The Energy Storage Technology Revolution to Achieve Climate Neutrality
Abstract
:1. Introduction
2. Classification of Energy Storage Technologies
2.1. Energy Storage System Evolution
2.2. Energy Storage Technology Grading
2.2.1. Mechanical Energy Storage System
- Pumped hydropower storage (PHS)
- Flywheel energy storage (FES)
- Compressed Air Energy Storage (CAES)
- Gravity energy storage (GES)
2.2.2. Electrochemical Energy Storage (EcES) System
- Battery energy storage (BES)
- Flow battery energy storage (FBES)
- Paper batteries
- Flexible batteries
2.2.3. Thermal Energy Storage (TES)
- Sensible heat storage (SHS) systems
- Latent heat storage (LHS) systems
- Thermochemical energy storage (TCES) systems
- Pumped thermal energy storage (PTES) systems
2.2.4. Electrical Energy Storage (EES) Systems
- Electrostatic Energy Storage Systems
- Magnetic Energy Storage Systems
2.2.5. Chemical energy Storage (CES)
- Hydrogen energy storage
- Synthetic natural gas (SNG) storage
- Solar fuel storage
3. Lithium-Ion Batteries
3.1. Production and Use Phases of Lithium-Ion Batteries for Electric Vehicles
3.2. Reuse of Retired Lithium-Ion Batteries
- The remanufacturing of retired lithium-ion batteries refers to their repair and reconditioning to be able to be used in the same applications (e.g., electric vehicle industry). Xiong et al. [125] determined the environmental impact and remanufacturing cost of NMC batteries to verify the feasibility of this process. The obtained results were compared to data from the new battery production process. The investigation showed that both energy consumption and greenhouse gas emissions were lower for battery remanufacturing processes, and the costs were reduced by approximately 40% [123].
- The repurposing of retired lithium-ion batteries involves reconfiguring batteries for different applications where low voltage is needed, such as power tools or auxiliary services. Using retired lithium-ion batteries from electric vehicles in stationary energy storage technologies can increase the energetic efficiency and reduce costs while bringing substantial ecological and economic advantages [126]. More exactly, using retired batteries in different applications extends the life cycle of the product and reduces the environmental footprint, including a substantial decrease in greenhouse gas emissions [127].
3.3. Recycling Lithium-Ion Batteries
4. Environmental Impact of Reducing Potential by Replacing Fossil Fuels with Lithium-Ion Batteries
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Verma, S.; Dwivedi, G.; Verma, P. Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: A review. Mater. Today Proc. 2021, 49, 217–222. [Google Scholar] [CrossRef]
- Pero, F.D.; Delogu, M.; Pierini, M. Life cycle assessment in the automotive sector: A comparative case study of internal combustion engine (ICE) and electric car. Procedia Struct. Integr. 2018, 12, 521–537. [Google Scholar] [CrossRef]
- Nimesh, V.; Kumari, R.; Soni, N.; Goswami, A.K.; Mahendra Reddy, V. Implication viability assessment of electric vehicles for different regions: An approach of life cycle assessment considering exergy analysis and battery degradation. Energy Convers. Manag. 2021, 237, 114104. [Google Scholar] [CrossRef]
- Tolomeo, R.; De Feo, G.; Adami, R.; Sesti Osseo, L. Application of life cycle assessment to lithium-ion batteries in the automotive sector. Sustainability 2020, 12, 4628. [Google Scholar] [CrossRef]
- Roy, J.J.; Rarotra, S.; Krikstolaityte, V.; Zhuoran, K.W.; Cindy, Y.D.I.; Tan, X.Y.; Carboni, M.; Meyer, D.; Yan, Q.; Srinivasan, M. Green recycling methods to treat lithium-ion batteries e-waste: A circular approach to sustainability. Adv. Mater. 2021, 34, 2103346. [Google Scholar] [CrossRef] [PubMed]
- Schulz-Mönninghoff, M.; Bey, N.; Nørregaard, P.U.; Niero, M. Integration of energy flow modelling in life cycle assessment of electric vehicle battery repurposing: Evaluation of multi-use cases and comparison of circular business models. Resour. Conserv. Recycl. 2021, 174, 105773. [Google Scholar] [CrossRef]
