Consumption-Based Energy Footprints in Iceland: High and Equally Distributed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Context and Survey Data
2.2. Energy Footprinting
2.2.1. Functional Unit
- First adult aged 18 and over = 1.0;
- Additional adults aged 18 and over = 0.7;
- Each member aged under 18 = 0.5.
2.2.2. Housing
2.2.3. Transport
Vehicles
Public Transport
Leisure Travel
2.2.4. Goods and Services
2.2.5. Food
2.2.6. Second Home
2.3. Analytical Methods
- Y is the dependent variable.
- X1, X2,…Xk are the independent variables.
- β0, β1, β2,…βk are the coefficients that represent the relationship between each independent variable and the dependent variable.
- ε is the error term, representing the difference between the observed and predicted values.
- p is the probability of the dependent variable occurring.
- X1, X2,…Xk are the independent variables.
- β0, β1, β2,…βk are the coefficients representing the impact of each independent variable on the log-odds of the dependent variable.
3. Results
3.1. The Geography of Energy Footprints in Iceland
3.2. Predictors of High Energy Footprints
4. Discussion
4.1. High and Equal Footprints in Iceland
4.2. The Geography of Energy Footprints in Iceland
4.3. The Value of Taking a Bottom-Up and a Consumption-Based Perspective
4.4. Policy Implications
4.5. Limitations and Future Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CED | Cumulative Energy Demand |
COICOP | Classification of Individual Consumption According to Purpose |
EEI | Environmentally Extended Input-Output |
EF | Energy Footprint |
IO | Input–Output |
LCA | Life Cycle Assessment |
SOA | Statistical Output Area |
Appendix A
References
- IPCC. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- UNEP. The Emissions Gap Report (EGR) 2021: The Heat Is On—A World of Climate Promises Not Yet Delivered; UNEP: Nairobi, Kenya, 2021. [Google Scholar]
- Creutzig, F.; Roy, J.; Lamb, W.F.; Azevedo, I.M.L.; Bruine de Bruin, W.; Dalkmann, H.; Edelenbosch, O.Y.; Geels, F.W.; Grubler, A.; Hepburn, C.; et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Change 2018, 8, 260–263. [Google Scholar] [CrossRef]
- Burke, M.J. Energy-Sufficiency for a Just Transition: A Systematic Review. Energies 2020, 13, 2444. [Google Scholar] [CrossRef]
- Toulouse, E.; Sahakian, M.; Bohnenberger, K.; Bierwirth, A.; Lorek, S.; Leuser, L. Energy sufficiency: How can research better help and inform policy-making? In Proceedings of the European Council for an Energy Efficient Economy, Belambra Presqu’île de Giens, France, 3–8 June 2019. [Google Scholar]
- Brand-Correa, L.I.; Steinberger, J.K. A Framework for Decoupling Human Need Satisfaction from Energy Use. Ecol. Econ. 2017, 141, 43–52. [Google Scholar] [CrossRef]
- United Nations. Theme Report on Energy Access Towards the Achievement of SDG 7 and Net-Zero Emission; United Nations: New York, NY, USA, 2021. [Google Scholar]
- IEA; IRENA; UNSD; World Bank; WHO. Tracking SDG 7: The Energy Progress Report; International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2023. [Google Scholar]
- Rao, N.D.; Min, J. Decent Living Standards: Material Prerequisites for Human Wellbeing. Soc. Indic. Res. 2018, 138, 225–244. [Google Scholar] [CrossRef]
- Baltruszewicz, M.; Steinberger, J.K.; Paavola, J.; Ivanova, D.; Brand-Correa, L.I.; Owen, A. Social outcomes of energy use in the United Kingdom: Household energy footprints and their links to well-being. Ecol. Econ. 2023, 205, 107686. [Google Scholar] [CrossRef]
- Wiedmann, T.; Lenzen, M.; Keyßer, L.T.; Steinberger, J.K. Scientists’ warning on affluence. Nat. Commun. 2020, 11, 3107. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, F.; Niamir, L.; Bai, X.; Callaghan, M.; Cullen, J.; Díaz-José, J.; Figueroa, M.; Grubler, A.; Lamb, W.F.; Leip, A.; et al. Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nat. Clim. Change 2022, 12, 36–46. [Google Scholar] [CrossRef]
