, 6, 165–172. [Google Scholar] [CrossRef]
- Vaughan, N.; Dubey, V.N.; Wainwright, T.W.; Middleton, R.G. A review of virtual reality based training simulators for orthopaedic surgery. Med. Eng. Phys. 2016, 38, 59–71. [Google Scholar] [CrossRef]
- Colt, H.G.; Crawford, S.W.; Galbraith, O., III. Virtual reality bronchoscopy simulation: A revolution in procedural training. Chest 2001, 120, 1333–1339. [Google Scholar] [CrossRef]
- Haque, S.; Srinivasan, S. A meta-analysis of the training effectiveness of virtual reality surgical simulators. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 51–58. [Google Scholar] [CrossRef]
- Alaraj, A.; Lemole, M.G.; Finkle, J.H.; Yudkowsky, R.; Wallace, A.; Luciano, C.; Banerjee, P.P.; Rizzi, S.H.; Charbel, F.T. Virtual reality training in neurosurgery: Review of current status and future applications. Surg. Neurol. Int. 2011, 2, 52. [Google Scholar] [CrossRef]
- Gallagher, A.G.; Cates, C.U. Virtual reality training for the operating room and cardiac catheterisation laboratory. Lancet 2004, 364, 1538–1540. [Google Scholar] [CrossRef]
- Cates, C.U.; Lönn, L.; Gallagher, A.G. Prospective, randomised and blinded comparison of proficiency-based progression full-physics virtual reality simulator training versus invasive vascular experience for learning carotid artery angiography by very experienced operators. BMJ Simul. Technol. Enhanc. Learn. 2016, 2, 1. [Google Scholar] [CrossRef]
- Yiannakopoulou, E.; Nikiteas, N.; Perrea, D.; Tsigris, C. Virtual reality simulators and training in laparoscopic surgery. Int. J. Surg. 2015, 13, 60–64. [Google Scholar] [CrossRef]
- Aggarwal, R.; Black, S.A.; Hance, J.R.; Darzi, A.; Cheshire, N.J.W. Virtual reality simulation training can improve inexperienced surgeons’ endovascular skills. Eur. J. Vasc. Endovasc. Surg. 2006, 31, 588–593. [Google Scholar] [CrossRef]
- Cha, M.; Han, S.; Lee, J.; Choi, B. A virtual reality based fire training simulator integrated with fire dynamics data. Fire Saf. J. 2012, 50, 12–24. [Google Scholar] [CrossRef]
- Abdelgawad, M.A.M. Hybrid Decision Support System for Risk Criticality Assessment and Risk Analysis. Ph.D. Thesis, University of Alberta, Edmonton, Alberta, 2011. [Google Scholar]
- Schroer, S.; Modarres, M. An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment. Reliab. Eng. Syst. Saf. 2013, 117, 40–51. [Google Scholar] [CrossRef]
- Goble, R.; Bier, V.M. Risk assessment can be a game-changing information technology—But too often it isn’t. Risk Anal. 2013, 33, 1942–1951. [Google Scholar] [CrossRef]
- Shalev, D.M.; Tiran, J. Condition-based fault tree analysis (CBFTA): A new method for improved fault tree analysis (FTA), reliability and safety calculations. Reliab. Eng. Syst. Saf. 2007, 92, 1231–1241. [Google Scholar] [CrossRef]
- Sun, D.; Li, L.; Tian, Z.; Chen, S.; Wang, H.; Chen, G.; Zhang, Y.; Zhang, L. An advanced probability safety margin analysis approach combined deterministic and probabilistic safety assessment. Nucl. Eng. Des. 2021, 385, 111514. [Google Scholar] [CrossRef]
- Kang, D.G.; Ahn, S.H.; Chang, S.H. A combined deterministic and probabilistic procedure for safety assessment of beyond design basis accidents in nuclear power plant: Application to ECCS performance assessment for design basis LOCA redefinition. Nucl. Eng. Des. 2013, 260, 165–174. [Google Scholar] [CrossRef]
- Heo, G.; Baek, S.; Kwon, D.; Kim, H.; Park, J. Recent research towards integrated deterministic-probabilistic safety assessment in Korea. Nucl. Eng. Technol. 2021, 53, 465–3473. [Google Scholar] [CrossRef]
- Martorell, S.; Sanchez-Saez, F.; Villanueva, J.F.; Carlos, S. An extended BEPU approach integrating probabilistic assumptions on the availability of safety systems in deterministic safety analyses. Reliab. Eng. Syst. Saf. 2017, 167, 474–483. [Google Scholar] [CrossRef]
- Lu, L.; Jiang, J. Probabilistic safety assessment for instrumentation and control systems in nuclear power plants: An overview. J. Nucl. Sci. Technol. 2004, 41, 323–330. [Google Scholar] [CrossRef]
- Keller, W.; Modarres, M. A historical overview of probabilistic risk assessment development and its use in the nuclear power industry: A tribute to the late Professor Norman Carl Rasmussen. Reliab. Eng. Syst. Saf. 2005, 89, 271–285. [Google Scholar] [CrossRef]
- Miller, I.M. Integrating Geographic Information Systems with the Level 3 Probabilistic Risk Assessment of Nuclear Power Plants to Advance Modeling of Socio-Technical Infrastructure in Emergency Response Applications. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2015. [Google Scholar]
- Pence, J.; Miller, I.; Sakurahara, T.; Whitacre, J.; Reihani, S.; Kee, E.; Mohaghegh, Z. GIS-based integration of social vulnerability and level 3 probabilistic risk assessment to advance emergency preparedness, planning, and response for severe nuclear power plant accidents. Risk Anal. 2019, 39, 1262–1280. [Google Scholar] [CrossRef]
- Jensen, J.R.; Hodgson, M.E.; Garcia-Quijano, M.; Im, J.; Tullis, J.A. A remote sensing and GIS-assisted spatial decision support system for hazardous waste site monitoring. Photogramm. Eng. Remote Sens. 2009, 75, 169–177. [Google Scholar] [CrossRef]