- Kamath, D.; Shukla, S.; Arsenault, R.; Kim, H.C.; Anctil, A. Evaluating the cost and carbon footprint of second-life electric vehicle batteries in residential and utility-level applications. Waste Manag. 2020, 113, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Marmiroli, B.; Venditti, M.; Dotelli, G.; Spessa, E. The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles. Appl. Energy 2020, 260, 114236. [Google Scholar] [CrossRef]
- Andersson, Ö.; Börjesson, P. The greenhouse gas emissions of an electrified vehicle combined with renewable fuels: Life cycle assessment and policy implications. Appl. Energy 2021, 289, 116621. [Google Scholar] [CrossRef]
- Dai, Q.; Kelly, J.; Gaines, L.; Wang, M. Life cycle analysis of lithium-ion batteries for automotive applications. BATTAT 2019, 5, 48. [Google Scholar] [CrossRef]
- Mahfuz, M.H.; Kamyar, A.; Afshar, O.; Sarraf, M.; Anisur, M.R.; Kibria, M.A.; Saidur, R.; Metselaar, I.H.S.C. Exergetic analysis of a solar thermal power system with PCM storage. Energy Convers. Manag. 2014, 78, 486–492. [Google Scholar] [CrossRef]
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R.A. Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Ramkumar, A.; Marimuthu, R. Novel classification of energy sources, with implications for carbon emissions. Energy Strategy Rev. 2023, 49, 101146. [Google Scholar] [CrossRef]
- Igliński, B.; Kiełkowska, U.; Pietrzak, M.B.; Skrzatek, M.; Kumar, G.; Piechota, G. The regional energy transformation in the context of renewable energy sources potential. Renew. Energy 2023, 218, 119246. [Google Scholar] [CrossRef]
- Makieła, K.; Mazur, B.; Głowacki, J. The Impact of Renewable Energy Supply on Economic Growth and Productivity. Energies 2022, 15, 4808. [Google Scholar] [CrossRef]
- Xinglin, Y.; Xiaohui, L.; Jiaqi, Z.; Quanhui, H.; Junhu, Z. Progress in improving hydrogen storage properties of Mg-based materials. Mater. Today Adv. 2023, 19, 100387. [Google Scholar] [CrossRef]
- Sun, C.; Wang, C.; Ha, T.; Lee, J.; Shim, J.H.; Kim, Y. A brief review of characterization techniques with different length scales for hydrogen storage materials. Nano Energy 2023, 113, 108554. [Google Scholar] [CrossRef]
- Klopčič, N.; Grimmer, I.; Winkler, F.; Sartory, M.; Trattner, A. A review on metal hydride materials for hydrogen storage. J. Energy Storage 2023, 72 Pt B, 108456. [Google Scholar] [CrossRef]
- Demartini, M.; Ferrari, M.; Govindan, K.; Tonelli, F. The transition to electric vehicles and a net zero economy: A model based on circular economy, stakeholder theory, and system thinking approach. J. Clean. Prod. 2023, 410, 137031. [Google Scholar] [CrossRef]
- Järvensivu, P. A post-fossil fuel transition experiment: Exploring cultural dimensions from a practice-theoretical perspective. J. Clean. Prod. 2017, 169, 143–151. [Google Scholar] [CrossRef]
- Choi, D.; Shamim, N.; Crawford, A.; Huang, Q.; Vartanian, C.K.; Viswanathan, V.V.; Paiss, M.D.; Alam, M.J.E.; Reed, D.M.; Sprenkle, V.L. Li-ion battery technology for grid application. J. Power Sources 2021, 511, 230419. [Google Scholar] [CrossRef]
- Van Mierlo, J.; Messagie, M.; Rangaraju, S. Comparative environmental assessment of alternative fueled vehicles using a life cycle assessment. Transp. Res. Procedia 2017, 25, 435–3445. [Google Scholar] [CrossRef]
- Bobba, S.; Mathieux, F.; Ardente, F.; Blengini, G.A.; Cusenza, M.A.; Podias, A.; Pfrang, A. Life cycle assessment of repurposed electric vehicle batteries: An adapted method based on modelling energy flows. J. Energy Storage 2018, 19, 213–225. [Google Scholar] [CrossRef]
- Bai, Y.; Muralidharan, N.; Sun, Y.K.; Passerini, S.; Stanley Whittingham, M.; Belharouak, I. Energy and environmental aspects in recycling lithium-ion batteries: Concept of battery identity global passport. Mater. Today 2020, 41, 304–315. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Bobba, S.; Ardente, F.; Cellura, M.; Di Persio, F. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J. Clean. Prod. 2019, 215, 634–649. [Google Scholar] [CrossRef] [PubMed]
