Wireless Power Transfer for Unmanned Underwater Vehicles: Technologies, Challenges and Applications
Abstract
:1. Introduction
- (a)
- ROVs need to be operated on site. Usually, the distances between offshore wind parks and the nearest ports are significantly long. The time required for technicians to reach a given offshore park can be significant.
- (b)
- Many times, the extreme marine weather makes it difficult for the technicians to reach offshore parks.
- (c)
- The on site operation of ROVs is expensive, especially considering the ships and personnel involved.
- (d)
- Operating in offshore power plants can be dangerous for technicians. According to the recent data provided in the scientific literature, work accidents are common in such marine environments. For instance, in year 2019, 865 work accidents were reported in offshore wind farms worldwide.
- Direct connection to a land-based or ship-based electrical energy source (grid, ship electrical system, batteries, etc.) using submarine cables (tethered systems).
- Providing UUVs with their own batteries, which must be extracted for recharging.
2. Conventional UUV Powering Methods
2.1. Battery Swapping
2.2. Tether Management Systems
2.3. Renewable Energy Powered UUVs
2.4. Wet-Mate Connectors
3. Underwater Wireless Power Transfer
- (i)
- Far-field methods: Radio frequency waves, optical link and ultrasonic waves.
- (ii)
- Near-field methods: through-wall acoustic waves, capacitive and inductive wireless power transfer.
3.1. Radio Frequency Waves
3.2. Optical Link
3.3. Ultrasonic and “Through-Metal Wall” Waves
3.4. Capacitive Wireless Power Transfer
3.5. Inductive Wireless Power Transfer
4. Underwater IWPT Technology
4.1. IWPT System Components
- (a)
- Input power converters. Their function is to generate a high frequency AC waveform from the available power source. Depending on the source, power is supplied by an AC/DC or a DC/DC converter to a main DC bus. A full bridge single phase inverter to convert the DC voltage into a high frequency square wave AC voltage waveform is the most extended option [105].
- (b)
- Transmitter and receiver resonant tanks and coils. This is the main topic of research and development for IWPT systems. The compensation is essential to cause the coil to resonate at the desired frequency. This is accomplished using different resonant tanks. In order to maximize the efficiency and power capacity of the IWPT system, different coupling structures can be used between the power source and the power receiver or load. The resonant compensation topologies in IWPT can be classified according to the number of compensating capacitors and inductors, their configuration and the type of sources [140]. Generally, four main topologies are used, which, regarding compensating capacitors in the primary and secondary, are series–series (S-S), series–parallel (S-P), parallel–parallel (P-P) and parallel–series (P-S). More complex topologies based on LCC resonant converters such as LCC-S [141,142], LCC-P [143,144], LCC-LCC [145,146,147] or multi-resonance circuits [147,148] have also been tested in the literature. Using non-resonant (N) IWPT is also possible for low distance and low power transfer with similar efficiency [149]. However, if the transmitting distance and power are increased, resonant IWPT is recommended for optimal power transfer. Thus, resonant IWPT is selected over non-resonant for most applications, including UWPT. The coils consist of various components, usually including copper wire and magnetic cores. These are based on the idea of transformers but with the core split into two parts. These cores are used to shape the path of the magnetic flux and increase inductance, improving the coupling between coils. Metal shields can also be added to reduce electromagnetic interferences and high-frequency magnetic fields [52], which are a source of losses.
- (c)
- Output power converters. The function of output converters is to receive and provide stable power to the load or battery. They also can provide feedback information to the transmitter for power regulation according to the load. These are composed of a tuning circuit, power converters and a control unit. The rectifier is the main component in the unit and determines its efficiency. In the output, by connecting batteries or loads to DC/DC converters, stable and regulated power can be provided [105].
- (d)
- Controller units. IWPT requires controller units to adjust the output voltage or current in response to load variations during battery charging to maintain efficiency. In electric vehicle charging, three main approaches are employed to manage these variations: transmitter control, receiver control and dual control [108]. Transmitter control and dual control require feedback between the Tx and Rx side, while receiver control utilizes active AC/DC and DC/DC converters to regulate the device from the receiver side. Generally, transmitter control is a more robust option, involving adjustment of the inverter frequency based on feedback from the output. However, in seawater, data sharing between the receiver and transmitter may present challenges, and receiver control or other alternatives may be more suitable [29]. This enables closed-loop control.
4.2. Challenges in Underwater Environments
4.2.1. Attenuation of Magnetic Fields
4.2.2. Sea Currents and Misalignment
4.2.3. Temperature and Biofouling
4.2.4. High Pressure and Permeability
4.2.5. Other Technical Issues
5. Review of Underwater IWPT Experiments and Applications
5.1. IWPT Prototypes in UUVs and Docking Stations
5.2. Laboratory Prototypes with Coaxial and Planar Coils
5.3. Innovative Topologies and Multi-Coil Systems
5.4. Novel Core Materials
- (a)
- Magnetic flux density is up to three times higher than Mn-Zn ferrite materials. For the same volume, twice the ferrite core output power can be reached.
- (b)
- Permeability can be more than 10 times that of the Mn-Zn ferrite material.
- (c)
- Strong deformation ability improves integration in round surfaces.
5.5. Dual Data and Power Transfer and Innovative Control Systems
5.6. Bidirectional and Modular IWPT
6. Conclusions
- (a)
- Achieving efficient and reliable underwater UWPT is not a trivial issue. Several challenges such as high-pressures, strong currents or biofouling have to be tackled in subsea docking platforms. In addition to this, the effects of ECL and need to be reduced to the minimum to maintain efficient IWPT. Regarding these issues, progress has been made in the design of misalignment-tolerant devices and in the characterization of ECL to reduce their effect in the system. Maintaining frequencies below 200 kHz, reducing the gap between the and sides or enclosing the coils are some of the solutions proposed in the literature. On the other hand, very few papers consider the effect of high pressures, biofouling or electromagnetic field emission in underwater wireless technology. These are important issues that warrant attention and should be addressed in the future research.
- (b)
- Due to a lack of standardization, comparing different IWPT systems is difficult. A compromise between size and power often involves low distance, low misalignment, and a frequency range of 50–200 kHz. The latest works have reported efficiency values ranging from 88% up to 93%. However, only a few real-life prototypes have reached up to 90% efficiency. Furthermore, despite sharing the same theoretical background, the experimental results reported in the literature often do not align due to various factors such as different coil shapes, pad designs, ferrite material layouts, shielding techniques, water salinity levels and other factors. This complicates the development of standardized devices, as the optimal configurations may vary depending on the specific application of each AUV. Nonetheless, as the technology matures, there is significant potential to develop general chargers for different types of AUVs.
- (c)
- Power transfer in the range of 1 kW seems already possible, which may suffice for small UUVs, but work-class UUVs require power transfer capabilities with power ratings in the range of 10 kW, which, according to the reviewed literature, seems not to be solved yet today. To meet the power needs of UUVs in industrial applications, further research and improvement of UWPT are essential. One approach is to focus on testing higher power prototypes. By developing and testing prototypes with increased power capabilities, the researchers can assess the feasibility and efficiency of scaling up UWPT technology to meet the demands of work-class UUVs. Furthermore, a collaboration between academia, industry and government agencies can facilitate the exchange of knowledge and resources to accelerate the development and deployment of UWPT technology in real-world settings.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AUV | autonomous underwater vehicle |
CWPT | capacitive wireless power transfer |
D-WEVCS | dynamic electric vehicle charging system |
ECL | eddy current losses |
EM | electromagnetic |
IWPT | inductive wireless power transfer |
MET | maximum efficiency tracking |
OWT | offshore wind turbine |
S-WEVCS | static wireless electric vehicle charging system |
SiALON | silicon–aluminum–oxynitride |
TMS | tether management system |
UUV | unmanned underwater vehicle |
UWPT | underwater wireless power transfer |
resonant frequency | |
k | coupling coefficient |
parallel–parallel | |
parallel-series | |
AC resistance | |
DC resistance | |
radiation resistance | |
receiver | |
series–series | |
series–parallel | |
transmitter |
Appendix A. Bibliographical Study
Appendix A.1. Methodology
- H02J 50/05 using capacitive coupling,
- H02J 50/10 using inductive coupling,
- H02J 50/12 of the resonant type,
- H02J 50/15 using ultrasonic waves,
- H02J 50/20 using microwaves or radio frequency waves,
- H02J 50/30 using light, e.g., lasers.
Appendix A.2. Patent Corpus
Appendix A.3. Scientific Publication Overview
References
- International Energy Agency (IEA). Ocean Power Generation in the Net Zero Scenario, 2000–2030. 2021. Available online: https://www.iea.org/data-and-statistics/charts/ocean-power-generation-in-the-net-zero-scenario-2000-2030 (accessed on 8 April 2024).
- International Energy Agency (IEA). Global Energy and Climate Model. 2021. Available online: https://www.iea.org/reports/global-energy-and-climate-model (accessed on 8 April 2024).