- Millward-Hopkins, J.; Steinberger, J.K.; Rao, N.D.; Oswald, Y. Providing decent living with minimum energy: A global scenario. Glob. Environ. Change 2020, 65, 102168. [Google Scholar] [CrossRef]
- Kikstra, J.S.; Mastrucci, A.; Min, J.; Riahi, K.; Rao, N.D. Decent living gaps and energy needs around the world. Environ. Res. Lett. 2021, 16, 095006. [Google Scholar] [CrossRef]
- Millward-Hopkins, J.; Oswald, Y. ‘Fair’ inequality, consumption and climate mitigation. Environ. Res. Lett. 2021, 16, 034007. [Google Scholar] [CrossRef]
- Heinonen, J.; Ottelin, J.; Ala-Mantila, S.; Wiedmann, T.; Clarke, J.; Junnila, S. Spatial consumption-based carbon footprint assessments—A review of recent developments in the field. J. Clean. Prod. 2020, 256, 120335. [Google Scholar] [CrossRef]
- Li, Q.; Chen, H. The Relationship between Human Well-Being and Carbon Emissions. Sustainability 2021, 13, 547. [Google Scholar] [CrossRef]
- Arto, I.; Capellán-Pérez, I.; Lago, R.; Bueno, G.; Bermejo, R. The energy requirements of a developed world. Energy Sustain. Dev. 2016, 33, 1–13. [Google Scholar] [CrossRef]
- Oswald, Y.; Owen, A.; Steinberger, J.K. Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nat. Energy 2020, 5, 231–239. [Google Scholar] [CrossRef]
- tho Pesch, G.; Einarsdóttir, A.K.; Dillman, K.J.; Heinonen, J. Energy Consumption and Human Well-Being: A Systematic Review. Energies 2023, 16, 6494. [Google Scholar] [CrossRef]
- Sovacool, B.K. Contestation, contingency, and justice in the Nordic low-carbon energy transition. Energy Policy 2017, 102, 569–582. [Google Scholar] [CrossRef]
- Urban, F.; Nordensvärd, J. Low carbon energy transitions in the Nordic countries: Evidence from the environmental Kuznets curve. Energies 2018, 11, 2209. [Google Scholar] [CrossRef]
- Orkustofnun. OS-2023-T011-01: Frumorkunotkun á Íslandi 1940–2022. Available online: https://orkustofnun.is/upplysingar/talnaefni/orka (accessed on 5 January 2024).
- Orkustofnun. OS-2023-T002-01: Uppsett Rafafl og Raforkuframleiðsla í Virkjunum á Íslandi 2022. Available online: https://orkustofnun.is/upplysingar/talnaefni/raforka (accessed on 5 January 2024).
- Landsvirkjun; Umhverfis- orku- og loftslagsráðuneytið; Orkustofnun. Engin Orkusóun: Möguleikar á Betri Raforkunýtni á Íslandi; Ministry of the Environment, Energy and Climate: Reykjavík, Iceland, 2023.
- Government of Iceland. Staða og Áskoranir í Orkumálum með vísan til Markmiða og Áherslna Stjórnvalda í Loftslagsmálum; Ministry of the Environment, Energy and Climate: Reykjavík, Iceland, 2022.
- Krausmann, F.; Richter, R.; Eisenmenger, N. Resource Use in Small Island States: Material Flows in Iceland and Trinidad and Tobago, 1961–2008. J. Ind. Ecol. 2014, 18, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.; Heinonen, J.; Ottelin, J. Emissions in a decarbonised economy? Global lessons from a carbon footprint analysis of Iceland. J. Clean. Prod. 2017, 166, 1175–1186. [Google Scholar] [CrossRef]
- Landsvirkjun. Pressing Energy Matters. Available online: https://www.landsvirkjun.com/news/pressing-energy-matters (accessed on 6 February 2024).
- Visir. Hitaveitur Landsins Komnar að Þolmörkum. Available online: https://www.visir.is/g/20222340407d/hitaveitur-landsins-komnar-ad-tholmorkum (accessed on 6 February 2024).
- Statistics Iceland. Íbúar Landsins Voru 383.726 í Byrjun árs 2024. Available online: https://www.hagstofa.is/utgafur/frettasafn/mannfjoldi/mannfjoldinn-1-januar-2024/ (accessed on 22 March 2024).
- World Bank. Population Density (People per sq. km of Land Area). Available online: https://data.worldbank.org/indicator/EN.POP.DNST (accessed on 10 January 2024).
