Deriving Input Variables through Applied Machine Learning for Short-Term Electric Load Forecasting in Eskilstuna, Sweden †
Abstract
:1. Introduction
- Derive which calendar and meteorological variables improve the accuracy of the STLF in this city;
- Evaluate the models: Multiple Linear Regression (MLR), Light Gradient Boosting Machine (LGBM), and the benchmark “weekly Naïve”;
- Determine suitable hyperparameters for the models.
2. Methods
2.1. Data Collection and Analysis
2.1.1. Correlation and Data Preparation
2.1.2. Load Decomposition
2.1.3. Autocorrelation
2.2. Forecasting Models and Benchmark
2.3. Model Creation
2.3.1. Full-Year Run
2.3.2. Validation
3. Results and Discussion
3.1. Explanatory Variables
3.1.1. MLR Additional Databases and Explanatory Variables
3.1.2. LGBM Additional Databases and Explanatory Variables
3.2. Detailed MLR, LGBM, and “Weekly Naïve” Full-Year Run Results
Detailed Model Error Analysis
3.3. Hyperparameter Tuning
3.3.1. Lag Tuning
3.3.2. Training Size Tuning
3.3.3. Re-Training Interval Tuning
3.4. Navigating Future Challenges
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huber, M.; Dimkova, D.; Hamacher, T. Integration of wind and solar power in Europe: Assessment of flexibility requirements. Energy 2014, 69, 236–246. [Google Scholar] [CrossRef]
- Beiron, J.; Montañés, R.M.; Normann, F.; Johnsson, F. Combined heat and power operational modes for increased product flexibility in a waste incineration plant. Energy 2020, 202, 117696. [Google Scholar] [CrossRef]
- Meliani, M.; Barkany, A.E.; Abbassi, I.E.; Darcherif, A.M.; Mahmoudi, M. Energy management in the smart grid: State-of-the-art and future trends. Int. J. Eng. Bus. Manag. 2021, 13, 18479790211032920. [Google Scholar] [CrossRef]
- Cebulla, F.; Naegler, T.; Pohl, M. Electrical energy storage in highly renewable European energy systems: Capacity requirements, spatial distribution, and storage dispatch. J. Energy Storage 2017, 14, 211–223. [Google Scholar] [CrossRef]
- Öhman, A.; Karakaya, E.; Urban, F. Enabling the transition to a fossil-free steel sector: The conditions for technology transfer for hydrogen-based steelmaking in Europe. Energy Res. Soc. Sci. 2022, 84, 102384. [Google Scholar] [CrossRef]
- Nik, V.M.; Perera, A.; Chen, D. Towards climate resilient urban energy systems: A review. Natl. Sci. Rev. 2021, 8, nwaa134. [Google Scholar] [CrossRef]
- Hong, T.; Pinson, P.; Wang, Y.; Weron, R.; Yang, D.; Zareipour, H. Energy forecasting: A review and outlook. IEEE Open Access J. Power Energy 2020, 7, 376–388. [Google Scholar] [CrossRef]
- Hong, T.; Fan, S. Probabilistic electric load forecasting: A tutorial review. Int. J. Forecast. 2016, 32, 914–938. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Sun, M.; Kang, C.; Xia, Q. An ensemble forecasting method for the aggregated load with subprofiles. IEEE Trans. Smart Grid 2018, 9, 3906–3908. [Google Scholar] [CrossRef]
- Gajowniczek, K.; Ząbkowski, T. Two-stage electricity demand modeling using machine learning algorithms. Energies 2017, 10, 1547. [Google Scholar] [CrossRef]
- SMHI. Open Data API Docs—Meteorological Forecasts; SMHI: Norrkoping, Sweden, 2023.
- NASA. POWER|Data Access Viewer; NASA: Washington, DC, USA, 2023.