- Hote, K.; Kaushik, R.; Tasnin, W. Global Offshore Wind Scenario: A Review. ECS Trans. 2022, 107, 11083–11103. [Google Scholar] [CrossRef]
- Wang, L.; Kolios, A.; Liu, X.; Venetsanos, D.; Cai, R. Reliability of offshore wind turbine support structures: A state-of-the-art review. Renew. Sustain. Energy Rev. 2022, 161, 112250. [Google Scholar] [CrossRef]
- Li, C.; Mogollón, J.; Tukker, A.; Dong, J.; von Terzi, D.; Zhang, C.; Steubing, B. Future material requirements for global sustainable offshore wind energy development. Renew. Sustain. Energy Rev. 2022, 164, 1–13. [Google Scholar] [CrossRef]
- López, I.; Andreu, J.; Ceballos, S.; Martínez de Alegría, I.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 2013, 27, 413–434. [Google Scholar] [CrossRef]
- Shetty, C.; Priyam, A. A review on tidal energy technologies. Mater. Today Proc. 2022, 56, 2774–2779. [Google Scholar] [CrossRef]
- Khan, M.; Khan, H.; Aziz, M. Harvesting Energy from Ocean: Technologies and Perspectives. Energies 2022, 15, 3456. [Google Scholar] [CrossRef]
- Ren, Z.; Verma, A.; Li, Y.; Teuwen, J.; Jiang, Z. Offshore wind turbine operations and maintenance: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 144, 110886. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Y.; Wang, H. Review on Monitoring and Operation-Maintenance Technology of Far-Reaching Sea Smart Wind Farms. J. Mar. Sci. Eng. 2022, 10, 820. [Google Scholar] [CrossRef]
- Rémouit, F.; Chatzigiannakou, M.; Bender, A.; Temiz, I.; Sundberg, J.; Engström, J. Deployment and Maintenance of Wave Energy Converters at the Lysekil Research Site: A Comparative Study on the Use of Divers and Remotely-Operated Vehicles. J. Mar. Sci. Eng. 2018, 6, 39. [Google Scholar] [CrossRef]
- Liu, Y.; Hajj, M.; Bao, Y. Review of robot-based damage assessment for offshore wind turbines. Renew. Sustain. Energy Rev. 2022, 158, 112187. [Google Scholar] [CrossRef]
- Wynn, R.; Huvenne, V.; Le Bas, T.; Murton, B.; Connelly, D.; Bett, B.; Ruhl, H.; Morris, K.; Peakall, J.; Parsons, D.; et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Mar. Geol. 2014, 352, 451–468. [Google Scholar] [CrossRef]
- Wei, X.; Guo, H.; Wang, X.; Wang, X.; Qiu, M. Reliable Data Collection Techniques in Underwater Wireless Sensor Networks: A Survey. IEEE Commun. Surv. Tutor. 2022, 24, 404–431. [Google Scholar] [CrossRef]
- Tibajia, G.; Talampas, M. Development and evaluation of simultaneous wireless transmission of power and data for oceanographic devices. In Proceedings of the SENSORS 2011 Conference, Limerick, Ireland, 28–31 October 2011; pp. 254–257. [Google Scholar] [CrossRef]
- Fang, C.; Li, X.; Xie, Z.; Jiayi, X.; Xiao, L. Design and Optimization of an Inductively Coupled Power Transfer System for the Underwater Sensors of Ocean Buoys. Energies 2017, 10, 84. [Google Scholar] [CrossRef]
- Green, R.; Copping, A.; Cavagnaro, R.J.; Rose, D.; Overhus, D.; Jenne, D. Enabling Power at Sea: Opportunities for Expanded Ocean Observations through Marine Renewable Energy Integration. In Proceedings of the OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 27–31 October 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Bao, J.; Li, D.; Qiao, X.; Rauschenbach, T. Integrated Navigation for Autonomous Underwater Vehicles in Aquaculture: A Review. Inf. Process. Agric. 2019, 7, 139–150. [Google Scholar] [CrossRef]
- Lee, H.; Daehyeonand, J.; Yu, H.; Ryu, J. Autonomous Underwater Vehicle Control for Fishnet Inspection in Turbid Water Environments. Int. J. Control. Autom. Syst. 2022, 20, 3383–3392. [Google Scholar] [CrossRef]
- Available online: https://www.blueyerobotics.com/products/pro (accessed on 13 April 2023).
- Available online: https://www.qysea.com/es/products/fifish-v6/ (accessed on 13 April 2023).
- Available online: https://www.chasing.com/es/chasing-m2.html (accessed on 13 April 2023).
- Rudnick, D.; Davis, R.; Eriksen, C.; Fratantoni, D.; Perry, M. Underwater Gliders for Ocean Research. Mar. Technol. Soc. J. 2004, 38, 48–59. [Google Scholar] [CrossRef]
- Rudnick, D.; Cole, S. On sampling the ocean using underwater gliders. J. Geophys. Res. 2011, 116, 1–12. [Google Scholar] [CrossRef]
- Waldmann, C.; Kausche, A.; Iversen, M.; Pototzky, A.; Looye, G.; Montenegro, S.; Bachmayer, R.; Wilde, D. MOTH-An underwater glider design study carried out as part of the HGF alliance ROBEX. In Proceedings of the IEEE/OES Autonomous Underwater Vehicles (AUV) Conference, Oxford, MS, USA, 6–9 October 2014; pp. 1–3. [Google Scholar]
- Mou, J.; Jia, X.; Chen, P.; Chen, L. Research on operation safety of offshore wind farms. J. Mar. Sci. Eng. 2021, 9, 881. [Google Scholar] [CrossRef]
- Cetin, K.; Suarez Zapico, C.; Tugal, H.; Petillot, Y.; Dunningan, M.; Erden, M. Application of adaptive and switching control for contact maintenance of a robotic vehicle-manipulator system for underwater asset inspection. Front. Robot. AI 2021, 8, 1–13. [Google Scholar] [CrossRef]
- E&T Editorial Staff. Autonomous underwater drones used to maintain offshore wind turbines. E&T Engineering and Technology, 23 May 2022. [Google Scholar]
- Orekan, T.; Zhang, P.; Shih, C. Analysis, Design, and Maximum Power-Efficiency Tracking for Undersea Wireless Power Transfer. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 843–854. [Google Scholar] [CrossRef]
- Raj, D.; Ko, E.; Yoon, D.; Shin, S.; Park, S.H. Energy Optimization Techniques in Underwater Internet of Things: Issues, State-of-the-Art, and Future Directions. Water 2022, 14, 3240. [Google Scholar] [CrossRef]
- Yang, H.; Lin, C.Y. Promising Strategies for the Reduction of Pollutant Emissions from Working Vessels in Offshore Wind Farms: The Example of Taiwan. J. Mar. Sci. Eng. 2022, 10, 621. [Google Scholar] [CrossRef]
- Chin, C.S.; Jia, J.; Chiew, J.; Toh, W.; Gao, Z.; Zhang, C.; McCann, J. System design of underwater battery power system for marine and offshore industry. J. Energy Storage 2019, 21, 724–740. [Google Scholar] [CrossRef]
- Transeth, A.; Schjølberg, I.; Lekkas, A.M.; Risholm, P.; Mohammed, A.; Skaldebø, M.; Haugaløkken, B.; Bjerkeng, M.; Tsiourva, M.; Py, F. Autonomous subsea intervention (SEAVENTION). IFAC-PapersOnLine 2022, 55, 387–394. [Google Scholar] [CrossRef]
- Viel, C. Self-management of the umbilical of a ROV for underwater exploration. Ocean Eng. 2022, 248, 110695. [Google Scholar] [CrossRef]
- Teague, J.; Allen, M.J.; Scott, T.B. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring. Ocean Eng. 2018, 147, 333–339. [Google Scholar] [CrossRef]
- Kapetanović, N.; Krčmar, K.; Mišković, N.; Nad, D. Tether Management System for Autonomous Inspection Missions in Mariculture Using an ASV and an ROV. IFAC-PapersOnLine 2022, 55, 327–332. [Google Scholar] [CrossRef]
- Teeneti, C.R.; Truscott, T.T.; Beal, D.; Pantic, Z. Review of Wireless Charging Systems for Autonomous Underwater Vehicles. IEEE J. Ocean. Eng. 2021, 46, 68–87. [Google Scholar] [CrossRef]
- Jalbert, J.; Baker, J.; Duchesney, J.; Pietryka, P.; Dalton, W.; Blidberg, D.; Chappell, S.; Nitzel, R.; Holappa, K. A solar-powered autonomous underwater vehicle. In Proceedings of the Oceans 2003. Celebrating the Past... Teaming toward the Future Conference, San Diego, CA, USA, 22–26 September 2003; Volume 2, pp. 1132–1140. [Google Scholar] [CrossRef]
- Lu, Z.; Shang, J.; Luo, Z.; Zhu, Y.; Wang, M.; Wang, C. Research on environmental energy-driven intelligent unmanned underwater vehicles and their key technologies. In Proceedings of the 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 19–21 November 2021; pp. 564–571. [Google Scholar] [CrossRef]
- Driscol, B.P.; Gish, A.; Coe, R.G. Wave-Powered AUV Recharging: A Feasibility Study. In Proceedings of the 2019 International Conference on Offshore Mechanics and Arctic Engineering, Scotland, UK, 9–14 June 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Jung, H.; Subban, C.V.; McTigue, J.D.; Martinez, J.J.; Copping, A.E.; Osorio, J.; Liu, J.; Deng, Z.D. Extracting energy from ocean thermal and salinity gradients to power unmanned underwater vehicles: State of the art, current limitations, and future outlook. Renew. Sustain. Energy Rev. 2022, 160, 1–21. [Google Scholar] [CrossRef]
- NOAA/OAR/OER. Mountains in the Sea Expedition 2004. Available online: https://www.flickr.com/photos/noaaphotolib/5424616529/in/photostream/ (accessed on 27 March 2024).