- Ruijters, E.; Stoelinga, M. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 2015, 15, 29–62. [Google Scholar] [CrossRef]
- Lipol, L.S.; Haq, J. Risk analysis method: FMEA/FMECA in the organizations. Int. J. Basic Appl. Sci. 2011, 11, 74–82. [Google Scholar]
- Liu, H.C.; Liu, L.; Liu, N. Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Syst. Appl. 2013, 40, 828–838. [Google Scholar] [CrossRef]
- Stamatis, D.H. Failure Mode and Effect Analysis; Quality Press: Milwaukee, WI, USA, 2003. [Google Scholar]
- Purba, J.H.; Tjahyani, D.S.; Widodo, S.; Ekariansyah, A.S. Fuzzy probability based event tree analysis for calculating core damage frequency in nuclear power plant probabilistic safety assessment. Prog. Nucl. Energy 2020, 125, 103376. [Google Scholar] [CrossRef]
- Metzroth, K.G. A Comparison of Dynamic and Classical Event Tree Analysis for Nuclear Power Plant Probabilistic Safety/Risk Assessment. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2011. [Google Scholar]
- Cohn, B.; Noel, T.; Cardoni, J.; Haskin, T.; Osborn, D.; Aldemir, T. Integrated Safety and Security Analysis of Nuclear Power Plants Using Dynamic Event Trees. Nucl. Sci. Eng. 2023, 197, S45–S56. [Google Scholar] [CrossRef]
- Alfonsi, A.; Rabiti, C.; Mandelli, D.; Cogliati, J.; Kinoshita, R.A.; Naviglio, A. Dynamic Event Tree Analysis through RAVEN; No. INL/CON-13-29344; Idaho National Lab. (INL): Idaho Falls, ID, USA, 2013. [Google Scholar]
- Vesely, W.E.; Goldberg, F.F.; Roberts, N.H.; Haasl, D.F. Fault Tree Handbook; Systems and Reliability Research. Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission: Washington, DC, USA, 1981; pp. 154–196.
- Ericson, C.A.; Ll, C. Fault Tree Analysis. In Proceedings of the System Safety Conference, Orlando, FL, USA, 16–21 August 1999; Volume 1, pp. 1–9. [Google Scholar]
- Mamdikar, M.R.; Kumar, V.; Singh, P. Dynamic reliability analysis framework using fault tree and dynamic Bayesian network: A case study of NPP. Nucl. Eng. Technol. 2022, 54, 1213–1220. [Google Scholar] [CrossRef]
- Baek, S.; Heo, G. Application of dynamic fault tree analysis to prioritize electric power systems in nuclear power plants. Energies 2021, 14, 4119. [Google Scholar] [CrossRef]
- Rao, K.D.; Gopika, V.; Rao, V.S.; Kushwaha, H.S.; Verma, A.K.; Srividya, A. Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment. Reliab. Eng. Syst. Saf. 2009, 94, 872–883. [Google Scholar]
- Čepin, M.; Mavko, B. A dynamic fault tree. Reliab. Eng. Syst. Saf. 2002, 75, 83–91. [Google Scholar] [CrossRef]
- Parhizkar, T.; Utne, I.B.; Vinnem, J.E.; Mosleh, A. Dynamic probabilistic risk assessment of decision-making in emergencies for complex systems, case study: Dynamic positioning drilling unit. Ocean Eng. 2021, 237, 109653. [Google Scholar] [CrossRef]
- Geymayr, J.A.B.; Ebecken, N.F.F. Fault-tree analysis: A knowledge-engineering approach. IEEE Trans. Reliab. 1995, 44, 37–45. [Google Scholar] [CrossRef]
- Mahmood, Y.A.; Ahmadi, A.; Verma, A.K.; Srividya, A.; Kumar, U. Fuzzy fault tree analysis: A review of concept and application. Int. J. Syst. Assur. Eng. Manag. 2013, 4, 19–32. [Google Scholar] [CrossRef]
- Yazdi, M.; Nikfar, F.; Nasrabadi, M. Failure probability analysis by employing fuzzy fault tree analysis. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 1177–1193. [Google Scholar] [CrossRef]
- Lavasani, S.M.; Zendegani, A.; Celik, M. An extension to Fuzzy Fault Tree Analysis (FFTA) application in petrochemical process industry. Process Saf. Environ. Prot. 2015, 93, 75–88. [Google Scholar] [CrossRef]
- Badida, P.; Balasubramaniam, Y.; Jayaprakash, J. Risk evaluation of oil and natural gas pipelines due to natural hazards using fuzzy fault tree analysis. J. Nat. Gas Sci. Eng. 2019, 66, 284–292. [Google Scholar] [CrossRef]
- Tanaka, H.; Fan, L.T.; Lai, F.S.; Toguchi, K. Fault-tree analysis by fuzzy probability. IEEE Trans. Reliab. 1983, 32, 453–457. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, L.; Hu, J.; Modarres, M.; Droguett, E.L. A Critical Review and Benchmark Study of Dependency Modeling for Seismic Probabilistic Risk Assessment in the Nuclear Power Industry. Reliab. Eng. Syst. Saf. 2024, 245, 110009. [Google Scholar] [CrossRef]
- Zografos, K.G.; Androutsopoulos, K.N. A decision support system for integrated hazardous materials routing and emergency response decisions. Transp. Res. Part C Emerg. Technol. 2008, 16, 684–703. [Google Scholar] [CrossRef]
- Sakurahara, T.; Mohaghegh, Z.; Reihani, S.; Kee, E. Modeling the Interface of Manual Fire Protection Actions with Fire Progression in Fire Probabilistic Risk Assessment of Nuclear Power Plants. In Proceedings of the International Topical Meeting on Probabilistic Safety Assessment and Analysis (PSA 2017), Pittsburgh, PA, USA, 24–28 September 2017. [Google Scholar]
- Meng, L.; Cheng, W. A dynamic emergency decision support model for emergencies in urban areas. Int. J. Disaster Risk Reduct. 2023, 95, 103842. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, M.; Xie, B. A nuclear emergency partition evacuation framework based on comprehensive risk assessment. Int. J. Disaster Risk Reduct. 2023, 86, 103543. [Google Scholar] [CrossRef]