- Orkustofnun. Jarðvarmaspá 2021–2060. In Eftirspurnarspá á Landsvísu; Orkustofnun: Reykjavík, Iceland, 2022. [Google Scholar]
- Shortall, R.; Davidsdottir, B. How to measure national energy sustainability performance: An Icelandic case-study. Energy Sustain. Dev. 2017, 39, 29–47. [Google Scholar] [CrossRef]
- Olafsson, S.; Cook, D.; Davidsdottir, B.; Johannsdottir, L. Measuring countries׳ environmental sustainability performance—A review and case study of Iceland. Renew. Sustain. Energy Rev. 2014, 39, 934–948. [Google Scholar] [CrossRef]
- Johannesson, S.; Davidsdottir, B.; Heinonen, J. Standard Ecological Footprint Method for Small, Highly Specialized Economies. Ecol. Econ. 2018, 146, 370–380. [Google Scholar] [CrossRef]
- Heinonen, J.; Olson, S.; Czepkiewicz, M.; Árnadóttir, Á.; Ottelin, J. Too much consumption or too high emissions intensities? Explaining the high consumption-based carbon footprints in the Nordic countries. Environ. Res. Commun. 2022, 4, 125007. [Google Scholar] [CrossRef]
- OECD. Framework for integrated analysis. In Framework for Statistics on the Distribution of Household Income, Consumption and Wealth; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Statistics Finland. Consumption Unit (OECD). Available online: https://www.stat.fi/meta/kas/kulutusyks_en.html (accessed on 2 January 2022).
- Ala-Mantila, S.; Ottelin, J.; Heinonen, J.; Junnila, S. To each their own? The greenhouse gas impacts of intra-household sharing in different urban zones. J. Clean. Prod. 2016, 135, 356–367. [Google Scholar] [CrossRef]
- Veitur. Annual average energy consumption of district heating and electricity use of homes per m2. 2023; Unpublished Work. [Google Scholar]
- Ecoinvent Association. Ecoinvent Database 3.6. Available online: www.ecoinvent.org (accessed on 10 September 2023).
- Karlsdottir, M.R.; Heinonen, J.; Palsson, H.; Palsson, O.P. Life cycle assessment of a geothermal combined heat and power plant based on high temperature utilization. Geothermics 2020, 84, 101727. [Google Scholar] [CrossRef]
- Vimpari, J. Should energy efficiency subsidies be tied into housing prices? Environ. Res. Lett. 2021, 16, 064027. [Google Scholar] [CrossRef]
- Cherubini, F.; Bird, N.D.; Cowie, A.; Jungmeier, G.; Schlamadinger, B.; Woess-Gallasch, S. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour. Conserv. Recycl. 2009, 53, 434–447. [Google Scholar] [CrossRef]
- Ministry of Tourism-Industry and Innovation. Skýrsla Ferðamála-, Iðnaðar og Nýsköpunarráðherra um Innlenda Eldnseytisframleiðslu; Ministry of Tourism-Industry and Innovation: Reykjavík, Iceland, 2018.
- Prussi, M.; Yugo, M.; De Prada, L.; Padella, M.; Edwards, R.; Lonza, L. JEC Well-to-Tank Report V5: JEC Well-To-Wheels Analysis: Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European context; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Chester, M.V.; Horvath, A. Environmental assessment of passenger transportation should include infrastructure and supply chains. Environ. Res. Lett. 2009, 4, 024008. [Google Scholar] [CrossRef]
- Strætó. Sjálfbærniskýrsla Strætó 2022; Strætó: Reykjavík, Iceland, 2022. [Google Scholar]
- Dillman, K.; Czepkiewicz, M.; Heinonen, J.; Fazeli, R.; Árnadóttir, Á.; Davíðsdóttir, B.; Shafiei, E. Decarbonization scenarios for Reykjavik’s passenger transport: The combined effects of behavioural changes and technological developments. Sustain. Cities Soc. 2021, 65, 102614. [Google Scholar] [CrossRef]
- Chester, M.V. Life-Cycle Environmental Inventory of Passenger Transportation in the United States; UC Berkeley: Berkeley, CA, USA, 2008; Available online: https://escholarship.org/uc/item/7n29n303 (accessed on 27 March 2024).