- Christ, R.D.; Wernli, R.L. Chapter 8—Cables and Connectors. In The ROV Manual, 2nd ed.; Christ, R.D., Wernli, R.L., Eds.; Butterworth-Heinemann: Oxford, UK, 2014; pp. 163–220. [Google Scholar] [CrossRef]
- Tian, B.; Yu, J. Current status and prospects of marine renewable energy applied in ocean robots. Int. J. Energy Res. 2019, 43, 2016–2031. [Google Scholar] [CrossRef]
- Hildebrandt, M.; Gaudig, C.; Christensen, L.; Natarajan, S.; Carrio, J.H.; Paranhos, P.M.; Kirchner, F. A Validation Process for Underwater Localization Algorithms. Int. J. Adv. Robot. Syst. 2014, 11, 138. [Google Scholar] [CrossRef]
- Song, W.; Cui, W. An Overview of Underwater Connectors. J. Mar. Sci. Eng. 2021, 9, 813. [Google Scholar] [CrossRef]
- Liu, J.; Yu, F.; He, B.; Soares, C.G. A review of underwater docking and charging technology for autonomous vehicles. Ocean Eng. 2024, 297, 117154. [Google Scholar] [CrossRef]
- Brighenti, A.; Zugno, L.; Mattiuzzo, F.; Sperandio, A. EURODOCKER-a universal docking-downloading recharging system for AUVs: Conceptual design results. In Proceedings of the IEEE Oceanic Engineering Society. OCEANS’98. Conference, Nice, France, 28 September–1 October 1998; Volume 3, pp. 1463–1467. [Google Scholar] [CrossRef]
- Allen, B.; Austin, T.; Forrester, N.; Goldsborough, R.; Kukulya, A.; Packard, G.; Purcell, M.; Stokey, R. Autonomous Docking Demonstrations with Enhanced REMUS Technology. In Proceedings of the OCEANS 2006 Conference, Boston, MA, USA, 18–21 September 2006; pp. 1–6. [Google Scholar] [CrossRef]
- Wirtz, M.; Hildebrandt, M.; Gaudig, C. Design and test of a robust docking system for hovering AUVs. In Proceedings of the 2012 Oceans Conference, Hampton Roads, VA, USA, 14–19 October 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Kojiya, T.; Sato, F.; Matsuki, H.; Sato, T. Automatic power supply system to underwater vehicles utilizing non-contacting technology. In Proceedings of the Oceans ’04 MTS/IEEE Techno-Ocean ’04, Kobe, Japan, 9–12 November 2004; Volume 4, pp. 2341–2345. [Google Scholar] [CrossRef]
- Etemadrezaei, M. 22—Wireless Power Transfer; Butterworth-Heinemann: Oxford, UK, 2018; pp. 711–722. [Google Scholar] [CrossRef]
- Saini, P.; Singh, R.P.; Sinha, A. Path loss analysis of RF waves for underwater wireless sensor networks. In Proceedings of the 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), Gurgaon, India, 12–14 October 2017; pp. 104–108. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Matsushima, T.; Qin, C.; Adachi, C. Toward Thing-to-Thing Optical Wireless Power Transfer: Metal Halide Perovskite Transceiver as an Enabler. Front. Energy Res. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Ding, J.; Liu, W.; I, C.L.; Zhang, H.; Mei, H. Advanced Progress of Optical Wireless Technologies for Power Industry: An Overview. Appl. Sci. 2020, 10, 6463. [Google Scholar] [CrossRef]
- Kim, S.M.; Choi, J.; Jung, H. Experimental demonstration of underwater optical wireless power transfer using a laser diode. Chin. Opt. Lett. 2018, 16, 080101. [Google Scholar]
- Kim, S.M.; Kwon, D. Transfer efficiency of underwater optical wireless power transmission depending on the operating wavelength. Curr. Opt. Photonics 2020, 4, 571–575. [Google Scholar] [CrossRef]
- Lin, R.; Liu, X.; Zhou, G.; Qian, Z.; Cui, X.; Tian, P. InGaN Micro-LED Array Enabled Advanced Underwater Wireless Optical Communication and Underwater Charging. Adv. Opt. Mater. 2021, 9, 2002211. [Google Scholar] [CrossRef]
- Basaeri, H.; Christensen, D.B.; Roundy, S. A review of acoustic power transfer for bio-medical implants. Smart Mater. Struct. 2016, 25, 123001. [Google Scholar] [CrossRef]
- Awal, M.R.; Jusoh, M.; Sabapathy, T.; Kamarudin, M.R.; Rahim, R.A. State-of-the-Art Developments of Acoustic Energy Transfer. Int. J. Antennas Propag. 2016, 2016, 3072528. [Google Scholar] [CrossRef]
- Bereketli, A.; Bilgen, S. Remotely Powered Underwater Acoustic Sensor Networks. IEEE Sens. J. 2012, 12, 3467–3472. [Google Scholar] [CrossRef]
- Guida, R.; Demirors, E.; Dave, N.; Rodowicz, J.; Melodia, T. An acoustically powered battery-less internet of underwater things platform. In Proceedings of the 4th Underwater Communications and Networking Conference, UComms 2018, Lerici, Italy, 28–30 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, Y.; Wang, Z.; Wang, J.; Geng, Y. Design of Ultrasonic Transducer Structure for Underwater Wireless Power Transfer System. In Proceedings of the 2021 IEEE Wireless Power Transfer Conference (WPTC), San Diego, CA, USA, 1–4 June 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Guida, R.; Demirors, E.; Dave, N.; Melodia, T. Underwater Ultrasonic Wireless Power Transfer: A Battery-Less Platform for the Internet of Underwater Things. IEEE Trans. Mob. Comput. 2022, 21, 1861–1873. [Google Scholar] [CrossRef]
- Yang, H.; Wu, M.; Yu, Z.; Yang, J. An Ultrasonic Through-Metal-Wall Power Transfer System with Regulated DC Output. Appl. Sci. 2018, 8, 692. [Google Scholar] [CrossRef]
- Yang, D.X.; Hu, Z.; Zhao, H.; Hu, H.F.; Sun, Y.Z.; Hou, B.J. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review. Sensors 2015, 15, 31581–31605. [Google Scholar] [CrossRef]
- Dai, X.; Li, L.; Li, Y.; Hou, G.; Leung, H.F.; Hu, A.P. Determining the maximum power transfer condition for Ultrasonic Power Transfer system. In Proceedings of the 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), Auckland, New Zealand, 5–8 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Li, Z.; Zhuang, G.; Wu, Z.; Li, B.; Zhang, X. Modeling of Ultrasonic Wireless Electrical Energy Transfer System. Huanan Ligong Daxue Xuebao/J. South China Univ. Technol. Nat. Sci. 2018, 46, 72–77. [Google Scholar] [CrossRef]
- Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.; Chang, Z. KW Power Transmission using Wireless Acoustic-Electric Feed-through (WAEF). In Proceedings of the Earth and Space 2008 Conference, San Diego, CA, USA, 9–11 September 2008; pp. 1–10. [Google Scholar] [CrossRef]
- Lawry, T.; Wilt, K.; Ashdown, J.; Scarton, H.; Saulnier, G. A High-Performance Ultrasonic System for the Simultaneous Transmission of Data and Power through Solid Metal Barriers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 194–203. [Google Scholar] [CrossRef]
- Jegadeesan, R.; Agarwal, K.; Guo, Y.X.; Yen, S.C.; Thakor, N.V. Wireless Power Delivery to Flexible Subcutaneous Implants Using Capacitive Coupling. IEEE Trans. Microw. Theory Tech. 2017, 65, 280–292. [Google Scholar] [CrossRef]
- Sarin, A.; Abbot, D.; Revzen, S.; Avestruz, A.T. Bidirectional Capacitive Wireless Power Transfer for Energy Balancing in Modular Robots. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 852–859. [Google Scholar] [CrossRef]
- Wang, K.; Sanders, S. Contactless USB—A capacitive power and bidirectional data transfer system. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition—APEC 2014, Fort Worth, TX, USA, 16–20 March 2014; pp. 1342–1347. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, H.; Mi, C. A Review on Recent Development of Capacitive Wireless Power Transfer Technology. Energies 2017, 10, 1752. [Google Scholar] [CrossRef]
- Lecluyse, C.; Minnaert, B.; Kleemann, M. A Review of the Current State of Technology of Capacitive Wireless Power Transfer. Energies 2021, 14, 5862. [Google Scholar] [CrossRef]
- Liang, J.; Wu, D.; Yu, J. A Design Method of Compensation Circuit for High-Power Dynamic Capacitive Power Transfer System Considering Coupler Voltage Distribution for Railway Applications. Electronics 2021, 10, 153. [Google Scholar] [CrossRef]
- Machura, P.; Li, Q. A critical review on wireless charging for electric vehicles. Renew. Sustain. Energy Rev. 2019, 104, 209–234. [Google Scholar] [CrossRef]
- Cai, C.; Liu, X.; Wu, S.; Chen, X.; Chai, W.; Yang, S. A Misalignment Tolerance and Lightweight Wireless Charging System via Reconfigurable Capacitive Coupling for Unmanned Aerial Vehicle Applications. IEEE Trans. Power Electron. 2023, 38, 22–26. [Google Scholar] [CrossRef]
- Li, C.; Zhao, X.; Liao, C.; Wang, L. A graphical analysis on compensation designs of large-gap CPT systems for EV charging applications. CES Trans. Electr. Mach. Syst. 2018, 2, 232–242. [Google Scholar] [CrossRef]
- Naka, Y.; Yamamoto, K.; Nakata, T.; Tamura, M. Improvement in efficiency of underwater wireless power transfer with electric coupling. IEICE Trans. Electron. 2017, E100.C, 850–857. [Google Scholar] [CrossRef]
- Naka, Y.; Yamamoto, K.; Nakata, T.; Tamura, M.; Masuda, M. Verification efficiency of electric coupling wireless power transfer in water. In Proceedings of the 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility, ICMIM 2017, Nagoya, Japan, 19–21 March 2017; pp. 83–86. [Google Scholar] [CrossRef]
- Urano, M.; Ata, K.; Takahashi, A. Study on underwater wireless power transfer via electric coupling with a submerged electrode. In Proceedings of the IMFEDK 2017—2017 International Meeting for Future of Electron Devices Conference, Kyoto, Japan, 29–30 June 2017; pp. 36–37. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Y.; Jing, Q.; Liu, N. Study on the coupling structure of underwater wireless power transmission system via electric coupling. J. Hohai Univ. 2018, 46, 366–370. [Google Scholar] [CrossRef]
- Tamura, M.; Naka, Y.; Murai, K. Design of capacitive coupler in underwater wireless power transfer focusing on kQ product. IEICE Trans. Electron. 2018, E101C, 759–766. [Google Scholar] [CrossRef]
- Mohamed, A.; Palazzi, V.; Kumar, S.; Alimenti, F.; Mezzanotte, P.; Roselli, L. Towards subsea non-ohmic power transfer via a capacitor-like structure. Lect. Notes Electr. Eng. 2019, 550, 349–357. [Google Scholar] [CrossRef]
- Gao, Z.; Yu, G.; Liu, N. Design of electric-field coupled underwater wireless power transfer system based on class E amplifier. J. Hohai Univ. 2019, 47, 560–567. [Google Scholar] [CrossRef]
- Tamura, M.; Murai, K.; Naka, Y. Capacitive Coupler Utilizing Electric Double Layer for Wireless Power Transfer under Seawater. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 2–7 June 2019; pp. 1415–1418. [Google Scholar] [CrossRef]