- Karunathilake, H.; Witharana, S. Fossil fuels and global energy economics. Environ. Earth Sci. 2023. [Google Scholar] [CrossRef]
- Perry, M.L.; Fuller, T.F. A Historical Perspective of Fuel Cell Technology in the 20th Century. J. Electrochem. Soc. 2002, 149, S59–S67. [Google Scholar] [CrossRef]
- Kurzweil, P. Gaston Planté and his invention of the lead–acid battery—The genesis of the first practical rechargeable battery. J. Power Sources 2010, 195, 4424–4434. [Google Scholar] [CrossRef]
- Bitterly, J.G. Flywheel technology past, present, and 21st Century projections. In Proceedings of the IECEC-97 Thirty-Second Intersociety Energy Conversion Engineering Conference, Honolulu, HI, USA, 27 July–1 August 1997; Volume 4, pp. 2312–2315. [Google Scholar] [CrossRef]
- Zhao, Z.; Walia, G.K.; Li, G.; Tang, T. Chapter 16—Recycling battery metallic materials. In Nano Technology for Battery Recycling, Remanufacturing, and Reusing; Farhad, S., Gupta, R.K., Yasin, G., Nguyen, T.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 321–347. [Google Scholar] [CrossRef]
- Koehler, U. Chapter 2-General Overview of Non-Lithium Battery Systems and their Safety Issues. In Electrochemical Power Sources: Fundamentals, Systems, and Applications; Garche, J., Brandt, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 21–46. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.I.; Chazarra, M.; García-González, J.; Cavazzini, G.; Stoppato, A. Trends and challenges in the operation of pumped-storage hydropower plants. Renew. Sustain. Energy Rev. 2015, 44, 767–784. [Google Scholar] [CrossRef]
- Menéndez, J.; Fernández-Oro, J.M.; Galdo, M.; Loredo, J. Efficiency analysis of underground pumped storage hydropower plants. J. Energy Storage 2020, 28, 101234. [Google Scholar] [CrossRef]
- Wang, S.; Xie, Y.; Guerrero, J.M. Chapter 1—Market batteries and their characteristics. In Micro and Nano Technologies, Nano Technology for Battery Recycling, Remanufacturing, and Reusing; Farhad, S., Gupta, R.K., Yasin, G., Nguyen, T.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–31. [Google Scholar] [CrossRef]
- Caroline, S.C.; Madhusudanan, S.P.; Dalapati, G.K.; Batabyal, S.K. Chapter 22-Energy storage technologies for sustainable development. In Sulfide and Selenide Based Materials for Emerging Application; Dalapati, G., Wong, T.S., Kundu, S., Chakraborty, A., Zhuk, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 583–606. [Google Scholar] [CrossRef]
- Johnson, S.C.; Davidson, F.T.; Rhodes, J.D.; Coleman, J.L.; Bragg-Sitton, S.M.; Dufek, E.J.; Webber, M.E. Chapter Five-Selecting Favorable Energy Storage Technologies for Nuclear Power. In Storage and Hybridization of Nuclear Energy; Bindra, H., Revankar, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 119–175. [Google Scholar] [CrossRef]
- Pourahmadiyan, A.; Sadi, M.; Arabkoohsar, A. Chapter 6-Seasonal thermal energy storage. In Future Grid-Scale Energy Storage Solutions; Arabkoohsar, A., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 215–267. [Google Scholar] [CrossRef]
- Ramstad, R.K.; Alonso, M.J.; Acuña, J.; Andersson, O.; Stokuca, M.; Håkansson, N.; Midttømme, K.; Rydell, L. The borehole thermal energy storage at Emmaboda, Sweden: First distributed temperature measurements. Sci. Technol. Built Environ. 2023, 29, 146–162. [Google Scholar] [CrossRef]
- Barbour, E.R.; Pottie, D.L.F. Adiabatic Compressed Air Energy Storage Systems. In Encyclopedia of Energy Storage; Cabeza, L.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 188–203. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abbas, Q.; Al Makky, A.; Abdelkareem, M.A. Supercapacitors as next generation energy storage devices: Properties and applications. Energy 2022, 248, 123617. [Google Scholar] [CrossRef]
- González-González, J.M.; Parrilla, Á.P.; Aguado, J.A. Chemical energy storage technologies. In Encyclopedia of Electrical and Electronic Power Engineering; García, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 426–439. [Google Scholar] [CrossRef]