- Åkerman, J. Climate impact of international travel by Swedish residents. J. Transp. Geogr. 2012, 25, 87–93. [Google Scholar] [CrossRef]
- Aamaas, B.; Borken-Kleefeld, J.; Peters, G.P. The climate impact of travel behavior: A German case study with illustrative mitigation options. Environ. Sci. Policy 2013, 33, 273–282. [Google Scholar] [CrossRef]
- Government of UK. Greenhouse Gas Reporting: Conversion Factors 2020; Government of UK: London, UK, 2020.
- Stadler, K.; Wood, R.; Bulavskaya, T.; Södersten, C.-J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernández, J.; Kuenen, J.; Bruckner, M.; et al. EXIOBASE 3 (3.8.2); Zenodo: Genève, Switzerland, 2021. [Google Scholar] [CrossRef]
- Ottelin, J.; Cetinay, H.; Behrens, P. Rebound effects may jeopardize the resource savings of circular consumption: Evidence from household material footprints. Environ. Res. Lett. 2020, 15, 104044. [Google Scholar] [CrossRef]
- Heinonen, J.; Junnila, S. Residential energy consumption patterns and the overall housing energy requirements of urban and rural households in Finland. Energy Build. 2014, 76, 295–303. [Google Scholar] [CrossRef]
- Baiocchi, G.; Minx, J.; Hubacek, K. The Impact of Social Factors and Consumer Behavior on Carbon Dioxide Emissions in the United Kingdom. J. Ind. Ecol. 2010, 14, 50–72. [Google Scholar] [CrossRef]
- Maczionsek, M.I.J.H.; Dillman, K.J.; Heinonen, J. Linking perception and reality: Climate-sustainability perception and carbon footprints in the Nordic countries. J. Clean. Prod. 2023, 430, 139750. [Google Scholar] [CrossRef]
- Hoaglin, D.C.; Iglewicz, B. Fine-Tuning Some Resistant Rules for Outlier Labeling. J. Am. Stat. Assoc. 1987, 82, 1147–1149. [Google Scholar] [CrossRef]
- Büchs, M.; Schnepf, S.V. Who emits most? Associations between socio-economic factors and UK households’ home energy, transport, indirect and total CO2 emissions. Ecol. Econ. 2013, 90, 114–123. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Lenzen, M.; Steinberger, J.K. Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications. Energy Policy 2013, 63, 696–707. [Google Scholar] [CrossRef]
- Jones, C.; Kammen, D.M. Spatial Distribution of U.S. Household Carbon Footprints Reveals Suburbanization Undermines Greenhouse Gas Benefits of Urban Population Density. Environ. Sci. Technol. 2014, 48, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Lýsigagnagátt. Smásvæði 2021/Minor Statistical Output Areas (MSOA). Available online: https://gatt.lmi.is/geonetwork/srv/eng/catalog.search#/metadata/26cf063e-51b3-459e-afd2-934b55250d48 (accessed on 30 July 2023).
- Villamor, E.; Akizu-Gardoki, O.; Heinonen, J.T.; Bueno, G. Global Multi-Regional Input-Output methodology reveals lower energy footprint in an alternative community project. Sustain. Prod. Consum. 2022, 34, 65–77. [Google Scholar] [CrossRef]
- Statistics Iceland. Gini Coefficient in Europe 2022. Available online: https://www.statice.is/publications/news-archive/quality-of-life/gini-coefficient-preliminary-figures-for-2022/#:~:text=In%202022%2C%20inequality%20was%20relatively,Union%20countries%20stood%20at%2029.6 (accessed on 2 February 2024).
- House of Commons. Income Inequality in the UK; House of Commons: London, UK, 2023.
- Heinonen, J.; Czepkiewicz, M.; Árnadóttir, Á.; Ottelin, J. Drivers of Car Ownership in a Car-Oriented City: A Mixed-Method Study. Sustainability 2021, 13, 619. [Google Scholar] [CrossRef]
- United Nations. 2,000 Watt Society. Available online: https://ourworld.unu.edu/en/2000-watt-society (accessed on 6 February 2024).