- Yang, L.; Ju, M.; Zhang, B. Bidirectional Undersea Capacitive Wireless Power Transfer System. IEEE Access 2019, 7, 121046–121054. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, F. Feasibility Study of the High-Power Underwater Capacitive Wireless Power Transfer for the Electric Ship Charging Application. In Proceedings of the 2019 IEEE Electric Ship Technologies Symposium, ESTS 2019, Washington, DC, USA, 14–16 August 2019; pp. 231–235. [Google Scholar] [CrossRef]
- Tamura, M.; Murai, K.; Matsumoto, M. Conductive coupler for wireless power transfer under seawater. In Proceedings of the 2020 IEEE MTT-S International Microwave Symposium Digest, Los Angeles, CA, USA, 4–6 August 2020; pp. 1176–1179. [Google Scholar] [CrossRef]
- Yang, L.; Ma, L.; Huang, J.; Fu, Y. Characteristics of Undersea Capacitive Wireless Power Transfer System. In Proceedings of the IEEE 9th International Power Electronics and Motion Control Conference, IPEMC 2020 ECCE Asia, Nanjing, China, 29 November–2 December 2020; pp. 2952–2955. [Google Scholar] [CrossRef]
- Mahdi, H.; Hoff, B.; Østrem, T. Optimal Solutions for Underwater Capacitive Power Transfer. Sensors 2021, 21, 8233. [Google Scholar] [CrossRef]
- Su, Y.; Qian, L.; Liu, Z.; Deng, R.; Sun, Y. Underwater Electric-Filed Coupled Wireless Power Transfer System with Rotary Coupler and Parameter Optimization Method. Diangong Jishu Xuebao/Trans. China Electrotech. Soc. 2022, 37, 2399–2410. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, J.; Wang, X.; Xu, W.; Lu, C.; Lu, Y. High-Power-Density Wireless Power Transfer System for Autonomous Underwater Vehicle Based on a Variable Ring-Shaped Magnetic Coupler. IEEE Trans. Transp. Electrif. 2023. [Google Scholar] [CrossRef]
- Orekan, T.; Zhang, P. Underwater Wireless Power Transfer: Smart Ocean Energy Converters; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Lu, X.; Niyato, D.; Wang, P.; Kim, D.I.; Han, Z. Wireless Charger Networking for Mobile Devices: Fundamentals, Standards, and Applications. Wirel. Commun. IEEE 2014, 22, 126–135. [Google Scholar] [CrossRef]
- Ahn, D.; Mercier, P.P. Wireless Power Transfer with Concurrent 200-kHz and 6.78-MHz Operation in a Single-Transmitter Device. IEEE Trans. Power Electron. 2016, 31, 5018–5029. [Google Scholar] [CrossRef]
- Berger, A.; Agostinelli, M.; Sandner, C.; Vesti, S.; Huemer, M. High efficient integrated power receiver for a Qi compliant Wireless Power Transfer system. In Proceedings of the 2016 IEEE Wireless Power Transfer Conference (WPTC), Aveiro, Portugal, 5–6 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Khan, D.; Ain, Q.; Basim, M.; Shehzad, K.; Verma, D.; Kumar, P.; Yoo, J.M.; Pu, Y.G.; Jung, Y.; et al. A Design of Wireless Power Receiver with Gate Charge Recycled Dual-Mode Active Rectifier and Step-Down Converter with 88.2% System Efficiency for Power Management IC. IEEE Trans. Power Electron. 2023, 38, 1348–1360. [Google Scholar] [CrossRef]
- Rooij, M.D.; Zhang, Y. A 10 W Multi-Mode Capable Wireless Power Amplifier for Mobile Devices. In Proceedings of the 2016 International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 10–12 May 2016; pp. 1–8. [Google Scholar]
- Park, Y.J.; Jang, B.; Park, S.M.; Ryu, H.C.; Oh, S.J.; Kim, S.Y.; Pu, Y.; Yoo, S.S.; Hwang, K.C.; Yang, Y.; et al. A Triple-Mode Wireless Power-Receiving Unit with 85.5% System Efficiency for A4WP, WPC, and PMA Applications. IEEE Trans. Power Electron. 2018, 33, 3141–3156. [Google Scholar] [CrossRef]
- Basar, M.R.; Ahmad, M.Y.; Cho, J.; Ibrahim, F. An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy. Sens. Actuators A Phys. 2016, 249, 207–216. [Google Scholar] [CrossRef]
- Vulfin, V.; Sayfan-Altman, S.; Ianconescu, R. Wireless power transfer for a pacemaker application. J. Med. Eng. Technol. 2017, 41, 325–332. [Google Scholar] [CrossRef]
- Ahire, D.; Gond, V.J.; Chopade, J.J. Coil material and magnetic shielding methods for efficient wireless power transfer system for biomedical implant application. Biosens. Bioelectron. X 2022, 10, 100123. [Google Scholar] [CrossRef]
- Sun, T.; Xie, X.; Wang, Z. Wireless Power Transfer for Medical Microsystems; Springer: New York, NY, USA, 2013; pp. 1–183. [Google Scholar] [CrossRef]
- Yilmaz, G.; Dehollain, C. Wireless Power Transfer and Data Communication for Neural Implants: Case Study; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–109. [Google Scholar]
- Ahire, D.; Gond, V.J.; Chopade, J.J. Compensation topologies for wireless power transmission system in medical implant applications: A review. Biosens. Bioelectron. X 2022, 11, 100180. [Google Scholar] [CrossRef]
- Sagar, A.; Kashyap, A.; Nasab, M.A.; Padmanaban, S.; Bertoluzzo, M.; Kumar, A.; Blaabjerg, F. A Comprehensive Review of the Recent Development of Wireless Power Transfer Technologies for Electric Vehicle Charging Systems. IEEE Access 2023, 11, 83703–83751. [Google Scholar] [CrossRef]
- Rayan, B.A.; Subramaniam, U.; Balamurugan, S. Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects. Energies 2023, 16, 3084. [Google Scholar] [CrossRef]
- Dankov, D.; Prodanov, P.; Madjarov, N. Application of an Inductive Power Transfer System for Charging Modern Electric Vehicles. In Proceedings of the 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria, 1–4 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, Z.; Pang, H. WPT for High-power Application—Electric Vehicles. In Wireless Power Transfer: Principles and Applications; John Wiley Sons, Inc.: Hoboken, NJ, USA, 2023; pp. 275–325. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, Z.; Yang, Q.; Li, Y.; Zhu, J.; Li, Y. Coil Design and Efficiency Analysis for Dynamic Wireless Charging System for Electric Vehicles. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, F.; Chan, H.K.; Gao, H.O. Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects. Transp. Res. Part E Logist. Transp. Rev. 2022, 163, 1–17. [Google Scholar] [CrossRef]
- Panchal, C.; Stegen, S.; Lu, J. Review of static and dynamic wireless electric vehicle charging system. Eng. Sci. Technol. Int. J. 2018, 21, 922–937. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Savio A, D.; C, B.; Rajamanickam, N.; Kotb, H.; Elrashidi, A.; Nureldeen, W. A Comprehensive Review on Efficiency Enhancement of Wireless Charging System for the Electric Vehicles Applications. IEEE Access 2024, 12, 46967–46994. [Google Scholar] [CrossRef]
- Ali, R.A.; Latif, M.H.; Usman, M. Existing Coil Topologies for Inductive Power Transfer in EV Charging: A Review. In Proceedings of the 5th International Conference on Energy Conservation and Efficiency (ICECE), Lahore, Pakistan, 16–17 March 2022; pp. 1–13. [Google Scholar] [CrossRef]
- Song, K.; Lan, Y.; Zhang, X.; Jiang, J.; Sun, C.; Yang, G.; Yang, F.; Lan, H. A Review on Interoperability of Wireless Charging Systems for Electric Vehicles. Energies 2023, 16, 1653. [Google Scholar] [CrossRef]
- Guidi, G.; Suul, J.A.; Jenset, F.; Sorfonn, I. Wireless Charging for Ships: High-Power Inductive Charging for Battery Electric and Plug-In Hybrid Vessels. IEEE Electrif. Mag. 2017, 5, 22–32. [Google Scholar] [CrossRef]
- Feezor, M.; Blankinship, P.; Bellingham, J.; Sorrell, F. Autonomous underwater vehicle homing/docking via electromagnetic guidance. In Proceedings of the Oceans ’97. MTS/IEEE Conference, Halifax, NS, Canada, 6–9 October 1997; Volume 2, pp. 1137–1142. [Google Scholar] [CrossRef]
- Fukasawa, T.; Noguchi, T.; Kawasaki, T.; Baino, M. “MARINE BIRD”, a new experimental AUV with underwater docking and recharging system. In Proceedings of the Oceans 2003. Celebrating the Past... Teaming Toward the Future Conference, San Diego, CA, USA, 22–26 September 2003; Volume 4, pp. 2195–2200. [Google Scholar] [CrossRef]
- McGinnis, T.; Henze, C.P.; Conroy, K. Inductive Power System for Autonomous Underwater Vehicles. In Proceedings of the OCEANS 2007 Conference, Aberdeen, Scotland, 18–21 June 2007; pp. 1–5. [Google Scholar] [CrossRef]
- Hobson, B.W.; McEwen, R.S.; Erickson, J.; Hoover, T.; McBride, L.; Shane, F.; Bellingham, J.G. The Development and Ocean Testing of an AUV Docking Station for a 21” AUV. In Proceedings of the OCEANS 2007 Conference, Aberdeen, Scotland, 18–21 June 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Pyle, D.; Granger, R.; Geoghegan, B.; Lindman, R.; Smith, J. Leveraging a large UUV platform with a docking station to enable forward basing and persistence for light weight AUVs. In Proceedings of the 2012 Oceans Conference, Virginia Beach, VA, USA, 14–19 October 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Yoshida, S.; Tanomura, M.; Hama, Y.; Hirose, T.; Suzuki, A.; Matsui, Y.; Sogo, N.; Sato, R. Underwater wireless power transfer for non-fixed unmanned underwater vehicle in the ocean. In Proceedings of the Autonomous Underwater Vehicles 2016 Conference, AUV 2016, Tokyo, Japan, 6–9 November 2016; pp. 177–180. [Google Scholar] [CrossRef]
- Yoshida, H.; Ishibashi, S.; Yutaka, O.; Sugesawa, M.; Tanaka, K. A concept design of underwater docking robot and development of its fundamental technologies. In Proceedings of the 2016 IEEE Autonomous Underwater Vehicles Conference, Tokyo, Japan, 6–9 November 2016; pp. 408–411. [Google Scholar] [CrossRef]
- Maguer, A.; Been, R.; Tesei, A.; Alves, J.; Grandi, V.; Biagini, S. Recent Technological Advances in Underwater Autonomy. In Proceedings of the 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO) Conference, Kobe, Japan, 28–31 May 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Matsuda, T.; Maki, T.; Masuda, K.; Sakamaki, T. Resident autonomous underwater vehicle: Underwater system for prolonged and continuous monitoring based at a seafloor station. Robot. Auton. Syst. 2019, 120, 103231. [Google Scholar] [CrossRef]
- Matsuda, T.; Maki, T.; Masuda, K.; Sakamaki, T.; Ohkuma, K. Port Experiments of the Docking and Charging System Using an AUV and a Seafloor Station: Towards Long-term Seafloor Observation. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Porto, Portugal, 6–9 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Yang, C.; Lin, M.; Li, D. Improving Steady and Starting Characteristics of Wireless Charging for an AUV Docking System. IEEE J. Ocean. Eng. 2020, 45, 430–441. [Google Scholar] [CrossRef]
- Heeres, B.; Novotny, D.; Divan, D.; Lorenz, R. Contactless underwater power delivery. In Proceedings of the 1994 Power Electronics Specialist Conference—PESC’94, Taipei, Taiwan, 20–25 June 1994; Volume 1, pp. 418–423. [Google Scholar] [CrossRef]