- Qin, Y.; Li, X.; Liu, W.; Lei, X. High-performance aqueous polysulfide-iodide flow battery realized by an efficient bifunctional catalyst based on copper sulfide. Mater. Today Energy 2021, 21, 100746. [Google Scholar] [CrossRef]
- Blomgre, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2017, 164, A5019. [Google Scholar] [CrossRef]
- Kadam, T.; Shinde, P.C.; Patkar, U.C. Paper Battery the Solution for Traditional Battery. Imp. J. Interdiscip. Res. 2016, 2, 1485–1488. [Google Scholar]
- Stokke Burheim, O. Chapter 3-Mechanical Energy Storage. In Engineering Energy Storage; Stokke Burheim, O., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 29–46. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Rahman, F.; Baseer, M.A.; Rehman, S. Chapter 4-Assessment of Electricity Storage Systems. In Solar Energy Storage; Sørensen, B., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 63–114. [Google Scholar] [CrossRef]
- Pullen, K.R. 11-Flywheel energy storage. In Storing Energy, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 207–242. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Chen, B.; Xiang, S.; Xu, Y.; Yin, B.; Ackom, E. The battery storage management and its control strategies for power system with photovoltaic generation. In Emerging Trends in Energy Storage Systems and Industrial Applications; Prabhansu, K.N., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 441–484. [Google Scholar] [CrossRef]
- Hongming, S.; Yuhai, Y.; Na, D.; Tiechen, L.; Wei, C.; Xianglong, Z.; Ge, Z. A method of emergency frequency control based on Multi-resources coordination. IOP Conf. Ser. Earth Environ. Sci. 2018, 186, 012001. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Liu, J.; Tan, C. Compressed Air Energy Storage. In Energy Storage–Technologies and Applications; Zobaa, A., Ed.; InTech: London, UK, 2013. [Google Scholar] [CrossRef]
- Amrouche, S.O.; Rekioua, D.; Rekioua, T. Overview of energy storage in renewable energy systems. In Proceedings of the 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 10–13 December 2015. [Google Scholar]
- Berrada, A.; Emrani, A.; Ameur, A. Life-cycle assessment of gravity energy storage systems for large-scale application. J. Energy Storage 2021, 40, 102825. [Google Scholar] [CrossRef]
- Tong, W.; Lu, Z.; Chen, W.; Han, M.; Zhao, G.; Wang, X.; Deng, Z. Solid gravity energy storage: A review. J. Energy Storage 2022, 53, 105226. [Google Scholar] [CrossRef]
- Berrada, A.; Loudiyi, K. Energy Storage. In Gravity Energy Storage; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Divya, K.C.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Hosseiny, S.S.; Wessling, M. Ion exchange membranes for vanadium redox flow batteries. In Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications; Woodhead Publishing Series in Energy; Basile, A., Nunes, S.P., Eds.; Woodhead Publishing: Sawston, UK, 2011; pp. 413–434. [Google Scholar] [CrossRef]
- Kabanov, A.A.; Morkhova, Y.A.; Bezuglov, I.A.; Blatov, V.A. Computational design of materials for metal-ion batteries. In Comprehensive Inorganic Chemistry III, 3rd ed.; Reedijk, J., Poeppelmeier, K.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 404–429. [Google Scholar] [CrossRef]
- Lopes, P.P.; Stamenkovic, V.R. Past, present, and future of lead–acid batteries. Science 2020, 369, 923–924. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.-H.; Kuo, J.-K.; Huang, C.-Y. A new application of the UltraBattery to hybrid fuel cell vehicles. Int. J. Energy Res. 2016, 40, 146–159. [Google Scholar] [CrossRef]
- Lead Acid Battery Market Growth, Trends & Forecast. In Market Research Report; 2023. Available online: https://www.vantagemarketresearch.com/industry-report/lead-acid-battery-market-1240#:~:text=Market%20Synopsis%3A,forecast%20period%2C%202022%E2%80%932028 (accessed on 25 July 2023).
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Materials Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Available online: https://ul.org/research/electrochemical-safety/getting-started-electrochemical-safety/what-are-lithium-ion (accessed on 25 July 2023).