- Venkatasubramanian, V.; Rengaswamy, R.; Yin, K.; Kavuri, S.N. A review of process fault detection and diagnosis: Part I: Quantitative model-based methods. Comput. Chem. Eng. 2003, 27, 293–311. [Google Scholar] [CrossRef]
- GLOUCESTER UK. Monitoring and Diagnosis Systems to Improve Nuclear Power Plant Reliability and Safety. In Proceedings of the Specialists’ Meeting on Monitoring and Diagnosis Systems to Improve Nuclear Power Plant Reliability and Safety, Gloucester, UK, 14–17 May 1996. [Google Scholar]
- Gu, H.; Liu, G.; Li, J.; Xie, H.; Wen, H. A Framework Based on Deep Learning for Predicting Multiple Safety-Critical Parameter Trends in Nuclear Power Plants. Sustainability 2023, 15, 6310. [Google Scholar] [CrossRef]
- Saeed, A.; Rashid, A. Development of core monitoring system for a nuclear power plant using artificial neural network technique. Ann. Nucl. Energy 2020, 144, 107513. [Google Scholar] [CrossRef]
- Lei, J.; Ren, C.; Li, W.; Fu, L.; Li, Z.; Ni, Z.; Li, Y.; Liu, C.; Zhang, H.; Chen, Z.; et al. Prediction of crucial nuclear power plant parameters using long short-term memory neural networks. Int. J. Energy Res. 2022, 46, 21467–21479. [Google Scholar] [CrossRef]
- Korosec, D. Safety and licensing aspects on nuclear power plant diagnostics in Slovenia. In Proceedings of the Technical Committee Meeting on Nuclear Power Plant Diagnostics—Safety Aspects and Licensing, Portoroz, Slovenia, 23–26 June 1997. [Google Scholar]
- Coble, J.B.; Meyer, R.M.; Ramuhalli, P.; Bond, L.J.; Hashemian, H.; Shumaker, B.; Cummins, D. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants; US Department of Energy: Washington, DC, USA, 2012; p. 73.
- Ramuhalli, P.; Lin, G.; Crawford, S.L.; Konomi, B.A.; Coble, J.B.; Shumaker, B.; Hashemian, H. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2014. [Google Scholar]
- French, S. Uncertainty modelling, data assimilation and decision support for management of off-site nuclear emergencies. Radiat. Prot. Dosim. 1997, 73, 11–15. [Google Scholar] [CrossRef]
- Pirouzmand, A.; Dehghani, P.; Hadad, K.; Nematollahi, M. Dose assessment of radionuclides dispersion from Bushehr nuclear power plant stack under normal operation and accident conditions. Int. J. Hydrogen Energy 2015, 40, 15198–15205. [Google Scholar] [CrossRef]
- Stohl, A.; Seibert, P.; Wotawa, G.; Arnold, D.; Burkhart, J.F.; Eckhardt, S.; Tapia, C.; Vargas, A.; Yasunari, T.J. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: Determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys. 2012, 12, 2313–2343. [Google Scholar]
- Choi, J.B.; Yeum, S.W.; Ko, H.O.; Kim, Y.J.; Kim, H.K.; Choi, Y.H.; Park, Y.W. Development of a web-based aging monitoring system for an integrity evaluation of the major components in a nuclear power plant. Int. J. Press. Vessel. Pip. 2010, 87, 33–40. [Google Scholar] [CrossRef]
- Lau, N.; Skraaning, G., Jr.; Eitrheim, M.H.; Karlsson, T.; Nihlwing, C.; Jamieson, G.A. Situation Awareness in Monitoring Nuclear Power Plants—The Process Overview Concept and Measure; University of Toronto 5 King’s College Road: Toronto, ON, Canada, 2011. [Google Scholar]
- Xiao, X.; Qi, B.; Liang, J.; Tong, J.; Deng, Q.; Chen, P. Enhancing LOCA Breach Size Diagnosis with Fundamental Deep Learning Models and Optimized Dataset Construction. Energies 2023, 17, 159. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, J. Applications of fault detection and diagnosis methods in nuclear power plants: A review. Prog. Nucl. Energy 2011, 53, 255–266. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Downar, T.; Vilim, R. A probabilistic model-based diagnostic framework for nuclear engineering systems. Ann. Nucl. Energy 2020, 149, 107767. [Google Scholar] [CrossRef]
- Qi, B.; Zhang, L.; Liang, J.; Tong, J. Enhancing LOCA Combinatorial techniques for fault diagnosis in nuclear power plants based on Bayesian neural network and simplified Bayesian network-artificial neural network. Front. Energy Res. 2022, 10, 920194. [Google Scholar] [CrossRef]
- Ayodeji, A.; Liu, Y.K.; Xia, H. Knowledge base operator support system for nuclear power plant fault diagnosis. Prog. Nucl. Energy 2018, 105, 42–50. [Google Scholar] [CrossRef]
- Qi, B.; Liang, J.; Tong, J. Fault Diagnosis Techniques for Nuclear Power Plants: A Review from the Artificial Intelligence Perspective. Energies 2023, 16, 1850. [Google Scholar] [CrossRef]
- Qi, B.; Xiao, X.; Liang, J.; Po, L.C.C.; Zhang, L.; Tong, J. An open time-series simulated dataset covering various accidents for nuclear power plants. Sci. Data 2022, 9, 766. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, J.; Xiao, L.; Zhao, J. Alpha stable distribution based morphological filter for bearing and gear fault diagnosis in nuclear power plant. Sci. Technol. Nucl. Install. 2015, 2015, 460131. [Google Scholar] [CrossRef]
- Zhao, K. An Integrated Approach to Performance Monitoring and Fault Diagnosis of Nuclear Power Systems; The University of Tennessee: Knoxville, TN, USA, 2005. [Google Scholar]