- Huang, Y.; Fang, C.; Li, X. Contactless power and data transmission for underwater sensor nodes. EURASIP J. Wirel. Commun. Netw. 2013, 2013, 81–87. [Google Scholar] [CrossRef]
- Lin, C.; Wang, K.; Chu, Z.; Wang, K.; Deng, J.; Obaidat, M.; Wu, G. Hybrid charging scheduling schemes for three-dimensional underwater wireless rechargeable sensor networks. J. Syst. Softw. 2018, 146, 42–58. [Google Scholar] [CrossRef]
- Hwangbo, S.H.; Jeon, J.H.; Park, S.J. Wireless Underwater Monitoring Systems Based on Energy Harvestings. Sens. Transducers 2013, 18, 113–119. [Google Scholar]
- Santana Sosa, G.; Santana Abril, J.; Sosa, J.; Montiel-Nelson, J.A.; Bautista, T. Design of a Practical Underwater Sensor Network for Offshore Fish Farm Cages. Sensors 2020, 20, 4459. [Google Scholar] [CrossRef]
- Santana Abril, J.; Santana Sosa, G.; Sosa, J.; Bautista, T.; Montiel-Nelson, J. A Novel Charging Method for Underwater Batteryless Sensor Node Networks. Sensors 2021, 21, 557. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, X.; Du, Z. Charging path planning algorithm based on multi-parameters in underwater wireless rechargeable sensor network. J. Phys. Conf. Ser. 2021, 1732, 012077. [Google Scholar] [CrossRef]
- Ahluwalia, U.; Chenevert, G.; Pratik, U.; Pantic, Z. System for Wireless Charging of Battery-Powered Underwater Sensor Networks. In Proceedings of the Oceans Conference Record (IEEE) 2022, Hampton Roads, VA, USA, 17–20 October 2022. [Google Scholar] [CrossRef]
- Ma, Y.; Mao, Z.; Zhang, K. Optimization Design of Planar Circle Coil for Limited-Size Wireless Power Transfer System. Appl. Sci. 2022, 12, 2286. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.; Lu, C.; Lu, Y.; Xu, W. A wireless power transfer system for an autonomous underwater vehicle based on lightweight universal variable ring-shaped magnetic coupling. Int. J. Circuit Theory Appl. 2023, 51, 2654–2673. [Google Scholar] [CrossRef]
- Sohn, Y.H.; Choi, B.H.; Lee, E.S.; Lim, G.C.; Cho, G.H.; Rim, C.T. General Unified Analyses of Two-Capacitor Inductive Power Transfer Systems: Equivalence of Current-Source SS and SP Compensations. IEEE Trans. Power Electron. 2015, 30, 6030–6045. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Y.; Zhang, K.; Song, B.; Li, S.; Kan, T.; Mi, C. Fault-Tolerant Wireless Power Transfer System with a Dual-Coupled LCC-S Topology. IEEE Trans. Veh. Technol. 2019, 68, 11838–11846. [Google Scholar] [CrossRef]
- Kong, F.; Qu, X. Low Eddy Current Loss Constant Voltage Wireless Power Transfer System in Seawater. In Proceedings of the 2022 IEEE International Power Electronics and Application Conference and Exposition, Guangzhou, China, 4–7 November 2022; pp. 1342–1347. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Y.; Song, B.; Zhang, K.; Kan, T.; Mi, C. An LCC-p compensated wireless power transfer system with a constant current output and reduced receiver size. Energies 2019, 12, 172. [Google Scholar] [CrossRef]
- Qiao, K.; Rong, E.; Sun, P.; Zhang, X.; Sun, J. Design of LCC-P Constant Current Topology Parameters for AUV Wireless Power Transfer. Energies 2022, 15, 5249. [Google Scholar] [CrossRef]
- Yan, Z.; Song, B.; Zhang, Y.; Zhang, K.; Mao, Z.; Hu, Y. A Rotation-Free Wireless Power Transfer System with Stable Output Power and Efficiency for Autonomous Underwater Vehicles. IEEE Trans. Power Electron. 2019, 34, 4005–4008. [Google Scholar] [CrossRef]
- Wen, H.; Li, J.; Yang, L.; Tong, X. Feasibility Study on Wireless Power Transfer for AUV with Novel Pressure-Resistant Ceramic Materials. In Proceedings of the 2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia), Himeji, Japan, 15–19 May 2022; pp. 182–185. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Q.; Qiu, M.; Zhang, X. Research on Bilateral LCC Compensation Network of Underwater Wireless Charging System with Multi-resonance Point Switching. In Proceedings of the 2023 International Conference on Wireless Power Transfer (ICWPT2023), Weihai, China, 13–15 October 2023; Cai, C., Qu, X., Mai, R., Zhang, P., Chai, W., Wu, S., Eds.; Springer: Singapore, 2024; pp. 298–319. [Google Scholar]
- Goncalves, F.; Duarte, C.; Pessoa, L. A Novel Circuit Topology for Underwater Wireless Power Transfer. In Proceedings of the 2nd International Conference on Systems Informatics, Modelling and Simulation, Okinawa, Japan, 24–26 November 2017; pp. 181–186. [Google Scholar] [CrossRef]
- Imura, T. Chapter Comparison between Electromagnetic Induction and Magnetic Resonance Coupling. In Wireless Power Transfer: Using Magnetic and Electric Resonance Coupling Techniques; Springer: Singapore, 2020; pp. 113–174. [Google Scholar] [CrossRef]
- Jenkins, A.; Bana, V.; Anderson, G. Impedance of a coil in seawater. In Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014; pp. 625–626. [Google Scholar] [CrossRef]
- Cheng, Z.; Lei, Y.; Song, K.; Zhu, C. Design and Loss Analysis of Loosely Coupled Transformer for an Underwater High-Power Inductive Power Transfer System. IEEE Trans. Magn. 2015, 51, 1–10. [Google Scholar] [CrossRef]
- Niu, W.; Gu, W.; Chu, J. Experimental investigation of frequency characteristics of underwater wireless power transfer. In Proceedings of the 2018 IEEE MTT-S International Wireless Symposium, IWS 2018, Chengdu, China, 6–10 May 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Rozas Holgado, I.; Martínez de Alegría, I.; Kortabarria, I.; Andreu, J.; Martín, J.L. Wireless Power Transfer: Underwater loss analysis for different topologies and frequency values. In Proceedings of the IECON 2020 Conference, Singapore, 18–21 October 2020; pp. 3942–3947. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.; Xie, J.; Zhu, C.; Zhang, X. Frequency Optimization Method for Underwater Wireless Power Transfer Considering Coupling Conditions. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022, Detroit, MI, USA, 9–13 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Li, W.; Zhu, J.; Wang, Y.; Liu, B. Modeling and Characteristic Analysis of Magnetic Coupling Mechanism in Seawater Environment. IEEE Trans. Magn. 2022, 58, 1–6. [Google Scholar] [CrossRef]
- Niu, W.; Gu, W.; Chu, J.; Shen, A. Frequency splitting of underwater wireless power transfer. In Proceedings of the 2016 IEEE International Workshop on Electromagnetics, iWEM 2016, Nanjing, China, 16–18 May 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Y.; Kan, T.; Lu, F.; Zhang, K.; Song, B.; Mi, C. Frequency optimization of a loosely coupled underwater wireless power transfer system considering eddy current loss. IEEE Trans. Ind. Electron. 2019, 66, 3468–3476. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, Y.; Yan, Z.; Di, Z.; Song, B.; Hu, A. Eddy Current Loss and Detuning Effect of Seawater on Wireless Power Transfer. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 909–917. [Google Scholar] [CrossRef]
- Bana, V.; Kerber, M.; Anderson, G.; Rockway, J.; Phipps, A. Underwater wireless power transfer for maritime applications. In Proceedings of the 2015 IEEE Wireless Power Transfer Conference, WPTC 2015, Boulder, CO, USA, 13–15 May 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Mazinani, A.; Alsharif, M.H.; Cho, H.S. Enabling Underwater Wireless Power Transfer towards Sixth Generation (6G) Wireless Networks: Opportunities, Recent Advances, and Technical Challenges. J. Mar. Sci. Eng. 2022, 10, 1282. [Google Scholar] [CrossRef]
- Zhang, K.H.; Zhu, Z.B.; Song, B.W.; Xu, D.M. A power distribution model of magnetic resonance WPT system in seawater. In Proceedings of the 2016 IEEE 2nd Annual Southern Power Electronics Conference, SPEC 2016, Auckland, New Zealand, 5–8 December 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Hayslett, T.; Orekan, T.; Zhang, P. Underwater wireless power transfer for ocean system applications. In Proceedings of the OCEANS 2016 Conference, Washington, DC, USA, 15–16 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Niu, W.; Ye, C.; Gu, W. Circuit coupling model containing equivalent eddy current loss impedance for wireless power transfer in seawater. Int. J. Circuits Syst. Signal Process. 2021, 15, 410–416. [Google Scholar] [CrossRef]
- Xu, F.; Huang, H. Frequency selection for underwater wireless power transfer based on the analysis of eddy current loss. AEU—Int. J. Electron. Commun. 2023, 163, 154618. [Google Scholar] [CrossRef]
- Li, Z.; Li, D.; Lin, L.; Chen, Y. Design considerations for electromagnetic couplers in contactless power transmission systems for deep-sea applications. J. Zhejiang Univ. Sci. C 2010, 11, 824–834. [Google Scholar] [CrossRef]
- Yan, Z.; Song, B.; Zhang, K.; Wen, H.; Mao, Z.; Hu, Y. Eddy current loss analysis of underwater wireless power transfer systems with misalignments. AIP Adv. 2018, 8, 1–6. [Google Scholar] [CrossRef]
- Mostafa, A.; Wang, Y.; Zhang, H.; Tangirala, S.; Lu, F. An Ultra-Fast Wireless Charging System with a Hull-Compatible Coil Structure for Autonomous Underwater Vehicles (AUVs). In Proceedings of the 2022 IEEE Transportation Electrification Conference and Expo (ITEC), Anaheim, CA, USA, 15–17 June 2022; pp. 279–284. [Google Scholar] [CrossRef]
- Goncalves, F.; Pereira, A.; Morais, A.; Duarte, C.; Gomes, R.; Pessoa, L. An adaptive system for underwater wireless power transfer. In Proceedings of the International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, Lisbon, Portugal, 18–20 October 2016; pp. 101–105. [Google Scholar] [CrossRef]
- Lopes, I.F.; Coelho, D.C.; Aguilar Bojorge, E.V.; Andrade de Oliveira, L.R.; Oliveira Almeida, A.; Barbosa, P.G. Underwater Wireless Power Transfer with High Tolerance to Misalignments. In Proceedings of the 2021 Brazilian Power Electronics Conference, João Pessoa, Brazil, 7–10 November 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Mototani, S.; Yamamoto, R.; Doki, K.; Torii, A. Effect of Angle Offset of the Power Receiving Coil in Underwater Wireless Power Transfer Using a Cone Spiral Coil. In Proceedings of the 2022 International Power Electronics Conference, IPEC, Himeji, Japan, 15–19 May 2022; pp. 167–174. [Google Scholar] [CrossRef]
- Zeng, Y.; Rong, C.; Lu, C.; Tao, X.; Liu, X.; Liu, R.; Liu, M. Misalignment Insensitive Wireless Power Transfer System Using a Hybrid Transmitter for Autonomous Underwater Vehicles. IEEE Trans. Ind. Appl. 2022, 58, 1298–1306. [Google Scholar] [CrossRef]