- Peng, H.; Sun, X.; Weng, W.; Fang, X. Energy Storage Devices Based on Polymers. In Polymer Materials for Energy and Electronic Applications; Peng, H., Sun, X., Weng, W., Fang, X., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 197–242. [Google Scholar] [CrossRef]
- Revankar, S.T. Chemical Energy Storage. In Storage and Hybridization of Nuclear Energy; Bindra, H., Revankar, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 177–227. [Google Scholar] [CrossRef]
- Abdin, Z.; Khalilpour, K.R. Single and Polystorage Technologies for Renewable-Based Hybrid Energy Systems. In Polygeneration with Polystorage for Chemical and Energy Hubs; Khalilpour, K.R., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 77–131. [Google Scholar] [CrossRef]
- Salkuti, S.R. Electrochemical batteries for smart grid applications. IJECE 2021, 11, 1849–1856. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M. Energy and environmental applications of graphene and its derivatives. In Polymer-Based Nanocomposites for Energy and Environmental Applications; Jawaid, M., Khan, M.M., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 105–129. [Google Scholar] [CrossRef]
- Sarkar, M.; Rashid, A.R.M.H.; Hasanuzzaman, M. Beyond Li-Ion Batteries: Future of Sustainable Large Scale Energy Storage System. In Encyclopedia of Materials: Electronics; Haseeb, A.S.M.A., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 595–604. [Google Scholar] [CrossRef]
- Abraham, K.M. How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? ACS Energy Lett. 2020, 5, 3544–3547. [Google Scholar] [CrossRef]
- Mitali, J.; Dhinakaran, S.; Mohamad, A.A. Energy storage systems: A review. Energy Storage Sav. 2022, 1, 166–216. [Google Scholar] [CrossRef]
- Gupta, N.; Kaur, N.; Jain, S.K.; Joshal, K.S. Smart grid power system. In Advances in Smart Grid Power System; Tomar, A., Kandari, R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 47–71. [Google Scholar] [CrossRef]
- Ganthia, B.P.; Suriyakrishnaan, K.; Prakash, N.; Harinarayanan, J.; Thangaraj, M.; Mishra, S. Comparative Analysis on Various Types of Energy Storage Devices for Wind Power Generation. J. Phys. Conf. Ser. 2022, 2161, 012066. [Google Scholar] [CrossRef]
- Olabi, A.G.; Sayed, E.T.; Wilberforce, T.; Jamal, A.; Alami, A.H.; Elsaid, K.; Rahman, S.M.A.; Shah, S.K.; Abdelkareem, M.A. Metal-Air Batteries—A Review. Energies 2021, 14, 7373. [Google Scholar] [CrossRef]
- Yaqoob, L.; Noor, T.; Iqbal, N. An overview of metal-air batteries, current progress, and future perspectives. J. Energy Storage 2022, 56 Pt B, 106075. [Google Scholar] [CrossRef]
- Wei, L.; Liu, S.-T.; Balaish, M.; Li, Z.; Zhou, X.-Y.; Rupp, J.L.M.; Guo, X. Customizable solid-state batteries toward shape-conformal and structural power supplies. Mater. Today 2022, 58, 297–312. [Google Scholar] [CrossRef]
- Minnmann, P.; Strauss, F.; Bielefeld, A.; Ruess, R.; Adelhelm, P.; Burkhardt, S.; Dreyer, S.L.; Trevisanello, E.; Ehrenberg, H.; Brezesinski, T.; et al. Designing Cathodes and Cathode Active Materials for Solid-State Batteries. Adv. Energy Mater. 2022, 12, 2201425. [Google Scholar] [CrossRef]
- Kasemchainan, J.; Bruce, P. All-solid-state batteries and their remaining challenges. Johns. Matthey Technol. Rev. 2018, 62, 177–180. [Google Scholar] [CrossRef]
- Strathmann, H. Electromembrane Processes: Basic Aspects and Applications. In Comprehensive Membrane Science and Engineering, 2nd ed.; Drioli, E., Giorno, L., Fontananova, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 355–392. [Google Scholar] [CrossRef]
- Hall, P.J.; Bain, E.J. Energy-storage technologies and electricity generation. Energy Policy 2008, 36, 4352–4355. [Google Scholar] [CrossRef]
- Skyllas-Kazacos, M.; Chakrabarti, M.H.; Hajimolana, S.A.; Mjalli, F.S.; Saleem, M. Progress in Flow Battery Research and Development. J. Electrochem. Soc. 2011, 158, R55. [Google Scholar] [CrossRef]