- Ivanova, D.; Stadler, K.; Steen-Olsen, K.; Wood, R.; Vita, G.; Tukker, A.; Hertwich, E.G. Environmental impact assessment of household consumption. J. Ind. Ecol. 2016, 20, 526–536. [Google Scholar] [CrossRef]
- Peters, V.; Reusswig, F.; Altenburg, C. European citizens, carbon footprints and their determinants—Lifestyles and urban form. In Mitigating Climate Change: The Emerging Face of Modern Cities; Springer: Berlin, Germany, 2013; pp. 223–245. [Google Scholar]
- Czepkiewicz, M.; Heinonen, J.; Ottelin, J. Why do urbanites travel more than do others? A review of associations between urban form and long-distance leisure travel. Environ. Res. Lett. 2018, 13, 073001. [Google Scholar] [CrossRef]
- Keeling, D.J. Transport geography in Iceland. J. Transp. Geogr. 2020, 89, 102875. [Google Scholar] [CrossRef]
- Dillman, K.J.; Heinonen, J.; Davíðsdóttir, B. Of booms, busts, and sustainability: A socio-technical transition study of Iceland’s mobility regime and its proximity to strong sustainability. Environ. Innov. Soc. Transit. 2023, 48, 100755. [Google Scholar] [CrossRef]
- European Environmental Agency. New Registrations of Electric Vehicles in Europe. Available online: https://www.eea.europa.eu/en/analysis/indicators/new-registrations-of-electric-vehicles#:~:text=In%202022%2C%20the%20share%20of,%25)%20and%20Iceland%20(56%25 (accessed on 15 February 2024).
- Dillman, K.J.; Árnadóttir, Á.; Heinonen, J.; Czepkiewicz, M.; Davíðsdóttir, B. Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven. Sustainability 2020, 12, 9390. [Google Scholar] [CrossRef]
- Dillman, K.J.; Fazeli, R.; Shafiei, E.; Jónsson, J.Ö.G.; Haraldsson, H.V.; Davíðsdóttir, B. Spatiotemporal analysis of the impact of electric vehicle integration on Reykjavik’s electrical system at the city and distribution system level. Util. Policy 2021, 68, 101145. [Google Scholar] [CrossRef]
- Best, B.; Thema, J.; Zell-Ziegler, C.; Wiese, F.; Barth, J.; Breidenbach, S.; Nascimento, L.; Wilke, H. Building a database for energy sufficiency policies. F1000Res 2022, 11, 229. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, A.; Fehr, J. Rebound and steep increase of international travel after the COVID-19 pandemic: Where are we going from here? J. Travel Med. 2024, 31, taad158. [Google Scholar] [CrossRef] [PubMed]
- Upham, P.; Sovacool, B.K.; Monyei, C.G. Energy and transport poverty amidst plenty: Exploring just transition, lived experiences and policy implications in Iceland. Renew. Sustain. Energy Rev. 2022, 163, 112533. [Google Scholar] [CrossRef]
- Baltruszewicz, M.; Steinberger, J.K.; Ivanova, D.; Brand-Correa, L.I.; Paavola, J.; Owen, A. Household final energy footprints in Nepal, Vietnam and Zambia: Composition, inequality and links to well-being. Environ. Res. Lett. 2021, 16, 025011. [Google Scholar] [CrossRef]
- Akizu-Gardoki, O.; Wakiyama, T.; Wiedmann, T.; Bueno, G.; Arto, I.; Lenzen, M.; Lopez-Guede, J.M. Hidden Energy Flow indicator to reflect the outsourced energy requirements of countries. J. Clean. Prod. 2021, 278, 123827. [Google Scholar] [CrossRef]
- Södersten, C.H.; Wood, R.; Hertwich, E.G. Endogenizing Capital in MRIO Models: The Implications for Consumption-Based Accounting. Environ. Sci. Technol. 2018, 52, 13250–13259. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Supply Table at Basic Prices Including Transformation into Purchasers’ Prices. Available online: https://ec.europa.eu/eurostat/databrowser/view/naio_10_cp15/default/table?lang=en (accessed on 10 June 2023).
- Eurostat. Harmonised Indices of Consumer Prices. Available online: https://ec.europa.eu/eurostat/databrowser/view/tec00118/default/table?lang=en (accessed on 10 June 2023).
- European Central Bank. Statistics. ECB/Eurosystem Policy and Exchange Rates. Euro Foreign Exchange Reference Rates. Available online: https://www.ecb.europa.eu/stats/policy_and_exchange_rates/html/index.en.html (accessed on 20 October 2021).
- VTT Technical Research Centre of Finland. LIPASTO Unit Emissions Database. Available online: https://lipasto.vtt.fi (accessed on 16 June 2021).