- Wang, D.; Chen, F.; Zhang, J.; Cui, S.; Bie, Z.; Zhu, C. A Novel Pendulum-Type Magnetic Coupler with High Misalignment Tolerance for AUV Underwater Wireless Power Transfer Systems. IEEE Trans. Power Electron. 2023, 38, 14861–14871. [Google Scholar] [CrossRef]
- Kang, L.; Hu, Y.; Zheng, W. Maximum power efficiency tracking on underwater magnetic resonant wireless power transfer system. Harbin Gongcheng Daxue Xuebao/J. Harbin Eng. Univ. 2017, 38, 829–835. [Google Scholar] [CrossRef]
- Lopes, I.; Lacerda Valle, R.; Azevedo Fogli, G.; Ferreira, A.; Gomes Barbosa, P. Low-Frequency Underwater Wireless Power Transfer: Maximum Efficiency Tracking Strategy. IEEE Lat. Am. Trans. 2020, 18, 1200–1208. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, N.; Ahmed, S. Maximum efficiency tracking control of underwater wireless power transfer system using artificial neural networks. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2021, 235, 1819–1829. [Google Scholar] [CrossRef]
- Hassnain Mohsan, S.; Islam, A.; Khan, M.; Mahmood, A.; Rokia, L.; Mazinani, A.; Amjad, H. A review on research challenges, limitations and practical solutions for underwater wireless power transfer. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 554–562. [Google Scholar] [CrossRef]
- Flemming, H.C. Microbial Biofouling: Unsolved Problems, Insufficient Approaches, and Possible Solutions; Springer: Berlin/Heidelberg, Germany, 2011; Volume 5, pp. 81–109. [Google Scholar] [CrossRef]
- Anderson, G.; Bana, V.; Kerber, M.; Phipps, A.; Rockway, J.D. Marine Fouling and Thermal Dissipation of Undersea Wireless Power Transfer; Technical Report; Space and Naval Warfare Systems Center Pacific (SPAWAR): San Diego, CA, USA, 2014. [Google Scholar]
- Pittini, R.; Hernes, M.; Petterteig, A. Pressure Tolerant Power Electronics for Deep and Ultra-Deep Water. Oil Gas Facil. 2011, 1, 47–52. [Google Scholar] [CrossRef]
- TDK Electronics AG. The Impact of Pressure on Ferrites; Technical Report; TDK Electronics AG (Previously EPCOS): Munich, Germany, 2009. [Google Scholar]
- Pereira, P.; Campilho, R.; Pinto, A. Application of a Design for Excellence Methodology for a Wireless Charger Housing in Underwater Environments. Machines 2022, 10, 232. [Google Scholar] [CrossRef]
- Nyqvist, D.; Durif, C.; Johnsen, M.G.; De Jong, K.; Forland, T.N.; Sivle, L.D. Electric and magnetic senses in marine animals, and potential behavioral effects of electromagnetic surveys. Mar. Environ. Res. 2020, 155, 104888. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, Z.L.; Gill, A.B.; Sigray, P.; He, H.; King, J.W. Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Sci. Rep. 2020, 10, 4219. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, B.; Mao, Z. Application of shielding coils in underwater wireless power transfer systems. J. Mar. Sci. Eng. 2019, 7, 267. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Li, X.; Feng, B.; Huang, J.; Zhu, D.; Zhang, A.; Tong, X. The Impact of Metal Hull of AUVs for Underwater Wireless Power Transfer System. In Proceedings of the 2022 International Conference on Wireless Power Transfer (ICWPT2022), Chongqing, China, 28–31 October 2022; pp. 218–228. [Google Scholar] [CrossRef]
- Subsea Docking Station (SDS). 2019. Available online: https://www.bluelogic.no/news-and-media/subsea-docking-station-sds- (accessed on 13 April 2023).
- Rolland, E.S.; Haji, M.N.; Weck, O.L. Autonomous Control of a Prototype Solar-powered Offshore AUV Servicing Platform. In Proceedings of the OCEANS 2021 Conference, San Diego, CA, USA, 20–23 September 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Sun, X.Y.; Deng, B.; Zhang, J.; Kelly, M.; Alam, R.; Makiharju, S. Reimagining Autonomous Underwater Vehicle Charging Stations with Wave Energy. Berkeley Sci. J. 2021, 25, 74–78. [Google Scholar] [CrossRef]
- Zhou, J.; Yao, P.; Chen, Y.; Guo, K.; Hu, S.; Sun, H. Design Considerations for a Self-Latching Coupling Structure of Inductive Power Transfer for Autonomous Underwater Vehicle. IEEE Trans. Ind. Appl. 2021, 57, 580–587. [Google Scholar] [CrossRef]
- Hasaba, R.; Eguchi, K.; Yamaguchi, S.; Satoh, H.; Yagi, T.; Koyanagi, Y. WPT System in Seawater for AUVs with kW-class Power, High Positional Freedom, and High Efficiency inside the Transfer Coils. In Proceedings of the 2022 Wireless Power Week Conference, Bordeaux, France, 5–8 July 2022; pp. 90–94. [Google Scholar] [CrossRef]
- Wu, B.; Liu, J.; Yu, H.; Li, Z.; Chen, Y. Underwater high-power inductive coupling energy transmission system. In Proceedings of the OCEANS 2016 Conference, Washington, DC, USA, 15–16 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Meşe, H.; Budak, M.A. Efficiency Investigation of a 400W Resonant Inductive Wireless Power Transfer System for Underwater Unmanned Vehicles. In Proceedings of the 2020 IEEE Wireless Power Transfer Conference (WPTC), Seoul, Republic of Korea, 15–19 November 2020; pp. 223–226. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Guo, Y.; Tao, C. Eddy current loss analysis of wireless power transfer system for autonomous underwater vehicles. In Proceedings of the 2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, WoW 2020, Seoul, Republic of Korea, 15–19 November 2020; pp. 283–287. [Google Scholar] [CrossRef]
- Lin, M.; Li, D.; Yang, C. Design of an ICPT system for battery charging applied to underwater docking systems. Ocean Eng. 2017, 145, 373–381. [Google Scholar] [CrossRef]
- Song, B.; Wang, Y.; Zhang, K.; Mao, Z. Research on wireless power transfer system for Torpedo autonomous underwater vehicles. Adv. Mech. Eng. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Guo, K.; Zhou, J.; Sun, H.; Yao, P. Design Considerations for a Position-Adaptive Contactless Underwater Power Deliver System. In Proceedings of the 22nd International Conference on Electrical Machines and Systems, ICEMS 2019, Harbin, China, 11–14 August 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, P.; Gao, T.; Zhao, R.; Mao, Z. A Novel Conformal Coil Structure Design of Wireless Power Transfer System for Autonomous Underwater Vehicles. J. Mar. Sci. Eng. 2022, 10, 875. [Google Scholar] [CrossRef]
- Zhang, K.; Dai, F.; Li, X.; Yan, Z.; Zhang, F.; Mao, Z.; Hu, A.P. Analysis of Power Transfer Characteristics of IPT System with Near Field Magnetic Coupling. IEEE Trans. Electromagn. Compat. 2023, 65, 890–899. [Google Scholar] [CrossRef]
- Wen, H.; Wang, P.; Li, J.; Yang, J.; Zhang, K.; Yang, L.; Zhao, Y.; Tong, X. Improving the Misalignment Tolerance of Wireless Power Transfer System for AUV with Solenoid-Dual Combined Planar Magnetic Coupler. J. Mar. Sci. Eng. 2023, 11, 1571. [Google Scholar] [CrossRef]
- Shi, J.G.; Li, D.J.; Yang, C.J. Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications. J. Zhejiang Univ.—Sci. C 2014, 15, 51–62. [Google Scholar] [CrossRef]
- Shizuno, K.; Yoshida, S.; Tanomura, M.; Hama, Y. Long distance high efficient underwater wireless charging system using dielectric-assist antenna. In Proceedings of the 2014 OCEANS Conference, Washington, DC, USA, 16–17 June 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Santos, H.; Pereira, M.; Pessoa, L.; Salgado, H. Design and optimization of air core spiral resonators for magnetic coupling wireless power transfer on seawater. In Proceedings of the 2016 IEEE Wireless Power Transfer Conference, WPTC 2016, Aveiro, Portugal, 5–6 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Ressurreição, T.; Gonçalves, F.; Duarte, C.; Gonçalves, R.; Gomes, R.; Santos, R.; Esteves, R.; Pinto, P.; Oliveira, I.; Pessoa, L.M. System design for wireless powering of AUVs. In Proceedings of the OCEANS 2017 Conference, New York, NY, USA, 5–9 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Silva, M.; Duarte, C.; Goncalves, F.; Correia, V.; Pessoa, L. Power Transmitter Design for Underwater WPT. In Proceedings of the OCEANS 2019 Marseille Conference, Marseilles, France, 17–20 June 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Dou, Y.; Zhao, D.; Ouyang, Z.; Andersen, M. Investigation and design of wireless power transfer system for autonomous underwater vehicle. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition—APEC, Anaheim, CA, USA, 17–21 March 2019; pp. 3144–3150. [Google Scholar] [CrossRef]
- Anyapo, C.; Intani, P. Wireless power transfer for autonomous underwater vehicle. In Proceedings of the 2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, WoW 2020, Seoul, Republic of Korea, 15–19 November 2020; pp. 246–249. [Google Scholar] [CrossRef]
- Pereira, M.; Santos, H.; Pessoa, L.; Salgado, H. Simulation and experimental evaluation of a resonant magnetic wireless power transfer system for seawater operation. In Proceedings of the OCEANS 2016 Conference, Washington, DC, USA, 15–16 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Manikandan, J.; Vishwanath, A.; Korulla, M. Design of a 1kW Underwater Wireless Charging Station for Underwater Data Gathering Systems. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, India, 13–15 September 2018; pp. 211–216. [Google Scholar] [CrossRef]
- Cai, C.; Qin, M.; Wu, S.; Yang, Z. A Strong Misalignmentt Tolerance Magnetic Coupler for Autonomous Underwater Vehicle Wireless Power Transfer System. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, D.; Cui, S.; Zhang, J.; Bie, Z.; Song, K.; Zhu, C. A Novel Arc-Shaped Lightweight Magnetic Coupler for AUV Wireless Power Transfer. IEEE Trans. Ind. Appl. 2022, 58, 1315–1329. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, Y.; Wu, S.; Liu, J.; Zhang, Z.; Jiang, L. A Circumferential Coupled Dipole-Coil Magnetic Coupler for Autonomous Underwater Vehicles Wireless Charging Applications. IEEE Access 2020, 8, 65432–65442. [Google Scholar] [CrossRef]
- Qiao, K.; Sun, P.; Rong, E.; Sun, J.; Zhou, H.; Wu, X. Anti-misalignment and lightweight magnetic coupler with H-shaped receiver structure for AUV wireless power transfer. IET Power Electron. 2022, 15, 1843–1857. [Google Scholar] [CrossRef]
- Zeng, Y.; Lu, C.; Liu, R.; He, X.; Rong, C.; Liu, M. Wireless Power and Data Transfer System Using Multidirectional Magnetic Coupler for Swarm AUVs. IEEE Trans. Power Electron. 2023, 38, 1440–1444. [Google Scholar] [CrossRef]