- Juqu, T.; Willenberg, S.C.; Pokpas, K.; Ross, N. Advances in paper-based battery research for biodegradable energy storage. Adv. Sens. Energy Mater. 2022, 1, 100037. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Fraiwan, A.; Choi, S. Paper-based batteries: A review. Biosens. Bioelectron. 2014, 54, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Tang, C.; Peng, H.-J.; Huang, J.-Q.; Zhang, Q. Advanced energy materials for flexible batteries in energy storage: A review. SmartMat 2020, 1, e1007. [Google Scholar] [CrossRef]
- Bajaj, I.; Peng, X.; Maravelias, C.T. Material Screening for Thermochemical Energy Storage in Solar Power Systems. In Computer Aided Chemical Engineering; Türkay, M., Gani, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 50, pp. 179–184. [Google Scholar] [CrossRef]
- Akhmetov, B.; Khor, J.; Amanzholov, T.; Kaltayev, A.; Romagnoli, A.; Ding, Y. Modelling at Thermal Energy Storage Device Scale. Therm. Energy Storage 2021, 370–434. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, C.; Wen, T.; Markides, C.N. High Temperature Sensible Storage—Industrial Applications. In Encyclopedia of Energy Storage; Cabeza, L.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 424–432. [Google Scholar] [CrossRef]
- Gunjo, D.G.; Yadav, V.K.; Sinha, D.K.; Refaey, H.A.; Ahmed, G.M.S.; Abelmohimen, M.A.H. Performance of latent heat storage (LHS) systems using pure paraffin wax as working substance. Case Stud. Therm. Eng. 2022, 39, 102399. [Google Scholar] [CrossRef]
- Desai, F.; Prasad, J.S.; Muthukumar, P.; Rahman, M.M. Thermochemical energy storage system for cooling and process heating applications: A review. Energy Convers. Manag. 2021, 229, 113617. [Google Scholar] [CrossRef]
- Abedin, A.; Rosen, M. A critical review of thermochemical energy storage systems. Open Renew. Energy J. 2011, 4, 42–46. [Google Scholar] [CrossRef]
- Ding, Y.; Riffat, S.B. Thermochemical energy storage technologies for building applications: A state-of-the-art review. Int. J. Low-Carbon Technol. 2013, 8, 106–116. [Google Scholar] [CrossRef]
- Rabi, A.M.; Radulovic, J.; Buick, J.M. Pumped Thermal Energy Storage Technology (PTES): Review. Thermo 2023, 3, 396–411. [Google Scholar] [CrossRef]
- Steinmann, W.-D.; Bauer, D.; Jockenhöfer, H.; Johnson, M. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy 2019, 183, 185–190. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Alsharif, A.; Yasser, N. Recent Advances in Energy Storage Technologies. IJEES 2023, 1, 9–17. [Google Scholar]
- Chen, H.; Liu, L.; Yan, Z.; Yuan, X.; Luo, H.; Zhang, D. Ultrahigh Energy Storage Density in Superparaelectric-Like Hf0.2Zr0.8O2 Electrostatic Supercapacitors. Adv. Sci. 2023, 10, 2300792. [Google Scholar] [CrossRef] [PubMed]
- Adetokun, B.B.; Oghorada, O.; Abubakar, S.J. Superconducting magnetic energy storage systems: Prospects and challenges for renewable energy applications. J. Energy Storage 2022, 55, 105663. [Google Scholar] [CrossRef]
- Mukherjee, P.; Rao, V.V. Design and development of high temperature superconducting magnetic energy storage for power applications-A review. Phys. C Supercond. Its Appl. 2019, 563, 67–73. [Google Scholar] [CrossRef]
- Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F. Hydrogen energy. Phil. Trans. R. Soc. A 2007, 365, 1043–1056. [Google Scholar] [CrossRef]
- Wolf, E. Large-Scale Hydrogen Energy Storage. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Moseley, P.T., Garche, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 129–142. [Google Scholar] [CrossRef]
- AlZohbi, G.; Almoaikel, A.; AlShuhail, L. An overview on the technologies used to store hydrogen. Energy Rep. 2023, 9, 28–34. [Google Scholar] [CrossRef]
- Bolt, A.; Dincer, I.; Agelin-Chaab, M. A critical review of synthetic natural gas production techniques and technologies. J. Nat. Gas Sci. Eng. 2020, 84, 103670. [Google Scholar] [CrossRef]