- Duan, Q.; Lu, R.; Xie, H.; Ping, J.; Lu, C.; Zhou, X.; Gao, J.; Li, J. Fault diagnosis of air compressor in nuclear power plant based on vibration observation window. IEEE Access 2020, 8, 222274–222284. [Google Scholar] [CrossRef]
- Patel, H.R.; Shah, V.A. Fault detection and diagnosis methods in power generation plants-the Indian power generation sector perspective: An introductory review. PDPU J. Energy Manag. 2018, 2, 31–49. [Google Scholar]
- Wang, H.; Peng, M.J.; Yu, Y.; Saeed, H.; Hao, C.M.; Liu, Y.K. Fault identification and diagnosis based on KPCA and similarity clustering for nuclear power plants. Ann. Nucl. Energy 2021, 150, 107786. [Google Scholar] [CrossRef]
- Banerjee, S.; Deng, J.; Gorse, C.; Vajpayee, V.; Becerra, V.; Shimjith, S.R. ANN based sensor and actuator fault detection in nuclear reactors. In Proceedings of the 2020 8th International Conference on Control, Mechatronics and Automation (ICCMA), Moscow, Russia, 6–8 November 2020; pp. 88–94. [Google Scholar]
- Wu, C.; Guo, C.; Xie, Z.; Ni, F.; Liu, H. A signal-based fault detection and tolerance control method of current sensor for PMSM drive. IEEE Trans. Ind. Electron. 2018, 65, 9646–9657. [Google Scholar] [CrossRef]
- Kang, H.G.; Jang, S.C. Application of condition-based HRA method for a manual actuation of the safety features in a nuclear power plant. Reliab. Eng. Syst. Saf. 2006, 91, 627–633. [Google Scholar] [CrossRef]
- Wang, H.; Peng, M.J.; Ayodeji, A.; Xia, H.; Wang, X.K.; Li, Z.K. Advanced fault diagnosis method for nuclear power plant based on convolutional gated recurrent network and enhanced particle swarm optimization. Ann. Nucl. Energy 2021, 151, 107934. [Google Scholar] [CrossRef]
- Peng, M.J.; Wang, H.; Chen, S.S.; Xia, G.L.; Liu, Y.K.; Yang, X.; Ayodeji, A. An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant. Nucl. Eng. Technol. 2018, 50, 396–410. [Google Scholar] [CrossRef]
- Razavi-Far, R.; Davilu, H.; Palade, V.; Lucas, C. Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks. Neurocomputing 2009, 72, 2939–2951. [Google Scholar] [CrossRef]
- French, S. Multi-attribute decision support in the event of a nuclear accident. J. Multi-Criteria Decis. Anal. 1996, 5, 39–57. [Google Scholar] [CrossRef]
- Razmak, J.; Aouni, B. Decision support system and multi-criteria decision aid: A state of the art and perspectives. J. Multi-Criteria Decis. Anal. 2015, 22, 101–117. [Google Scholar] [CrossRef]
- Ekmekçioğlu, M.; Kutlu, A.C.; Kahraman, C. A fuzzy multi-criteria SWOT analysis: An application to nuclear power plant site selection. Int. J. Comput. Intell. Syst. 2011, 4, 583–595. [Google Scholar] [CrossRef]
- Omitaomu, O.A.; Blevins, B.R.; Jochem, W.C.; Mays, G.T.; Belles, R.; Hadley, S.W.; Harrison, T.J.; Bhaduri, B.L.; Neish, B.S.; Rose, A.N. Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites. Appl. Energy 2012, 96, 292–301. [Google Scholar] [CrossRef]
- Peng, H.M.; Wang, X.K.; Wang, T.L.; Liu, Y.H.; Wang, J.Q. A multi-criteria decision support framework for inland nuclear power plant site selection under Z-Information: A case study in hunan province of China. Mathematics 2020, 8, 252. [Google Scholar] [CrossRef]
- Abudeif, A.M.; Moneim, A.A.; Farrag, A.F. Multicriteria decision analysis based on analytic hierarchy process in GIS environment for siting nuclear power plant in Egypt. Ann. Nucl. Energy 2015, 75, 682–692. [Google Scholar] [CrossRef]
- Damoom, M.M.; Hashim, S.; Aljohani, M.S.; Saleh, M.A.; Xoubi, N. Potential areas for nuclear power plants siting in Saudi Arabia: GIS-based multi-criteria decision making analysis. Prog. Nucl. Energy 2019, 110, 110–120. [Google Scholar] [CrossRef]
- Kiser, L.; Otero, L.D. Multi-criteria decision model for selection of nuclear power plant type. Prog. Nucl. Energy 2023, 159, 104647. [Google Scholar] [CrossRef]
- Abdullah, A.G.; Shafii, M.A.; Pramuditya, S.; Setiadipura, T.; Anzhar, K. Multi-criteria decision making for nuclear power plant selection using fuzzy AHP: Evidence from Indonesia. Energy AI 2023, 14, 100263. [Google Scholar] [CrossRef]
- Pasaoglu, G.; Garcia, N.P.; Zubi, G. A multi-criteria and multi-expert decision aid approach to evaluate the future Turkish power plant portfolio. Energy Policy 2018, 119, 654–665. [Google Scholar] [CrossRef]
- Chatzimouratidis, A.I.; Pilavachi, P.A. Decision support systems for power plants impact on the living standard. Energy Convers. Manag. 2012, 64, 182–198. [Google Scholar] [CrossRef]
- Geldermann, J.; Bertsch, V.; Treitz, M.; French, S.; Papamichail, K.N.; Hämäläinen, R.P. Multi-criteria decision support and evaluation of strategies for nuclear remediation management. Omega 2009, 37, 238–251. [Google Scholar] [CrossRef]
- Ríos-Insua, S.; Gallego, E.; Jiménez, A.; Mateos, A. A multi-attribute decision support system for selecting intervention strategies for radionuclide contaminated freshwater ecosystems. Ecol. Model. 2006, 196, 195–208. [Google Scholar] [CrossRef]