- Kan, T.; Mai, R.; Mercier, P.P.; Mi, C.C. Design and Analysis of a Three-Phase Wireless Charging System for Lightweight Autonomous Underwater Vehicles. IEEE Trans. Power Electron. 2018, 33, 6622–6632. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Y.; Zhang, K.; Song, B.; Mi, C. Underwater wireless power transfer system with a curly coil structure for AUVs. IET Power Electron. 2019, 12, 2559–2565. [Google Scholar] [CrossRef]
- Cai, C.; Wu, S.; Zhang, Z.; Jiang, L.; Yang, S. Development of a Fit-to-Surface and Lightweight Magnetic Coupler for Autonomous Underwater Vehicle Wireless Charging Systems. IEEE Trans. Power Electron. 2021, 36, 9927–9940. [Google Scholar] [CrossRef]
- Lin, M.; Lin, R.; Li, D.; Duan, R. Development of a Radially Coupled Wireless Charging System for Torpedo-Shaped Autonomous Underwater Vehicles. J. Mar. Sci. Eng. 2023, 11, 1180. [Google Scholar] [CrossRef]
- Xia, T.; Li, H.; Yu, H.; Zhang, Y.; Hu, P. A Circular-Arc-Type Magnetic Coupler with Strong Misalignment Tolerance for AUV Wireless Charging System. J. Mar. Sci. Eng. 2023, 11, 162. [Google Scholar] [CrossRef]
- Hasaba, R.; Okamoto, K.; Kawata, S.; Eguchi, K.; Koyanagi, Y. Magnetic resonance wireless power transfer over 10 m with multiple coils immersed in seawater. IEEE Trans. Microw. Theory Tech. 2019, 67, 4505–4513. [Google Scholar] [CrossRef]
- Wu, S.; Cai, C.; Wang, A.; Qin, Z.; Yang, S. Design and Implementation of a Uniform Power and Stable Efficiency Wireless Charging System for Autonomous Underwater Vehicles. IEEE Trans. Ind. Electron. 2022, 70, 5674–5684. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Huang, J.; Zhang, J.; Ji, Y. Propagation Modeling for Underwater Magnetic MISO Wireless Power Transfer. In Proceedings of the 2019 IEEE MTT-S International Wireless Symposium, IWS 2019, Guangzhou, China, 19–22 May 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, K.; Qiao, L.; Hu, Y.; Song, B. A Multiload Wireless Power Transfer System with Concentrated Magnetic Field for AUV Cluster System. IEEE Trans. Ind. Appl. 2022, 58, 1307–1314. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, X.; Zhu, Z.; Yan, Z.; Song, B.; Mi, C. A new coil structure to reduce eddy current loss of wpt systems for underwater vehicles. IEEE Trans. Veh. Technol. 2019, 68, 245–253. [Google Scholar] [CrossRef]
- Sato, N.; Kifune, H.; Komeda, S. A coil layout of wireless power transfer systems based on multicoil arrangement for underwater vehicles. Electr. Eng. Jpn. Engl. Transl. Denki Gakkai Ronbunshi 2019, 207, 38–48. [Google Scholar] [CrossRef]
- Yan, Z.; Wu, M.; Zhao, C.; Hu, Q.; Zhu, L.; Qiao, L.; Wang, L. Free-Rotation Wireless Power Transfer System Based on Composite Anti-Misalignment Method for AUVs. IEEE Trans. Power Electron. 2023, 38, 4262–4266. [Google Scholar] [CrossRef]
- Da, C.; Wang, L.; Li, F.; Tao, C.; Zhang, Y. Analysis of Undersea Simultaneous Wireless Power and 1Mbps Data Rate Transfer System Based on DDQ Coil. IEEE Trans. Power Electron. 2023, 38, 11814–11825. [Google Scholar] [CrossRef]
- Sun, A.; Zhu, J.; Wang, F.; Liu, B. Modeling and efficiency optimized control of DD Orthogonal wireless power transfer system. In Proceedings of the 2023 IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China, 12–14 May 2023; pp. 2306–2311. [Google Scholar] [CrossRef]
- Cai, T.; Lyu, F.; Wang, T.; Huang, F. Design of a Highly Compatible Underwater Wireless Power Transfer Station for Seafloor Observation Equipment. J. Mar. Sci. Eng. 2023, 11, 1205. [Google Scholar] [CrossRef]
- Niu, S.; Zhao, Q.; Chen, H.; Yu, H.; Niu, S.; Jian, L. Underwater Wireless Charging System of Unmanned Surface Vehicles with High Power, Large Misalignment Tolerance and Light Weight: Analysis, Design and Optimization. Energies 2022, 15, 9529. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, J.; Zeng, M.; Dong, L. Wireless Power Transfer System of AUV Based on Improved Coil Structure with Stable Output Power and Efficiency. In Proceedings of the 17th IEEE Conference on Industrial Electronics and Applications ICIEA 2022, Chengdu, China, 16–19 December 2022; pp. 561–565. [Google Scholar] [CrossRef]
- Kuroda, J.; Ogawa, M.; Yamaguchi, I.; Sato, R.; Sogo, N.; Matsui, Y. Design of underwater power transfer antenna coverd with resin sealing layer. In Proceedings of the 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO) Conference, Kobe, Japan, 28–31 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Hu, Y.; Kang, L.; Zheng, W.; Bai, J. Impedance matching control method for an underwater magnetic resonance-based wireless power transfer system with metamaterials. J. Electromagn. Waves Appl. 2016, 30, 2003–2019. [Google Scholar] [CrossRef]
- Ogihara, M.; Ebihara, T.; Mizutani, K.; Wakatsuki, N. Wireless power and data transfer system for station-based autonomous underwater vehicles. In Proceedings of the OCEANS 2015 Conference, Washington, DC, USA, 5–6 October 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Shi, J.; Li, F.; Peng, S.; Cai, W.; Pan, M.; Yu, H. Design and analysis of a noninsert wet mateable connector for underwater power and data transfer. Mar. Technol. Soc. J. 2020, 54, 65–78. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Zeng, M.; Mai, J.; Gu, P.; Xu, D. An Underwater Simultaneous Wireless Power and Data Transfer System for AUV with High-Rate Full-Duplex Communication. IEEE Trans. Power Electron. 2023, 38, 619–633. [Google Scholar] [CrossRef]
- Chen, G.; Sun, Y.; Huang, J.; Zhou, B.; Meng, F.; Tang, C. Wireless Power and Data Transmission System of Submarine Cable-Inspecting Robot Fish and Its Time-Sharing Multiplexing Method. Electronics 2019, 8, 838. [Google Scholar] [CrossRef]
- Li, T.; Sun, Z.; Wang, Y.; Mai, J.; Xu, D. An Underwater Simultaneous Wireless Power and Data Transfer System with 1-Mbps Full-Duplex Communication Link. IEEE Trans. Ind. Inform. 2023, 20, 2620–2631. [Google Scholar] [CrossRef]
- Cai, C.; Li, J.; Wu, S.; Qin, Z.; Chai, W.; Yang, S. A Bipolar and Unipolar Magnetic Channel Multiplexed WPT System with Simultaneous Full-Duplex Communication for Autonomous Underwater Vehicles. IEEE Trans. Power Electron. 2023, 38, 15086–15090. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; Li, H.; Xie, Z.; Ma, Q. Maximum Efficiency Tracking for Multitransmitter Multireceiver Wireless Power Transfer System on the Submerged Buoy. IEEE Trans. Ind. Electron. 2022, 69, 1909–1919. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, N.; Ahmed, S. Decoupling Control Scheme Bridging Frequency Tracking and DC Output Stabilizing for Wireless Charging System of Autonomous Underwater Vehicles. Int. J. Control. Autom. Syst. 2022, 20, 1099–1110. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, B.; Ju, M. A fast dynamic response regulation method for undersea wireless power transfer system. In Proceedings of the 14th IEEE Conference on Industrial Electronics and Applications, ICIEA 2019, Xi’an, China, 19–21 June 2019; pp. 1162–1166. [Google Scholar] [CrossRef]
- Siroos, A.; Sedighizadeh, M.; Afjei, E.; Fini, A. Comparison of different controllers for wireless charging system in AUVs. In Proceedings of the 13th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2022, Tehran, Iran, 1–3 February 2022; pp. 155–160. [Google Scholar] [CrossRef]
- Pang, S.; Xu, J.; Li, H.; Ma, Q.; Li, X. Dual-frequency modulation to achieve power independent regulation for dual-load underwater wireless power connector. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 11, 2377–2389. [Google Scholar] [CrossRef]
- Bagchi, A.C.; Wang, H.; Saha, T.; Zane, R. Small-Signal Phasor Modeling of an Underwater IPT System in Constant Current Distribution. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 876–883. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.; Kim, H.; Kim, D.; Park, J.; Ahn, S. An Efficient Modeling for Underwater Wireless Power Transfer Using Z-Parameters. IEEE Trans. Electromagn. Compat. 2019, 61, 2006–2014. [Google Scholar] [CrossRef]
- Liang, B.; Mao, Z.; Zhang, K.; Liu, P. Analysis and Optimal Design of a WPT Coupler for Underwater Vehicles Using Non-Dominated Sorting Genetic Algorithm. Appl. Sci. 2022, 12, 2015. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, X.; Zhu, Z.; Yu, H.; Li, H. An Adaptive Control Strategy for Underwater Wireless Charging System Output Power with an Arc-Shaped Magnetic Core Structure. J. Mar. Sci. Eng. 2023, 11, 294. [Google Scholar] [CrossRef]
- Sanborn, G.; Phipps, A. Standards and methods of power control for variable power bidirectional wireless power transfer. In Proceedings of the 2017 IEEE Wireless Power Transfer Conference (WPTC), Taipei, Taiwan, 10–12 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Kerber, M.; Offord, B.; Phipps, A. Design considerations for an active rectifier circuit for bidirectional wireless power transfer. In Proceedings of the Wireless Power Transfer Conference—WPTC 2017, Taipei, Taiwan, 10–12 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, F.; Yang, C.; Li, D.; Lin, R. Design of bidirectional power converters coupled with coils for wireless charging of AUV docking systems. J. Mar. Sci. Technol. 2022, 27, 873–886. [Google Scholar] [CrossRef]
- Dongye, Z.; Mei, W.; Yuan, J.; Li, T.; Yuan, Q.; Diao, L. Bidirectional Inductive Power Transfer for Unmanned Underwater Vehicles. In Proceedings of the 2023 IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China, 12–14 May 2023; pp. 2411–2416. [Google Scholar] [CrossRef]
- Tolstonogov, A.Y.; Chemezov, I.A.; Kolomeitsev, A.Y.; Storozhenko, V.A. The Modular Approach for Underwater Vehicle Design. In Proceedings of the Global Oceans 2020 Conference, Singapore, 5–31 October 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Agostinho, L.; Ricardo, N.; Silva, R.; Pinto, A. A Modular Inductive Wireless Charging Solution for Autonomous Underwater Vehicles. In Proceedings of the 2021 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2021, Santa Maria da Feira, Portugal, 28–29 April 2021; pp. 68–73. [Google Scholar] [CrossRef]
- Vaughan, C.H. A System for the Transmission of Electrical Energy to or from a Submerged Body. United Kingdom, Patent number: GB499037 1937. Available online: https://patents.google.com/patent/GB499037A/en?oq=GB499037#citedBy (accessed on 8 April 2024).
