Operative Benefits of Residential Battery Storage for Decarbonizing Energy Systems: A German Case Study
Abstract
:1. Introduction
- How do different operation objectives of residential battery storage—namely, to react to spot market prices, to increase own self-consumption, and to reduce the regional peak load—affect the total generation costs of the system?
- What are the impacts of residential battery storage operation on regional self-sufficiency?
- What are the effects of these operation objectives on the utilization and congestion of transmission grids?
2. Methodology
2.1. Economic Dispatch Model
2.2. Transmission Grid Model
3. Description of the Case
- Market-oriented operation MK: Every energy storage system, together with energy technologies, operates in unison to reduce the total generation costs of the system. This is conceptually equivalent to when residential prosumers receive dynamic electricity prices based on the market prices.
- Self-consumption operation SC: Battery storage operates solely in response to the PV production and electricity demand of respective prosumers.
- Peak-reduction operation PR: In addition to the generation cost reduction, all energy technologies are also operated to reduce the peak feed-in and withdrawal of their respective regions.
3.1. Energy System Decarbonization Pathway
3.2. Disaggregation of Capacities and Demand
3.2.1. Renewable Energy Resources
3.2.2. Fuel-fired Power Plants
3.2.3. Energy Storage Technology
3.2.4. Demand in the Residential Sector
3.2.5. Demand in the Industrial and Commercial Sectors
3.2.6. Demand in the Transport Sector
3.2.7. Demand due to Synthetic Fuel Production
4. Results
4.1. Generation Costs and Technology Utilization
4.2. Regional Withdrawal Load and Self-Sufficiency
4.3. Utilization of the Transmission Grids
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Parameters | |
time interval | |
generation efficiency | |
storage efficiency | |
installed capacity | |
electricity demand | |
emission factor | |
emission price | |
fixed cost | |
fuel price | |
import price | |
peak power price | |
generation profile | |
variable cost | |
Set indexes | |
demand sector | |
fuel-fired power plant | |
r | region |
storage | |
t | time step |
generation technology | |
VRE power plant | |
Variables | |
storage charge | |
storage discharge | |
export | |
fuel consumption | |
electricity generation | |
import | |
effective withdrawal load | |
penalty for regional peak power | |
state of charge |
References
- International Renewable Energy Agency IRENA. World Energy Transitions Outlook 2023: 1.5 °C Pathway; International Renewable Energy Agency IRENA: Masdar City, United Arab Emirates, 2023; Available online: https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023 (accessed on 2 January 2024).
- Cochran, J.; Miller, M.; Zinaman, O.; Milligan, M.; Arent, D.; Palmintier, B.; Mueller, S. Flexibility in 21st Century Power Systems. 2014. Available online: https://www.nrel.gov/docs/fy14osti/61721.pdf (accessed on 2 January 2024).
- Zhang, Z.; Ding, T.; Zhou, Q.; Sun, Y.; Qu, M.; Zeng, Z.; Ju, Y.; Li, L.; Wang, K.; Chi, F. A review of technologies and applications on versatile energy storage systems. Renew. Sustain. Energy Rev. 2021, 148, 111263. [Google Scholar] [CrossRef]
- Dimitriadis, C.N.; Tsimopoulos, E.G.; Georgiadis, M.C. Optimization-based economic analysis of energy storage technologies in a coupled electricity and natural gas market. J. Energy Storage 2023, 58, 106332. [Google Scholar] [CrossRef]
- Bundesnetzagentur. Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen. Marktstammdatenregister (MaStR). 2023. Available online: https://www.marktstammdatenregister.de/ (accessed on 2 April 2024).
- Thema, J.; Thema, M. Nachnutzungskonzept: Braunkohle-Tagebaue als Pumpspeicherkraftwerk? Energiewirtschaftliche Tagesfragen; Wuppertal Institute for Climate, Environment and Energy: Wuppertal, Germany, 2019; Available online: https://epub.wupperinst.org/frontdoor/index/index/docId/7291 (accessed on 3 May 2024).