- Mukhamediev, R.; Mustakayev, R.; Yakunin, K.; Kiseleva, S.; Gopejenko, V. Multi-Criteria Decision Support System for RES Evaluation. In Proceedings of the 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT), Almaty, Kazakhstan, 17–19 October 2018; pp. 1–6. [Google Scholar]
- Yatsalo, B.; Sullivan, T.; Didenko, V.; Gritsuk, S.; Tkachuk, A.; Mireabasov, O.; Slipenkaya, V.; Pichugina, I.; Linkov, I. Environmental risk management with the use of multi-criteria spatial decision support system DECERNS. Int. J. Risk Assess. Manag. 2012, 16, 175–198. [Google Scholar] [CrossRef]
- Franki, V.; Višković, A. Multi-criteria decision support: A case study of Southeast Europe power systems. Util. Policy 2021, 73, 101286. [Google Scholar] [CrossRef]
- Volkart, K.; Weidmann, N.; Bauer, C.; Hirschberg, S. Multi-criteria decision analysis of energy system transformation pathways: A case study for Switzerland. Energy Policy 2017, 106, 155–168. [Google Scholar] [CrossRef]
- Klein, S.J.; Whalley, S. Comparing the sustainability of US electricity options through multi-criteria decision analysis. Energy Policy 2015, 79, 127–149. [Google Scholar] [CrossRef]
- Atici, K.B.; Ulucan, A. A multiple criteria energy decision support system. Technol. Econ. Dev. Econ. 2011, 17, 219–245. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Huang, Z.R.; Zhao, F.Y.; Wang, Y. Mathematical modeling and evaluation of the safety culture for the operating nuclear power plants in China: Critical review and multi-criteria decision analysisd. Ann. Nucl. Energy 2022, 168, 108871. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Li, Y.G.; Tsoutsanis, E.; Newby, M.; Zhao, X.D. Techno-economic evaluation and optimization of CCGT power Plant: A multi-criteria decision support system. Energy Convers. Manag. 2021, 237, 114107. [Google Scholar] [CrossRef]
- Bohanec, M.; Vrbanić, I.; Bašić, I.; Debelak, K.; Štrubelj, L. A decision-support approach to severe accident management in nuclear power plants. J. Decis. Syst. 2020, 29, 438–449. [Google Scholar] [CrossRef]
- Bertsch, V.; Geldermann, J. Preference elicitation and sensitivity analysis in multicriteria group decision support for industrial risk and emergency management. Int. J. Emerg. Manag. 2008, 5, 7–24. [Google Scholar] [CrossRef]
- Triantaphyllou, E.; Triantaphyllou, E. Introduction to multi-criteria decision making. Multi-Criteria Decis. Mak. Methods A Comp. Study 2000, 156, 1–4. [Google Scholar]
- Kraujalienė, L. Comparative analysis of multicriteria decision-making methods evaluating the efficiency of technology transfer. Business Manag. Educ. 2019, 17, 72–93. [Google Scholar] [CrossRef]
- Nazari, M.A.; Aslani, A.; Ghasempour, R. Analysis of solar farm site selection based on TOPSIS approach. Int. J. Soc. Ecol. Sustain. Dev. (IJSESD) 2018, 9, 12–25. [Google Scholar] [CrossRef]
- Brans, J.P.; De Smet, Y. PROMETHEE methods. Mult. Criteria Decis. Anal. State Art Surv. 2016, 9, 187–219. [Google Scholar]
- Podvezko, V. The comparative analysis of MCDA methods SAW and COPRAS. Eng. Econ. 2011, 22, 134–146. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res. 2007, 178, 514–529. [Google Scholar] [CrossRef]
- Turanoglu Bekar, E.; Cakmakci, M.; Kahraman, C. Fuzzy COPRAS method for performance measurement in total productive maintenance: A comparative analysis. J. Bus. Econ. Manag. 2016, 17, 663–684. [Google Scholar] [CrossRef]
- Adalı, E.A.; Işık, A.T. CRITIC and MAUT methods for the contract manufacturer selection problem. Eur. J. Multidiscip. Stud. 2017, 2, 88–96. [Google Scholar] [CrossRef]
- Hill, M.J.; Braaten, R.; Veitch, S.M.; Lees, B.G.; Sharma, S. Multi-criteria decision analysis in spatial decision support: The ASSESS analytic hierarchy process and the role of quantitative methods and spatially explicit analysis. Environ. Model. Softw. 2005, 20, 955–976. [Google Scholar] [CrossRef]
- Zeman, E.M.; Schreiber, E.C.; Tepper, J.E. Basics of radiation therapy. Abeloff’s Clin. Oncol. 2020, 16, 431–460. [Google Scholar]
- Funk, R.K.; Stockham, A.L.; Laack, N.N.I. Basics of radiation therapy. Clin. Cardio-Oncol. Amst. 2016, 39–60. [Google Scholar]
- Cao, B.; Zheng, J.; Chen, Y. Radiation dose calculations for a hypothetical accident in xianning nuclear power plant. Sci. Technol. Nucl. Install. 2016, 156, 108179. [Google Scholar] [CrossRef]
- Zhu, Y.; Guo, J.; Nie, C.; Zhou, Y. Simulation and dose analysis of a hypothetical accident in Sanmen nuclear power plant. Ann. Nucl. Energy 2014, 65, 207–213. [Google Scholar] [CrossRef]
- Breznik, B.; Boznar, M.Z.; Mlakar, P.; Tinarelli, G. Dose projection using dispersion models. Int. J. Environ. Pollut. 2003, 20, 278–285. [Google Scholar] [CrossRef]
- Feyzinejad, M.; Malakooti, H.; Sadrinasab, M.; Ghader, S. Radiological dose Assessment by Means of a Coupled WRF-HYSPLIT Model under Normal Operation of Bushehr Nuclear Power Plant. Pollution 2019, 5, 429–448. [Google Scholar]