- Hong, T.; Gui, M.; Baran, M.E.; Willis, H.L. Modeling and forecasting hourly electric load by multiple linear regression with interactions. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Chabouni, N.; Belarbi, Y.; Benhassine, W. Electricity load dynamics, temperature and seasonality Nexus in Algeria. Energy 2020, 200, 117513. [Google Scholar] [CrossRef]
- ESETT. eSett Open Data; ESETT: Helsinki, Finland, 2023. [Google Scholar]
- Eroshenko, S.A.; Poroshin, V.I.; Senyuk, M.D.; Chunarev, I.V. Expert models for electric load forecasting of power system. In Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg/Moscow, Russia, 1–3 February 2017; pp. 1507–1513. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 57, pp. 10–25080. [Google Scholar] [CrossRef]
- Işık, G.; Öğüt, H.; Mutlu, M. Deep learning based electricity demand forecasting to minimize the cost of energy imbalance: A real case application with some fortune 500 companies in Türkiye. Eng. Appl. Artif. Intell. 2023, 118, 105664. [Google Scholar] [CrossRef]
- Abu-Shikhah, N.; Elkarmi, F. Medium-term electric load forecasting using singular value decomposition. Energy 2011, 36, 4259–4271. [Google Scholar] [CrossRef]
- Cho, H.; Goude, Y.; Brossat, X.; Yao, Q. Modeling and forecasting daily electricity load curves: A hybrid approach. J. Am. Stat. Assoc. 2013, 108, 7–21. [Google Scholar] [CrossRef]
- Fan, M.; Hu, Y.; Zhang, X.; Yin, H.; Yang, Q.; Fan, L. Short-term load forecasting for distribution network using decomposition with ensemble prediction. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 152–157. [Google Scholar] [CrossRef]
- Bedi, J.; Toshniwal, D. Energy load time-series forecast using decomposition and autoencoder integrated memory network. Appl. Soft Comput. 2020, 93, 106390. [Google Scholar] [CrossRef]
- Zha, W.; Ji, Y.; Liang, C. Short-term load forecasting method based on secondary decomposition and improved hierarchical clustering. Results Eng. 2024, 22, 101993. [Google Scholar] [CrossRef]
- Baur, L.; Ditschuneit, K.; Schambach, M.; Kaymakci, C.; Wollmann, T.; Sauer, A. Explainability and interpretability in electric load forecasting using machine learning techniques—A review. Energy AI 2024, 16, 100358. [Google Scholar] [CrossRef]
- Bandara, K.; Hyndman, R.J.; Bergmeir, C. MSTL: A seasonal-trend decomposition algorithm for time series with multiple seasonal patterns. arXiv 2021, arXiv:2107.13462. [Google Scholar] [CrossRef]
- Krechiem, A.; Khadir, M.T. Algerian Electricity Consumption Forecasting with Artificial Neural Networks Using a Multiple Seasonal-Trend Decomposition Using LOESS. In Proceedings of the 2023 International Conference on Decision Aid Sciences and Applications (DASA), Annaba, Algeria, 16–17 September 2023; pp. 586–591. [Google Scholar] [CrossRef]
- Al Shimmari, M.; Calliess, J.P.; Wallom, D. Load Profile Forecasting of Small and Medium-sized Businesses For Flexibility Programs. In Proceedings of the 2024 4th International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 8–10 January 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Zhou, S.; Li, Y.; Guo, Y.; Yang, X.; Shahidehpour, M.; Deng, W.; Mei, Y.; Ren, L.; Liu, Y.; Kang, T.; et al. A Load Forecasting Framework Considering Hybrid Ensemble Deep Learning with Two-Stage Load Decomposition. IEEE Trans. Ind. Appl. 2024. [Google Scholar] [CrossRef]
- Kolassa, S.; Rostami-Tabar, B.; Siemsen, E. Demand Forecasting for Executives and Professionals, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2023. [Google Scholar]
- Farrokhabadi, M.; Browell, J.; Wang, Y.; Makonin, S.; Su, W.; Zareipour, H. Day-ahead electricity demand forecasting competition: Post-covid paradigm. IEEE Open Access J. Power Energy 2022, 9, 185–191. [Google Scholar] [CrossRef]