Authors | Year | Coupling | ||||
---|---|---|---|---|---|---|
Feezor et al. [119] | 1997 | Funnel-type | N/A | N/A | N/A | N/A |
Fukasawa et al. [120] | 2003 | Landing-type | N/A | N/A | N/A | N/A |
McGinnis et al. [121] | 2007 | Loosely coupled | 250 | 70 | N/A | 2 |
Hobson et al. [122] | 2007 | Funnel-type | 1000 | 88 | N/A | N/A |
Pyle et al. [123] | 2012 | Mothership | 450 | N/A | N/A | N/A |
Yoshida et al. [124] | 2016 | Funnel-type | 1000 | 75 | 80-90 | 70 |
Yoshida et al. [125] | 2016 | Landing-type | 25 | 65 | 200 | 100 |
Maguer et al. [126] | 2018 | Funnel-type | 500 | 90 | N/A | N/A |
Matsuda et al. [127] | 2019 | Landing-type | 188 | 70 | N/A | N/A |
Yang et al. [129] | 2020 | Funnel-type | 680 | 90 | 35 | N/A |
Authors | Year | Environment | Coil | Core | Comp. | ||||
---|---|---|---|---|---|---|---|---|---|
Li et al. [165] | 2010 | Salt water | Planar | Semi-closed | S-P | 400 | 90 | 94.3 | 2 |
Cheng et al. [151] | 2015 | Salt water | Planar | Enclosed | S-P | 10340 | 92.8 | 38.9 | 25 |
Wu et al. [191] | 2016 | Salt water | Planar | Coreless | S-S | 360 | 90.2 | 100 | 1 |
Yan et al. [157] | 2019 | Salt water | Planar | Coreless | S-S | 200 | 85 | 504.5 | 14 |
Yan et al. [143] | 2019 | Air | Planar | Backplane | LLC-P | 1000 | 94 | 81.6 | 60 |
Meşe and Budak [192] | 2020 | Salt water | Planar | Backplane | S-S | 400 | 86.3 | 100 | 50 |
Liu et al. [193] | 2020 | Air | Planar | Backplane | LCC-S | 1000 | 94 | 100 | 55 |
Zhou et al. [189] | 2021 | Salt water | Planar | Self-latch | S-S | 3000 | 92 | 35.4 | 5 |
Lin et al. [194] | 2017 | Salt water | Coaxial | Coreless | S-P | 300 | 77 | 52 | 15 |
Song et al. [195] | 2018 | Salt water | Coaxial | Coreless | LCC-S | 100 | 70 | 214.3 | 1.6 |
Guo et al. [196] | 2019 | Salt water | Coaxial | Enclosed | S-S | 300 | 88 | 32 | 5 |
Liu et al. [197] | 2022 | Fresh water | Coaxial | Tubular | LCC-S | 2000 | 92.7 | 200 | 32 |
Mostafa et al. [167] | 2022 | Salt water | Coaxial | Backplane | LCC-S | 5180 | 96.7 | 200 | 30 |
Hasaba et al. [190] | 2022 | Salt water | Coaxial | Tubular | LCC-LCC | 3000 | 80.7 | 1.55 | 770 |
Zhang et al. [94] | 2023 | Air | Coaxial | Ring | LCC-S | 800 | 86.4 | 100 | N/A |
Wen et al. [199] | 2023 | Salt water | Hybrid | Coreless | S-S | 401 | 85 | 100 | N/A |
Authors | Year | Environment | Coil | Core | Comp. | ||||
---|---|---|---|---|---|---|---|---|---|
Li et al. [165] | 2010 | Salt water | Planar | Semiclosed ferrite | S-P | 400 | 90 | 94,3 | 2 |
Cheng et al. [151] | 2015 | Salt water | Planar | Enclosed | S-P | 10340 | 92.8 | 38.9 | 25 |
Cai et al. [209] | 2018 | Air | Circular helical | E-shaped | N/A | 606 | 91.3 | 50 | 8 |
Kan et al. [214] | 2017 | Air | Three phase | Tx: T-shape Rx: Cuboid | S-S | 1000 | 92.4 | 465 | 21 |
Sato et al. [224] | 2019 | Salt water | Planar multicoil | Coreless | S-P | 200 | 85 | 14 | 10 |
Yan et al. [215] | 2019 | Air | Circular arc | Arc | LCC-LCC | 1000 | 95 | 85 | 10 |
Yan et al. [141] | 2019 | Air | Dual arc | Arc | LCC-S | 300 | 93 | 85 | 80 |
Cai et al. [211] | 2020 | Salt water | Dipole | Arc | S-S | 634 | 87.9 | 50 | 8 |
Cai et al. [216] | 2021 | Salt water | Bipolar circular | Arc | LCC-S | 1000 | 95.1 | 50 | 8 |
Zhou et al. [189] | 2021 | Salt water | Circular planar | Enclosed | S-S | 3000 | 92 | 35.4 | 5 |
Hasaba et al. [190] | 2022 | Salt water | Coaxial | Backplane | LCC-LCC | 3000 | 80,7 | 1.55 | 770 |
Mostafa et al. [167] | 2022 | Salt water | Coaxial | Backplane | LCC-S | 5180 | 96.7 | 200 | 30 |
Qiao et al. [144,212] | 2022 | Salt water | Tx: Arc Rx: H | Tx: Arc Rx: I-shaped | LCC-P | 802 | 91.1 | 96.2 | N/A |
Wang et al. [210] | 2022 | Salt water | Arc | Fe-alloy arc | LCC-LCC | 3000 | 91.9 | 85 | 40 |
Wu et al. [220] | 2022 | Salt water | Arc | Coaxial multicoil | LCC-LCC | 1200 | 90 | 85 | N/A |
Yan et al. [222] | 2022 | Air | Six-phase | Rx: T-shape Tx: Cuboid | LCC-LCC | 2 x 500 | 90 | 249 | 64 |
Xia et al. [218] | 2023 | Salt water | Tx: Coax. Rx: Arc | Tx: Coaxial Rx: Arc | S-P | 575 | 92.5 | 50 | 8 |
Zeng et al. [213] | 2023 | Salt water | Tx: Cage Rx: Arc | Spaced | LCC-S | 4 x 200 | 92.2 | 249 | 50 |
Lin et al. [217] | 2023 | Salt water | Arc | Distributed | LCC-S | 2200 | 94 | 35 | N/A |
Wang et al. [172] | 2023 | Salt water | Arc Pendulum | Arc Pendulum | LCC-S | 3036 | 95.9 | 85 | 50 |
Yan et al. [225] | 2023 | Air | Multi Solenoid | Solenoid | LCC-S | 700 | 92 | 200 | N/A |
Da et al. [226] | 2023 | Salt water | DDQ | Backplane | LCC-LCC | 884 | 94.3 | 85 | 20 |
Sun et al. [227] | 2023 | Salt water | DD-DD | Backplane | S-S | 1500 | 89.9 | 100 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez de Alegría, I.; Rozas Holgado, I.; Ibarra, E.; Robles, E.; Martín, J.L. Wireless Power Transfer for Unmanned Underwater Vehicles: Technologies, Challenges and Applications. Energies 2024, 17, 2305. https://doi.org/10.3390/en17102305
Martínez de Alegría I, Rozas Holgado I, Ibarra E, Robles E, Martín JL. Wireless Power Transfer for Unmanned Underwater Vehicles: Technologies, Challenges and Applications. Energies. 2024; 17(10):2305. https://doi.org/10.3390/en17102305
Chicago/Turabian StyleMartínez de Alegría, Iñigo, Iñigo Rozas Holgado, Edorta Ibarra, Eider Robles, and José Luís Martín. 2024. "Wireless Power Transfer for Unmanned Underwater Vehicles: Technologies, Challenges and Applications" Energies 17, no. 10: 2305. https://doi.org/10.3390/en17102305
APA StyleMartínez de Alegría, I., Rozas Holgado, I., Ibarra, E., Robles, E., & Martín, J. L. (2024). Wireless Power Transfer for Unmanned Underwater Vehicles: Technologies, Challenges and Applications. Energies, 17(10), 2305. https://doi.org/10.3390/en17102305