- Katata, G.; Terada, H.; Nagai, H.; Chino, M. Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2012, 111, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Evangeliou, N.; Balkanski, Y.; Cozic, A.; Møller, A.P. Global transport and deposition of 137Cs following the Fukushima nuclear power plant accident in Japan: Emphasis on Europe and Asia using high–resolution model versions and radiological impact assessment of the human population and the environment using interactive tools. Environ. Sci. Technol. 2013, 47, 5803–5812. [Google Scholar] [PubMed]
- Saunier, O.; Mathieu, A.; Didier, D.; Tombette, M.; Quélo, D.; Winiarek, V.; Bocquet, M. An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations. Atmos. Chem. Phys. 2013, 13, 11403–11421. [Google Scholar] [CrossRef]
- Kubota, Y.; Takahashi, H.; Watanabe, Y.; Fuma, S.; Kawaguchi, I.; Aoki, M.; Kubota, M.; Furuhata, Y.; Shigemura, Y.; Yamada, F.; et al. Estimation of absorbed radiation dose rates in wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi nuclear power plant accident. J. Environ. Radioact. 2015, 142, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Takahara, S.; Iijima, M.; Watanabe, M. Assessment model of radiation doses from external exposure to the public after the Fukushima Daiichi Nuclear Power Plant accident. Health Phys. 2020, 118, 664–677. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.H.; Niisoe, T.; Imanaka, M.; Takahashi, T.; Amako, K.; Fujii, Y.; Kanameishia, M.; Ohsef, K.; Nakaif, T.; Nishikawaf, T.; et al. Radiation dose rates now and in the future for residents neighboring restricted areas of the Fukushima Daiichi Nuclear Power Plant. Proc. Natl. Acad. Sci. USA 2014, 111, E914–E923. [Google Scholar] [CrossRef] [PubMed]
- Tsujimura, N.; Yoshida, T.; Furuta, S. Measurements and Calculations of Beta Dose Rates on Contaminated Ground at the Fukushima Daiichi Nuclear Power Plant Site. In IRPA; Nuclear Fuel Cycle Engineering Laboratories: Tokai-mura, Japan, 2012; pp. 13–18. [Google Scholar]
- Simsek, V.; Pozzoli, L.; Unal, A.; Kindap, T.; Karaca, M. Simulation of 137Cs transport and deposition after the Chernobyl Nuclear Power Plant accident and radiological doses over the Anatolian Peninsula. Sci. Total Environ. 2014, 499, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Rääf, C.L.; Tondel, M.; Isaksson, M. A model for estimating the total absorbed dose to the thyroid in Swedish inhabitants following the Chernobyl nuclear power plant accident: Implications for existing international estimates and future model applications. J. Radiol. Prot. 2019, 39, 522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Song, Y.; Ma, S.; Guo, Y.; Li, C. A rapid coupling method for calculating the radiation field in decommissioning nuclear power plants. Ann. Nucl. Energy 2021, 156, 108179. [Google Scholar] [CrossRef]
- Bednár, D.; Lištjak, M.; Slimák, A.; Nečas, V. Comparison of deterministic and stochastic methods for external gamma dose rate calculation in the decommissioning of nuclear power plants. Ann. Nucl. Energy 2019, 134, 67–76. [Google Scholar] [CrossRef]
- Lee, G.M.; Jung, W.S. A new method to calculate a standard set of finite cloud dose correction factors for the level 3 probabilistic safety assessment of nuclear power plants. Nucl. Eng. Technol. 2023, 56, 1225–1233. [Google Scholar] [CrossRef]
- Rääf, C.; Markovic, N.; Tondel, M.; Wålinder, R.; Isaksson, M. Introduction of a method to calculate cumulative age-and gender-specific lifetime attributable risk (LAR) of cancer in populations after a large-scale nuclear power plant accident. PLoS ONE 2020, 15, e0228549. [Google Scholar] [CrossRef] [PubMed]
- Evangeliou, N.; Balkanski, Y.; Cozic, A.; Møller, A.P. Global and local cancer risks after the Fukushima Nuclear Power Plant accident as seen from Chernobyl: A modeling study for radiocaesium (134Cs& 137Cs). Environ. Int. 2014, 64, 17–27. [Google Scholar] [PubMed]
- Yumashev, D.; Johnson, P. Flexible decision making in the wake of large scale nuclear emergencies: Long-term response. Eur. J. Oper. Res. 2017, 261, 368–389. [Google Scholar] [CrossRef]
- Miao, H.; Zhang, G.; Yu, P.; Shi, C.; Zheng, J. Dynamic Dose-Based Emergency Evacuation Model for Enhancing Nuclear Power Plant Emergency Response Strategies. Energies 2023, 16, 6338. [Google Scholar] [CrossRef]
- Malizia, A.; Carestia, M.; Cafarelli, C.; Milanese, L.; Pagannone, S.; Pappalardo, A.; Pedemonte, M.; Latini, G.; Barlascini, O.; Fiorini, E.; et al. The free license codes as Decision Support System (DSS) for the emergency planning to simulate radioactive releases in case of accidents in the new generation energy plants. WSEAS Trans. Environ. Dev 2014, 10, 453–464. [Google Scholar]
- Klint, P.; Van Der Storm, T.; Vinju, J. Rascal: A Domain Specific Language for Source Code Analysis and Manipulation. In Proceedings of the 2009 Ninth IEEE International Working Conference on Source Code Analysis and Manipulation, Edmonton, AB, Canada, 20–21 September 2009; pp. 168–177. [Google Scholar]
- Jow, H.N.; Sprung, J.L.; Ritchie, L.T.; Rollstin, J.A.; Chanin, D.I. MELCOR Accident Consequence Code System (MACCS); No. NUREG/CR-4691-Vol. 2; SAND-86-1562-Vol. 2.; Nuclear Regulatory Commission: Washington, DC, USA; Div. of Systems Research; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 1990.