Sample Size (N) | 1511 |
---|---|
Political orientation | |
Green | 7.2% |
Left | 32.8% |
Center | 18.9% |
Right | 12.9% |
Other/no preference | 28.1% |
Housing size and type | |
Average living space size (m2/cu) | 61.4 |
Apartment | 55.8% |
Semi-detached/Row-house | 20.7% |
Detached house | 23.5% |
Gender | |
Male | 46.4% |
Female | 52.1% |
Other | 1.5% |
Income | |
Average personal income (€/cu) | 3266 |
Average household income (€) | 6583 |
Low income group (decile 1–4) | 27.9% |
Medium income group (decile 5–8) | 31.1% |
High income group (decile 9–11) | 41% |
Education | |
Low education | 22.2% |
Vocational | 13.9% |
Medium education | 28.1% |
High education | 35.9% |
Degree of urbanization | |
Urban | 71.7% |
Semi-urban | 11.6% |
Rural | 16.6% |
Age | |
Average age | 43 |
Early adulthood | 39.7% |
Early middle age | 29.5% |
Late middle age | 18.1% |
Late adulthood | 12.7% |
Household size and composition | |
Average consumption unit | 2.1 |
Single adult | 17.8% |
2+ adults | 37.8% |
Single parent | 5.7% |
Couple w/children | 38.7% |
Domain participation | |
Vehicle ownership | 90% |
Leisure travel participation | 52.2% |
Public transport participation | 24.7% |
Second home ownership | 22.9% |
Multiple Linear Regressions N = 1511 | Total | Housing | Food | Goods and Services | |
---|---|---|---|---|---|
Model No. | 1 β | 2 β | 3 β | 4 β | |
Intercept | 10.342 | 9.522 | 7.601 | 7.863 | |
Political orientation | Green | - | - | - | - |
Left | 0.039 | 0.042 | 0.039 | 0.092 | |
Center | 0.116 | 0.037 | 0.134 | 0.148 | |
Right | 0.210 | 0.073 | 0.188 | 0.354 | |
Other/No preference | 0.122 | 0.070 | 0.151 | 0.130 | |
Housing type | Apartment | - | - | - | - |
Semi-detached/Row-house | 0.128 | 0.173 | 0.012 | −0.003 | |
Detached house- | 0.272 | 0.401 | 0.013 | −0.021 | |
Gender | Male | - | - | - | - |
Female | 0.025 | 0.012 | −0.027 | 0.022 | |
Other | −0.152 | −0.035 | −0.305 | −0.128 | |
Income level | Low income | - | - | - | - |
Medium income | 0.122 | 0.182 | 0.058 | 0.230 | |
High income | 0.231 | 0.345 | 0.045 | 0.313 | |
Education level | Low education | - | - | - | - |
Vocational | −0.011 | −0.036 | 0.080 | 0.030 | |
Medium education | −0.036 | 0.024 | −0.023 | 0.053 | |
High education | −0.046 | 0.013 | 0.072 | 0.109 | |
Urban degree | Urban | - | - | - | - |
Semi-urban | −0.003 | −0.036 | −0.060 | −0.053 | |
Rural | −0.058 | −0.115 | −0.062 | −0.178 | |
Age group | Early adulthood | - | - | - | - |
Early middle age | 0.019 | 0.055 | 0.052 | 0.098 | |
Late middle age | 0.151 | 0.266 | 0.148 | 0.101 | |
Late adulthood | 0.177 | 0.274 | 0.163 | 0.066 | |
Household composition | Single adult | - | - | - | - |
2+ adults | −0.174 | −0.354 | 0.174 | 0.116 | |
Single parent | −0.078 | −0.128 | 0.327 | 0.271 | |
Couple w/children | −0.222 | −0.425 | 0.349 | 0.260 | |
R2 F | 0.27 26.37 | 0.29 28.631 | 0.06 4.384 | 0.08 5.85 |
Vehicles | Public Transport | Leisure Travel | Second Home | |||||
---|---|---|---|---|---|---|---|---|
Regression Type Sample Size | B 1 N = 1511 | L 2 N = 1360 | B 1 N = 1511 | L 2 N = 373 | B 1 N = 1511 | L 2 N = 788 | B 1 N = 1511 | |