- Kuster, C.; Rezgui, Y.; Mourshed, M. Electrical load forecasting models: A critical systematic review. Sustain. Cities Soc. 2017, 35, 257–270. [Google Scholar] [CrossRef]
- Supapo, K.; Santiago, R.; Pacis, M. Electric load demand forecasting for Aborlan-Narra-Quezon distribution grid in Palawan using multiple linear regression. In Proceedings of the 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, Philippines, 1–3 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Miller, C.; Arjunan, P.; Kathirgamanathan, A.; Fu, C.; Roth, J.; Park, J.Y.; Balbach, C.; Gowri, K.; Nagy, Z.; Fontanini, A.D.; et al. The ASHRAE great energy predictor III competition: Overview and results. Sci. Technol. Built Environ. 2020, 26, 1427–1447. [Google Scholar] [CrossRef]
- Tan, Y.; Teng, Z.; Zhang, C.; Zuo, G.; Wang, Z.; Zhao, Z. Long-Term Load Forecasting Based on Feature fusion and LightGBM. In Proceedings of the 2021 IEEE 4th International Conference on Power and Energy Applications (ICPEA), Busan, Republic of Korea, 9–11 October 2021; pp. 104–109. [Google Scholar] [CrossRef]
- Herzen, J.; Lässig, F.; Piazzetta, S.G.; Neuer, T.; Tafti, L.; Raille, G.; Van Pottelbergh, T.; Pasieka, M.; Skrodzki, A.; Huguenin, N.; et al. Darts: User-friendly modern machine learning for time series. J. Mach. Learn. Res. 2022, 23, 5442–5447. [Google Scholar] [CrossRef]
- Hewamalage, H.; Ackermann, K.; Bergmeir, C. Forecast evaluation for data scientists: Common pitfalls and best practices. Data Min. Knowl. Discov. 2023, 37, 788–832. [Google Scholar] [CrossRef] [PubMed]
- Nti, I.K.; Teimeh, M.; Nyarko-Boateng, O.; Adekoya, A.F. Electricity load forecasting: A systematic review. J. Electr. Syst. Inf. Technol. 2020, 7, 1–19. [Google Scholar] [CrossRef]
- Netzell, P.; Kazmi, H.; Kyprianidis, K. Applied Machine Learning for Short-Term Electric Load Forecasting in Cities-A Case Study of Eskilstuna, Sweden. Scand. Simul. Soc. 2023, 200, 29–38. [Google Scholar]
- Kazmi, H.; Tao, Z. How good are TSO load and renewable generation forecasts: Learning curves, challenges, and the road ahead. Appl. Energy 2022, 323, 119565. [Google Scholar] [CrossRef]
MLR | LGBM | |||
---|---|---|---|---|
Explanatory Variable | 2021–2022 | 2022–2023 | 2021–2022 | 2022–2023 |
Day of week [0–6] | 4.54 | 4.31 | 4.74 | 4.59 |
Hour of day [0–23] | 4.56 | 4.30 | 4.72 | 4.56 |
Holidays [0 OR 1] | 4.44 | 4.12 | 4.53 | 4.30 |
Industry vacation [0 OR 1] | 4.31 | 4.00 | 4.35 | 4.18 |
Heating hours [Kh, <10 °C]1 | 2.20 | 2.18 | 2.89 | 2.99 |
Global irradiance [W m−2] | 2.12 | 2.47 | 2.68 | 3.00 |
Cooling hours [Kh, >20 °C]2 | 2.06 | 2.34 | 2.65 | 2.89 |
Wind speed [m s−1] | 2.04 | 2.41 | 2.71 | 2.93 |
Variable Added | RMSE | Variable Added | RMSE |
---|---|---|---|
Actual load SE3 (ENTSOE) | 1.87 | Pressure (SMHI) | 2.27 |
Forecasted load SE3 (ENTSOE) | 2.14 | Dew point temperature (NASA) | 2.28 |
DA wind forecast SE3 (ENTSOE) | 2.19 | Rain (SMHI) | 2.28 |
Wind SE3 (ESETT) | 2.19 | Snow (SMHI) | 2.28 |
Wind onshore SE3 (ENTSOE) | 2.20 | Wind direction (SMHI) | 2.28 |
Gust (SMHI) | 2.20 | Wind direction 10 m (NASA) | 2.29 |
Wind speed 10 m (NASA) | 2.22 | Wind direction 50 m (NASA) | 2.29 |
Wind speed 50 m (NASA) | 2.22 | Wet temperature (NASA) | 2.30 |
Solar SE3 (ESETT) | 2.23 | Precipitation (NASA) | 2.31 |
DA Wind and Solar SE3 (ENTSOE) | 2.24 | Total cloud cover (SMHI) | 2.34 |
Relative humidity (NASA) | 2.24 | Temperature (NASA) | 2.35 |
Nuclear SE3 (ESETT) | 2.25 | Water SE3 (ESETT) | 2.35 |
Wet temperature (SMHI) | 2.25 | Unspecified production SE3 (ESETT) | 2.41 |
Relative humidity (NASA) | 2.26 | CHP production SE3 (ESETT) | 2.43 |
Pressure (NASA) | 2.27 | Day-ahead prices (ENTSOE) | 2.72 |
Variable Added | RMSE | Variable Added | RMSE |
---|---|---|---|
Actual load SE3 (ENTSOE) | 1.92 | Wind direction (SMHI) | 2.28 |
Forecasted load SE3 (ENTSOE) | 2.05 | Pressure (SMHI) | 2.29 |