- Mouelhi, S.; Girard, A.; Gössler, G. CoSyMA: A Tool for Controller Synthesis Using Multi-Scale Abstractions. In Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, Philadelphia, PA, USA, 8–11 April 2013; pp. 83–88. [Google Scholar]
- Tsai, T.L.; Lin, C.C.; Wang, T.W.; Chu, T.C. Radioactivity concentrations and dose assessment for soil samples around nuclear power plant IV in Taiwan. J. Radiol. Prot. 2008, 28, 347. [Google Scholar] [CrossRef] [PubMed]
- McNamara, K.; Peters, C.; Burstyn, I. Forecasting dose from unobserved times: Case study of transient workers at a nuclear power plant. Ann. Work Expo. Health 2018, 62, 808–817. [Google Scholar] [CrossRef]
- Balanya, S.A.; Ramos, D.; Ramirez-Hereza, P.; Toledano, D.T.; Gonzalez-Rodriguez, J.; Ariza-Velazquez, A.; Orlovac, J.V.; Gutiérrez, N.D. Gaussian processes for radiation dose prediction in nuclear power plant reactors. Chemom. Intell. Lab. Syst. 2022, 230, 104652. [Google Scholar] [CrossRef]
- Winter, D. Technical decision support system for French PWR off-site emergency management. Radiat. Prot. Dosim. 1997, 73, 95–97. [Google Scholar] [CrossRef]
- Park, W.J.; Nam, K.W.; Jang, S.Y.; Park, S.H. Development of a Korean decision making support system for a nuclear emergency. Radiat. Prot. Dosim. 1997, 73, 103–106. [Google Scholar] [CrossRef]
- Griffiths, M.P.; Binfield, K.G.D. Requirements of decision support tools for coordinating the national response to nuclear emergencies. Radiat. Prot. Dosim. 1997, 73, 131–134. [Google Scholar] [CrossRef]
- Carlé, B.; Vermeersch, F.; Palma, C.R. Systems improving communication in case of a nuclear emergency. In Proceedings of the International Community on Information Systems for Crisis Response Management, Brussels, Belgium, 3 May 2004. [Google Scholar]
- Mu, R.; Zuo, J.; Yuan, X. China’s approach to nuclear safety—From the perspective of policy and institutional system. Energy Policy 2015, 76, 161–172. [Google Scholar] [CrossRef]
- Lechtenbörger, C. CEDIM-Risk Map Germany: First results. In RISK21-Coping with Risks Due to Natural Hazards in the 21st Century; CRC Press: Boca Raton, FL, USA, 2006; pp. 149–156. [Google Scholar]
- Sangiorgi, M.; Hernández-Ceballos, M.A.; Jackson, K.; Cinelli, G.; Bogucarskis, K.; De Felice, L.; Patrascu, A.; De Cort, M. The European radiological data exchange platform (EURDEP): 25 years of monitoring data exchange. Earth Syst. Sci. Data 2020, 12, 109–118. [Google Scholar] [CrossRef]
- Ehrhardt, J. The RODOS system: Decision support for off-site emergency management in Europe. Radiat. Prot. Dosim. 1997, 73, 35–40. [Google Scholar] [CrossRef]
- Astrup, P.; Turcanu, C.; Puch, R.O.; Palma, C.R.; Mikkelsen, T. Data assimilation in the early phase: Kalman filtering RIMPUFF. In Forskningscenter Risoe. Risoe-R; Forskningscenter Risoe: Roskilde, Denmark, 2004. [Google Scholar]
- Potempski, S. Decision analysis of clean-up actions in inhabited areas in Poland after an accidental release of radionuclides. 2004. [Google Scholar]
- Raskob, W.; Hugon, M.; Raskob, W.; Gering, F.; Lochard, J.; Nisbet, A.; Starostova, A.; Tomic, B. Overview and main achievements of the EURANOS project: European approach to nuclear and radiological emergency management and rehabilitation strategies. Radioprotection 2010, 45, S9–S22. [Google Scholar] [CrossRef]
- NLN, A.M.A. Design of a Prototype Receptor-Centric Decision Support System for Studying the Impact of Hypothetical Nuclear Accidents & Their Mitigation. Ph.D. Thesis, Texas A&M University Library, College Station, TX, USA, 2021. [Google Scholar]
- Bohanec, M.; Vrbanić, I.; Bašić, I.; Debelak, K.; Štrubelj, L. Conceptual Design of a Decision Support Tool for Severe Accident Management in Nuclear Power Plants. Ph.D. Thesis, Institut Jožef Stefan, Ljubljana, Slovenia, 2019. [Google Scholar]
- Vamanu, D.; Slavnicu, S.D.; Slavnicu, E.; Vamanu, B. Decision support systems in nuclear emergencies: A scenario-based comparison of domestic and reference tools. Radiat. Prot. Dosim. 2004, 112, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Raskob, W.; Bertsch, V.; Geldermann, J.; Baig, S.; Gering, F. Demands to and experience with the Decision Support System RODOS for off-site emergency management in the decision making process in Germany. In Proceedings of the Second International ISCRAM Conference, Charlottesville, Brussels, Belgium, 19 April 2005. [Google Scholar]
- Hoe, S.; McGinnity, P.; Charnock, T.; Gering, F.; Jacobsen, L.H.S.; Sørensen, J.H.; Havskov, S.J.; Andersson, K.G.; Astrup, P. ARGOS decision support system for emergency management. In Proceedings of the 12th International Congress of the International Radiation Protection Association, Buenos Aires, Argentina, 19–24 October 2008. [Google Scholar]
- Strubelj, L.; Foerster, E.; Rastiello, G.; Daniell, J.; Bazargan-Sabet, B.; Gehl, P.; Vardon, P.J.; Mohan, V.D. The Goal of the New Approach to Reactor Safety Improvements (NARSIS) Project. In Proceedings of the 12th International Conference of the Croatian Nuclear Society, Zadar, Croatia, 3–6 June 2018. [Google Scholar]
- Argyris, N.; French, S. Nuclear emergency decision support: A behavioural OR perspective. Eur. J. Oper. Res. 2017, 262, 180–193. [Google Scholar] [CrossRef]
- Burstein, F.; Holsapple, C.W.; van de Walle, B.; Turoff, M. Decision support for emergency situations. Handb. Decis. Support Syst. 2 Var. 2008, 262, 39–63. [Google Scholar]
- Chen, P.; Wei, X.; Lu, M.; Zhu, Y.; Yao, N.; Xiao, X.; Chen, H. DiffusionTalker: Personalization and Acceleration for Speech-Driven 3D Face Diffuser. arXiv 2023, arXiv:2311.16565. [Google Scholar]
- Gupta, A.; Savarese, S.; Ganguli, S.; Fei-Fei, L. Embodied intelligence via learning and evolution. Nat. Commun. 2021, 45, 5721. [Google Scholar] [CrossRef] [PubMed]
- Bogue, R. Robots in the nuclear industry: A review of technologies and applications. Ind. Robot. Int. J. 2011, 38, 113–118. [Google Scholar] [CrossRef]
- Sejnowski, T.J. Large language models and the reverse turing test. Neural Comput. 2023, 35, 309–342. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, Y.; Feng, X. The impact of Japanese nuclear wastewater discharge into the sea on the global economy: Input-output model approach. Mar. Pollut. Bull. 2023, 192, 115067. [Google Scholar] [CrossRef]
Method Classification | Advantages | Disadvantages | Common Algorithms |
---|---|---|---|