- Golombek, R.; Lind, A.; Ringkjøb, H.K.; Seljom, P. The role of transmission and energy storage in European decarbonization towards 2050. Energy 2022, 239, 122159. [Google Scholar] [CrossRef]
- Saldarini, A.; Longo, M.; Brenna, M.; Zaninelli, D. Battery Electric Storage Systems: Advances, Challenges, and Market Trends. Energies 2023, 16, 7566. [Google Scholar] [CrossRef]
- Hesse, H.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies 2017, 10, 2107. [Google Scholar] [CrossRef]
- Ziegler, M.S.; Trancik, J.E. Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy Environ. Sci. 2021, 14, 1635–1651. [Google Scholar] [CrossRef]
- Figgener, J.; Stenzel, P.; Kairies, K.P.; Linßen, J.; Haberschusz, D.; Wessels, O.; Angenendt, G.; Robinius, M.; Stolten, D.; Sauer, D.U. The development of stationary battery storage systems in Germany—A market review. J. Energy Storage 2020, 29, 101153. [Google Scholar] [CrossRef]
- Ugulu, A.I. Barriers and motivations for solar photovoltaic (PV) adoption in urban Nigeria. Int. J. Sustain. Energy Plan. Manag. 2019, 21, 19–34. [Google Scholar] [CrossRef]
- Alipour, M.; Irannezhad, E.; Stewart, R.A.; Sahin, O. Exploring residential solar PV and battery energy storage adoption motivations and barriers in a mature PV market. Renew. Energy 2022, 190, 684–698. [Google Scholar] [CrossRef]
- Gorremans, J.; Lits, C.; Rossi, R.; Schmela, M. European Market Outlook for Residential Battery Storage 2022–2026; SolarPower Europe: Bruxelles, Belgium, 2022; Available online: https://www.solarpowereurope.org/insights/thematic-reports/european-market-outlookfor-residential-battery-storage-1 (accessed on 5 January 2024).
- Agnew, S.; Dargusch, P. Consumer preferences for household-level battery energy storage. Renew. Sustain. Energy Rev. 2017, 75, 609–617. [Google Scholar] [CrossRef]
- Familia, T.; Horne, C. Customer trust in their utility company and interest in household-level battery storage. Appl. Energy 2022, 324, 119772. [Google Scholar] [CrossRef]
- Truong, C.; Naumann, M.; Karl, R.; Müller, M.; Jossen, A.; Hesse, H. Economics of Residential Photovoltaic Battery Systems in Germany: The Case of Tesla’s Powerwall. Batteries 2016, 2, 14. [Google Scholar] [CrossRef]
- Mateo, C.; Reneses, J.; Rodriguez-Calvo, A.; Frías, P.; Sánchez, Á. Cost–benefit analysis of battery storage in medium–voltage distribution networks. IET Gener. Transm. Distrib. 2016, 10, 815–821. [Google Scholar] [CrossRef]
- PEC. Comparison of the Costs of Residential Battery Storage Systems in 2023: Vergleich der Stromspeicher Kosten im Jahr 2023. 2023. Available online: https://pro-ec.de/photovoltaik/stromspeicher-kosten-preise-2023/ (accessed on 19 March 2024).
- Roos, M.H.; Geldtmeijer, D.; Nguyen, H.P.; Morren, J.; Slootweg, J.G. Optimizing the technical and economic value of energy storage systems in LV networks for DNO applications. Sustain. Energy Grids Netw. 2018, 16, 207–216. [Google Scholar] [CrossRef]
- Keck, F.; Lenzen, M. Drivers and benefits of shared demand-side battery storage—An Australian case study. Energy Policy 2021, 149, 112005. [Google Scholar] [CrossRef]
- Hollinger, R.; Diazgranados, L.M.; Braam, F.; Erge, T.; Bopp, G.; Engel, B. Distributed solar battery systems providing primary control reserve. IET Renew. Power Gener. 2016, 10, 63–70. [Google Scholar] [CrossRef]
- Peng, L.; Mauzerall, D.L.; Zhong, Y.D.; He, G. Heterogeneous effects of battery storage deployment strategies on decarbonization of provincial power systems in China. Nat. Commun. 2023, 14, 4858. [Google Scholar] [CrossRef]
- EUROSTAT. NUTS—Nomenclature of Territorial Units for Statistics. 2021. Available online: https://ec.europa.eu/eurostat/web/nuts/overview (accessed on 5 January 2024).
- Sterchele, P.; Brandes, J.; Heilig, J.; Wrede, D.; Kost, C.; Schlegl, T.; Bett, A.; Henning, H.M. Paths to a Climate-Neutral Energy System: The German Energy Transition in its Social Context. 2020. Available online: https://www.ise.fraunhofer.de/en/publications/studies/paths-toa-climate-neutral-energy-system.html (accessed on 4 June 2023).
- Kost, C. Renewable Energy in North Africa: Modeling of Future Electricity Scenarios and the Impact on Manufacturing and Employment. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2014. Available online: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-176538 (accessed on 1 February 2024).