Model No. | 5 OR | 5a β | 6 OR | 6a β | 7 OR | 7a β | 8 OR | |
Intercept | 0.86 | 8.952 | 0.77 | 6.526 | 0.91 | 8.259 | 0.15 | |
Political orientation | Green | - | - | - | - | - | - | |
Left | 0.93 | 0.106 | 0.92 | −0.214 | 0.81 | −0.062 | 0.84 | |
Center | 2.02 | 0.295 | 0.48 | −0.043 | 0.73 | −0.062 | 1.05 | |
Right | 1.93 | 0.346 | 0.26 | 0.035 | 1.13 | 0.250 | 1.37 | |
Other/No preference | 1.54 | 0.269 | 0.47 | 0.206 | 0.76 | 0.039 | 0.73 | |
Housing type | Apartment | - | - | - | - | - | - | - |
Semi-detached/Row-house | 1.92 | 0.110 | 1.07 | 0.050 | 0.91 | 0.173 | 1.12 | |
Detached house | 3.60 | 0.152 | 0.69 | 0.248 | 0.87 | 0.163 | 1.28 | |
Gender | Male | - | - | - | - | - | - | - |
Female | 1.00 | 0.010 | 1.04 | −0.004 | 1.40 | 0.0067 | 1.24 | |
Other | 1.02 | −0.177 | 2.44 | 0.452 | 0.49 | −0.631 | 0.71 | |
Income level | Low | - | - | - | - | - | - | - |
Medium | 1.68 | 0.117 | 1.12 | 0.043 | 1.22 | −0.068 | 1.20 | |
High | 2.45 | 0.144 | 0.95 | 0.025 | 1.61 | −0.062 | 1.39 | |
Education level | Low | - | - | - | - | - | - | - |
Vocational | 0.76 | −0.028 | 0.97 | −0.230 | 0.89 | 0.008 | 1.32 | |
Medium | 0.69 | −0.148 | 1.42 | −0.228 | 1.24 | −0.057 | 1.41 | |
High | 0.48 | −0.260 | 1.78 | −0.401 | 1.21 | 0.040 | 1.48 | |
Urban degree | Urban | - | - | - | - | - | - | - |
Semi-urban | 1.78 | 0.100 | 0.55 | 0.226 | 1.35 | −0.155 | 0.58 | |
Rural | 2.24 | 0.169 | 0.23 | 0.367 | 0.91 | −0.472 | 0.58 | |
Age group | Early adulthood | - | - | - | - | - | - | - |
Early middle age | 1.73 | −0.180 | 0.77 | −0.004 | 0.98 | −0.018 | 0.90 | |
Late middle age | 2.67 | 0.000 | 0.51 | 0.134 | 1.00 | 0.033 | 1.00 | |
Late adulthood | 4.89 | −0.050 | 0.49 | 0.042 | 0.76 | 0.054 | 1.73 | |
Household composition | Single adult | - | - | - | - | |||
2+ adults | 3.15 | −0.186 | 0.83 | 0.037 | 0.93 | −0.041 | 1.38 | |
Single parent | 4.26 | −0.252 | 0.62 | −0.111 | 0.86 | −0.216 | 1.01 | |
Couple w/children | 13.39 | −0.399 | 0.75 | −0.157 | 0.88 | −0.359 | 1.23 | |
Nagelkerke R 2 X2 goodness of fit 3 R2 F | 0.28 5.15 | 0.10 6.994 | 0.17 10.215 | 0.08 1.475 | 0.05 5.328 | 0.06 2.322 | 0.06 6.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Einarsdóttir, A.K.; tho Pesch, G.; Dillman, K.J.; Karlsdóttir, M.R.; Heinonen, J. Consumption-Based Energy Footprints in Iceland: High and Equally Distributed. Energies 2024, 17, 2375. https://doi.org/10.3390/en17102375
Einarsdóttir AK, tho Pesch G, Dillman KJ, Karlsdóttir MR, Heinonen J. Consumption-Based Energy Footprints in Iceland: High and Equally Distributed. Energies. 2024; 17(10):2375. https://doi.org/10.3390/en17102375
Chicago/Turabian StyleEinarsdóttir, Anna Kristín, Gereon tho Pesch, Kevin Joseph Dillman, Marta Rós Karlsdóttir, and Jukka Heinonen. 2024. "Consumption-Based Energy Footprints in Iceland: High and Equally Distributed" Energies 17, no. 10: 2375. https://doi.org/10.3390/en17102375
APA StyleEinarsdóttir, A. K., tho Pesch, G., Dillman, K. J., Karlsdóttir, M. R., & Heinonen, J. (2024). Consumption-Based Energy Footprints in Iceland: High and Equally Distributed. Energies, 17(10), 2375. https://doi.org/10.3390/en17102375