Model-based methods | High reliability and high interpretability | Need to establish systematic mathematical modeling, and it is very difficult to achieve | Parity equations, observers, Kalman filters, parameter estimation |
Data-driven methods | No need for an accurate analytical model, and the modeling process is relatively simple and universal | Sample data are difficult to obtain, sensitive to data changes, not interpretable, and difficult to convince operators | ANN, SVM, decision tree, PCA, clustering, multivariate state estimate technique (MSET), partial least squares (PLS), auto associative kernel regression (AAKR) |
Signal-based methods | It possesses inherent interpretability and does not require excessive data | Cannot fully utilize data information | Spectrum analysis, time–frequency analysis (TFA), wavelet transform (WT), autoregressive (AR) signal model, control charts |
Method | Strengths | Weaknesses |
---|---|---|
AHP | The AHP method is advantageous for its straightforward application and adaptable hierarchy structure, suitable for diverse issue sizes. | The subjectivity and the requirement for comparative rather than independent option grading. |
TOPSIS | The TOPSIS method excels in delivering stable results across varying data due to its simple, programmable approach and direct evaluation without needing data transformation, preserving data integrity. | The use of Euclidean distance neglects attribute correlation, making weighting and consistent judgment difficult, particularly with extra attributes. |
PROMETHEE | The PROMETHEE method is valued for its ease of use, bypassing variable minimization and preserving data integrity without distortion. | This tool does not provide a clear framework for assigning the weights. |
SAW | It features a simple algorithm that can be executed manually or with basic software, offering variable compensation and demonstrating versatility and user-friendliness. | The estimates yielded do not always reflect the real status. The result may not be consistent in terms of logic, with the measures of one particular variable widely differing from one of other variables. |
VIKOR | The VIKOR method introduces stability intervals in weights. The result of ranking is a list of alternatives after special compromise ranking and the solution with an advantage rate. | This tool needs initial weights. |
COPRAS | It allows the final results of measuring to be easily compared and checked. | COPRAS is less stable compared to SAW or TOPSIS methods in data variation cases. |
MAUT | It incorporates uncertainty, providing a thorough evaluation of all consequences and preferences at each calculation step. | The MAUT method requires extensive data at every step to reflect decision-makers’ preferences, rendering it data heavy and subjective. |
Abbreviations | Project Duration | Full Names | Objectives |
---|---|---|---|
RODOS https://resy5.ites.kit.edu/, accessed on 15 May 2024RODOS [237] | 1996–1999 | Real-Time Online Decision Support System for Nuclear Emergencies | This project aimed to develop a comprehensive real-time online decision support system for emergency management in NPPs across Europe [237]. |
DAONEM https://cordis.europa.eu, accessed on 15 May 2024 [238] | 2000–2004 | Data assimilation for off-site nuclear emergency management | This initiative aimed to enhance the RODOS by developing and integrating a data assimilation capability for managing nuclear emergencies off-site [238]. |
MODEM | 2001–2005 | Monitoring data and information exchange among decision support systems | The MODEM project used XML technology to stimulate communication between scientific experts from different countries and institutes by facilitating the exchange of information used in decision support models to assess the impact of a release of radioactive material in the environment [233]. |
EVATECH https://cordis.europa.eu, accessed on 15 May 2024 [239] | 2001–2005 | Information requirements and countermeasure evaluation techniques in nuclear emergency management | It focused on information requirements and countermeasure evaluation techniques in nuclear emergency management [239]. |
EURANOS https://resy5.ites.kit.edu/, accessed on 15 May 2024EURANOS [240] | 2004–2009 | European approach to nuclear and radiological emergency management and rehabilitation strategies | This project aimed to improve nuclear and radiological emergency management and rehabilitation strategies across Europe [240]. |
FP7 | 2007–2013 | European Union’s Seventh Framework Programme for Research and Technological Development | It aimed to strengthen the scientific and technological base of European industry and to encourage its international competitiveness. |
PREPARE | 2013–2016 | Innovative integrated tools and platforms for radiological emergency preparedness and post-accident response in Europe | The project aimed to improve nuclear and radiological preparedness in Europe, especially considering the lessons learned from the Fukushima accident [240]. |
HARMONE | 2015–2017 | Harmonising Modeling Strategies of European Decision Support Systems for Nuclear Emergencies | This project sought to improve the environmental modeling and human dose assessment capabilities of JRODOS [241]. |
NARSIS https://www.narsis.eu/, accessed on 15 May 2024 [242] | 2017–2021 | The New Approach to Reactor Safety Improvements | This project aimed to improve safety assessment for NPPs in the event of external natural hazards [242]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Liang, J.; Tong, J.; Wang, H. Emergency Decision Support Techniques for Nuclear Power Plants: Current State, Challenges, and Future Trends. Energies 2024, 17, 2439. https://doi.org/10.3390/en17102439
Xiao X, Liang J, Tong J, Wang H. Emergency Decision Support Techniques for Nuclear Power Plants: Current State, Challenges, and Future Trends. Energies. 2024; 17(10):2439. https://doi.org/10.3390/en17102439
Chicago/Turabian StyleXiao, Xingyu, Jingang Liang, Jiejuan Tong, and Haitao Wang. 2024. "Emergency Decision Support Techniques for Nuclear Power Plants: Current State, Challenges, and Future Trends" Energies 17, no. 10: 2439. https://doi.org/10.3390/en17102439
APA StyleXiao, X., Liang, J., Tong, J., & Wang, H. (2024). Emergency Decision Support Techniques for Nuclear Power Plants: Current State, Challenges, and Future Trends. Energies, 17(10), 2439. https://doi.org/10.3390/en17102439