- GAMS Software GmbH. General Algebraic Modeling System; v38.3.0. GAMS Software GmbH: Frechen, Germany, 2004. Available online: https://www.gams.com/ (accessed on 1 February 2024).
- Senkpiel, C.; Hauser, W. Systemic Evaluation of the Effects of Regional Self-Supply Targets on the German Electricity System Using Consistent Scenarios and System Optimization. Energies 2020, 13, 4695. [Google Scholar] [CrossRef]
- Naval, N.; Yusta, J.M.; Sánchez, R.; Sebastián, F. Optimal scheduling and management of pumped hydro storage integrated with grid-connected renewable power plants. J. Energy Storage 2023, 73, 108993. [Google Scholar] [CrossRef]
- Katz, J.; Balyk, O.; Hevia-Koch, P. The Impact of Residential Demand Response on the Costs of a Fossil-Free System Reserve. In Proceedings of the 11th Conference on Energy Economics and Technology: Energy Efficiency and Demand Response, Dresden, Germany, 8 April 2016; Technische Universität Dresden: Dresden, Germany, 2016. Available online: https://orbit.dtu.dk/en/publications/the-impact-of-residential-demand-response-on-the-costs-of-a-fossi (accessed on 7 May 2018).
- Wanapinit, N.; Thomsen, J.; Kost, C.; Weidlich, A. An MILP model for evaluating the optimal operation and flexibility potential of end-users. Appl. Energy 2021, 282, 116183. [Google Scholar] [CrossRef]
- Spieker, C. Europäische Strommarkt- und Übertragungsnetzsimulation zur Techno-ökonomischen Bewertung der Netzentwicklung. Ph.D. Thesis, Technische Universität Dortmund and Shaker Verlag, Herzogenrath, Germany, 2019. [Google Scholar]
- Seifi, H.; Sepasian, M.S. Electric Power System Planning: Issues, Algorithms and Solutions; Power Systems; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Spieker, C.; Klein, D.; Liebenau, V.; Teuwsen, J.; Rehtanz, C. European electricity market and network simulation for energy system analysis. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar] [CrossRef]
- German Federal Government. Bundes-Klimaschutzgesetz (Federal Climate Change Act): KSG. 2023. Available online: https://www.gesetze-im-internet.de/ksg/ (accessed on 19 October 2023).
- Agora Energiewende. Climate-Neutral Power System 2035: How the German Power Sector Can Become Climate-Neutral by 2035. Available online: https://www.agora-energiewende.org/publications/climate-neutral-power-system-2035-summary (accessed on 23 February 2024).
- Agora Energiewende; Forschungsstelle für Energiewirtschaft e.V. Haushaltsnahe Flexibilitäten nutzen: Wie Elektrofahrzeuge, Wärmepumpen und Co. die Stromkosten für alle Senken Können. 2023. Available online: https://www.agora-energiewende.de/publikationen/haushaltsnahe-flexibilitaeten-nutzen (accessed on 2 April 2024).
- Bedarfsermittlung 2019–2030: Bestätigung Netzentwicklungsplan Strom; Bundesnetzagentur: Bonn, Germany, 2019.
- Bedarfsermittlung 2021–2035: Bestätigung Netzentwicklungsplan Strom; Bundesnetzagentur: Bonn, Germany, 2019.
- Risch, S.; Maier, R.; Du, J.; Pflugradt, N.; Stenzel, P.; Kotzur, L.; Stolten, D. Potentials of Renewable Energy Sources in Germany and the Influence of Land Use Datasets. Energies 2022, 15, 5536. [Google Scholar] [CrossRef]
- C3S. ERA5 Hourly Data on Single Levels from 1940 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.adbb2d47?tab=overview (accessed on 14 May 2024).
- BDEW. Standard electricity load profile (Standardlasprofile—Strom). 2017. Available online: https://www.bdew.de/energie/standardlastprofilestrom/ (accessed on 10 September 2023).