Precipitation (NASA) | 2.16 | Pressure (NASA) | 2.29 |
Snow (SMHI) | 2.25 | Wind speed 10 m (NASA) | 2.29 |
Unspecified production SE3 (ESETT) | 2.25 | DA Wind and Solar SE3 (ENTSOE) | 2.31 |
CHP production SE3 (ESETT) | 2.25 | Gust (SMHI) | 2.32 |
Wind direction 50 m (NASA) | 2.26 | Nuclear SE3 (ESETT) | 2.33 |
Wind direction 10 m (NASA) | 2.26 | Wind speed 50 m (NASA) | 2.33 |
Wet temperature (SMHI) | 2.26 | Water SE3 (ESETT) | 2.33 |
Relative humidity (NASA) | 2.26 | Wind onshore SE3 (ENTSOE) | 2.41 |
Dew point temperature (NASA) | 2.27 | DA wind forecast SE3 (ENTSOE) | 2.41 |
Rain (SMHI) | 2.27 | Wind SE3 (ESETT) | 2.41 |
Day-ahead prices (ENTSOE) | 2.27 | Total cloud cover (SMHI) | 2.45 |
Wet temperature (NASA) | 2.27 | Solar SE3 (ESETT) | 2.50 |
Temperature (NASA) | 2.27 | Relative humidity (NASA) | 2.67 |
Variable Added | RMSE | Variable Added | RMSE |
---|---|---|---|
Actual load SE3 (ENTSOE) | 2.34 | Wind speed 50 m (NASA) | 2.74 |
Forecasted load SE3 (ENTSOE) | 2.56 | Wind speed 10 m (NASA) | 2.75 |
Rain (SMHI) | 2.65 | Solar SE3 (ESETT) | 2.76 |
Snow (SMHI) | 2.65 | Wind SE3 (ESETT) | 2.77 |
Wet temperature (SMHI) | 2.67 | Wind direction 10 m (NASA) | 2.77 |
Wet temperature (NASA) | 2.70 | Wind direction 50 m (NASA) | 2.77 |
Relative humidity (NASA) | 2.71 | DA Wind and Solar SE3 (ENTSOE) | 2.78 |
Total cloud cover (SMHI) | 2.72 | Wind onshore SE3 (ENTSOE) | 2.78 |
Dew point temperature (NASA) | 2.72 | DA wind forecast SE3 (ENTSOE) | 2.79 |
Temperature (NASA) | 2.72 | Pressure (NASA) | 2.79 |
Relative humidity (NASA) | 2.72 | Pressure (SMHI) | 2.79 |
Gust (SMHI) | 2.72 | Nuclear SE3 (ESETT) | 2.88 |
Precipitation (NASA) | 2.73 | CHP production SE3 (ESETT) | 2.98 |
Wind direction (SMHI) | 2.73 | Water SE3 (ESETT) | 3.05 |
Unspecified production SE3 (ESETT) | 2.74 | Day-ahead prices (ENTSOE) | 3.30 |
Variable Added | RMSE | Variable Added | RMSE |
---|---|---|---|
Actual load SE3 (ENTSOE) | 2.22 | Relative humidity (NASA) | 2.96 |
Forecasted load SE3 (ENTSOE) | 2.28 | Wind speed 10 m (NASA) | 2.96 |
Solar SE3 (ESETT) | 2.74 | Pressure (SMHI) | 2.98 |
Rain (SMHI) | 2.89 | Wind onshore SE3 (ENTSOE) | 2.98 |
Wet temperature (SMHI) | 2.89 | Pressure (NASA) | 2.98 |
Snow (SMHI) | 2.90 | Wind SE3 (ESETT) | 2.98 |
DA Wind and Solar SE3 (ENTSOE) | 2.91 | Wind direction (SMHI) | 2.98 |
Total cloud cover (SMHI) | 2.92 | DA wind forecast SE3 (ENTSOE) | 2.98 |
Temperature (NASA) | 2.92 | Day-ahead prices (ENTSOE) | 2.98 |
Precipitation (NASA) | 2.92 | Dew point temperature (NASA) | 2.99 |
CHP production SE3 (ESETT) | 2.92 | Wind direction 10 m (NASA) | 3.00 |
Nuclear SE3 (ESETT) | 2.94 | Wind direction 50 m (NASA) | 3.00 |
Gust (SMHI) | 2.94 | Relative humidity (NASA) | 3.00 |
Wet temperature (NASA) | 2.94 | Unspecified production SE3 (ESETT) | 3.04 |
Wind speed 50 m (NASA) | 2.96 | Water SE3 (ESETT) | 3.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Netzell, P.; Kazmi, H.; Kyprianidis, K. Deriving Input Variables through Applied Machine Learning for Short-Term Electric Load Forecasting in Eskilstuna, Sweden. Energies 2024, 17, 2246. https://doi.org/10.3390/en17102246
Netzell P, Kazmi H, Kyprianidis K. Deriving Input Variables through Applied Machine Learning for Short-Term Electric Load Forecasting in Eskilstuna, Sweden. Energies. 2024; 17(10):2246. https://doi.org/10.3390/en17102246
Chicago/Turabian StyleNetzell, Pontus, Hussain Kazmi, and Konstantinos Kyprianidis. 2024. "Deriving Input Variables through Applied Machine Learning for Short-Term Electric Load Forecasting in Eskilstuna, Sweden" Energies 17, no. 10: 2246. https://doi.org/10.3390/en17102246
APA StyleNetzell, P., Kazmi, H., & Kyprianidis, K. (2024). Deriving Input Variables through Applied Machine Learning for Short-Term Electric Load Forecasting in Eskilstuna, Sweden. Energies, 17(10), 2246. https://doi.org/10.3390/en17102246