- Palzer, A. Sektorübergreifende Modellierung und Optimierung eines Zukünftigen Deutschen Energiesystems unter Berücksichtigung von Energieeffizienzmaßnahmen im Gebäudesektor: Cross-Sectoral Modeling and Optimization of a Future German Energy System, Taking Energy Efficiency Measures into Account in the Building Sector. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2016. [Google Scholar] [CrossRef]
- Gotzens, F.; Gillessen, B.; Burges, S.; Hennings, W.; Müller-Kirchenbauer, J.; Seim, S.; Verwiebe, P.; Schmid, T.; Jetter, F.; Limmer, T. Harmonization and Development of Methods for Modelling of Energy Demands in Spatial and Temporal Resolutions (DemandRegio). Available online: https://www.ffe.de/veroeffentlichungen/demandregio-harmonisierung-und-entwicklung-von-verfahren-zur-regionalen-und-zeitlichen-aufloesung-von-energienachfragen/ (accessed on 10 September 2023).
- Statistisches Bundesamt. Classification of Economic Activities (WZ 2008); Statistisches Bundesamt: Wiesbaden, Germany, 2008; Available online: https://www.destatis.de/DE/Methoden/Klassifikationen/textbaustein-klassifikationen.html (accessed on 4 February 2024).
- Nobis, C.; Follmer, R.; Herter, M.; Bäumer, M. Mobility in Germany 2023. Available online: https://www.mobilitaet-in-deutschland.de/hintergrund-en.html (accessed on 4 January 2024).
- Neuwirth, M.; Fleiter, T.; Manz, P.; Hofmann, R. The future potential hydrogen demand in energy-intensive industries—A site-specific approach applied to Germany. Energy Convers. Manag. 2022, 252, 115052. [Google Scholar] [CrossRef]
- Wanapinit, N.; Thomsen, J.; Weidlich, A. Find the balance: How do electricity tariffs incentivize different system services from demand response? Sustain. Energy Grids Netw. 2022, 32, 100948. [Google Scholar] [CrossRef]
- Fett, D.; Fraunholz, C.; Keles, D. Diffusion and system impact of residential battery storage under different regulatory settings. Energy Policy 2021, 158, 112543. [Google Scholar] [CrossRef]
- Martins, J.; Miles, J. A techno-economic assessment of battery business models in the UK electricity market. Energy Policy 2021, 148, 111938. [Google Scholar] [CrossRef]
Technology | 2020 | 2030 | 2045 |
---|---|---|---|
PV | 67.9 | 214.7 | 488.9 |
WT onshore | 58.1 | 120.9 | 219.7 |
WT offshore | 8.2 | 28.3 | 75.9 |
Biomass-fired PP | 8.5 | 4.0 | 2.1 |
Natural-gas-fired PP | 33.4 | 85.4 | 50.4 |
Coal-fired PP | 44.0 | 17.0 | 0.0 |
ROR | 4.0 | 4.0 | 4.0 |
Hydrogen-fired PP | 0.0 | 1.1 | 125.3 |
Nuclear PP | 8.1 | 0.0 | 0.0 |
Oil-fired PP | 4.4 | 0.0 | 0.0 |
Technology | Unit | 2020 | 2030 | 2045 |
---|---|---|---|---|
Battery | GWh | 0.6 | 70.2 | 116.9 |
BEVs | mil | 0.4 | 22.8 | 51.4 |
Pumped hydro storage | GWh | 39.6 | 39.6 | 39.6 |
Demand | 2020 | 2030 | 2045 |
---|---|---|---|
Residential | 128.9 | 154.8 | 181.8 |
Industry and Commercial | 339.3 | 536.3 | 645.9 |
Transport | 0.9 | 48.1 | 215.3 |
Synthetic Fuel Production | 0 | 29.9 | 203.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanapinit, N.; Offermann, N.; Thelen, C.; Kost, C.; Rehtanz, C. Operative Benefits of Residential Battery Storage for Decarbonizing Energy Systems: A German Case Study. Energies 2024, 17, 2376. https://doi.org/10.3390/en17102376
Wanapinit N, Offermann N, Thelen C, Kost C, Rehtanz C. Operative Benefits of Residential Battery Storage for Decarbonizing Energy Systems: A German Case Study. Energies. 2024; 17(10):2376. https://doi.org/10.3390/en17102376
Chicago/Turabian StyleWanapinit, Natapon, Nils Offermann, Connor Thelen, Christoph Kost, and Christian Rehtanz. 2024. "Operative Benefits of Residential Battery Storage for Decarbonizing Energy Systems: A German Case Study" Energies 17, no. 10: 2376. https://doi.org/10.3390/en17102376
APA StyleWanapinit, N., Offermann, N., Thelen, C., Kost, C., & Rehtanz, C. (2024). Operative Benefits of Residential Battery Storage for Decarbonizing Energy Systems: A German Case Study. Energies, 17(10), 2376. https://doi.org/10.3390/en17102376