- Jentsch, M.; Trost, T.; Sterner, M. Optimal Use of Power-to-Gas Energy Storage Systems in an 85% Renewable Energy Scenario. Energy Procedia 2014, 46, 254–261. [Google Scholar] [CrossRef]
- Andrade, T.S.; Dracopoulos, V.; Lianos, P. Solar Energy Conversion and Storage Using a Photocatalytic Fuel Cell Combined with a Supercapacitor. Electronics 2021, 10, 273. [Google Scholar] [CrossRef]
- Shafique, M.; Azam, A.; Rafiq, M.; Luo, X. Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong. Res. Transp. Econ. 2021, 91, 101112. [Google Scholar] [CrossRef]
- Fagiolari, L.; Sampò, M.; Lamberti, A.; Amici, J.; Francia, C.; Bodoardo, S.; Bella, F. Integrated energy conversion and storage devices: Interfacing solar cells, batteries and supercapacitors. Energy Storage Mater. 2022, 51, 400–434. [Google Scholar] [CrossRef]
- Khan, F.M.N.U.; Rasul, M.G.; Sayem, A.S.M.; Mandal, N.K. Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review. J. Energy Storage 2023, 71, 108033. [Google Scholar] [CrossRef]
- Bignal, K.L.; Ashmore, M.R.; Headley, A.D.; Stewart, K.; Weigert, K. Ecological impacts of air pollution from road transport on local vegetation. J. Appl. Geochem. 2007, 22, 1265–1271. [Google Scholar] [CrossRef]
- Cicconi, P.; Kumar, P. Design approaches for Li-ion battery packs: A review. J. Energy Storage 2023, 73, 109197. [Google Scholar] [CrossRef]
- Xiaoning, X.; Pengwei, L. A review of the life cycle assessment of electric vehicles: Considering the influenece of batteries. Sci. Total Environ. 2022, 814, 152870. [Google Scholar] [CrossRef]
- Tagliaferri, C.; Evangelisti, S.; Acconcia, F.; Domenech, T.; Ekins, P.; Barletta, D.; Lettieri, P. Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach. Chem. Eng. Res. Des. 2016, 112, 298–309. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Guarino, F.; Longo, S.; Mistretta, M.; Cellura, M. Reuse of electric vehicle batteries in buildings: An integrated load match analysis and life cycle assessment approach. Energy Build. 2019, 186, 339–354. [Google Scholar] [CrossRef]
- Sun, B.; Su, X.; Wang, D.; Zhang, L.; Liu, Y.; Yang, Y.; Liang, H.; Gong, M.; Zhang, W.; Jiang, J. Economic analysis of lithium-ion batteries recycled from electric vehicles for secondary use in power load peak shaving in China. J. Clean. Prod. 2020, 276, 123327. [Google Scholar] [CrossRef]
- Steele, N.L.C.; Allen, D.T. An abridged life-cycle assessment of electric vehicle batteries. Environ. Sci. Technol. 1998, 32, 40A. [Google Scholar] [CrossRef]
- Shuoyao, W.; Yu, J. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution. Waste Manag. Res. 2020, 39, 0734242X2096663. [Google Scholar] [CrossRef]
- Kelly, J.C.; Dai, Q.; Wang, M. Globally regional life cycle analysis of automotive lithium-ion nickel manganese cobalt batteries. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 371–396. [Google Scholar] [CrossRef]
- Marques, P.; Garcia, R.; Kulay, L.; Freire, F. Comparative life cycle assessment of lithium-ion batteries for electric vehicles addressing capacity fade. J. Clean. Prod. 2019, 229, 787–794. [Google Scholar] [CrossRef]
- Shu, X.; Guo, Y.; Yang, W.; Wei, K.; Zhu, G. Life-cycle assessment of the environmental impact of the batteries used in pure electric passenger cars. Energy Rep. 2021, 7, 2302–2315. [Google Scholar] [CrossRef]
- Ellingsen, L.A.W.; Majeau-Bettez, G.; Singh, B.; Srivastava, A.K.; Valøen, L.O.; Strømman, A.H. Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 2014, 18, 113–124. [Google Scholar] [CrossRef]
- Zackrisson, M.; Avellán, L.; Orlenius, J. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles–Critical issues. J. Clean. Prod. 2010, 18, 1519–1529. [Google Scholar] [CrossRef]
- Yuan, C.; Deng, Y.; Li, T.; Yang, F. Manufacturing energy analysis of lithiumion battery pack for electric vehicles. CIRP Ann. 2017, 66, 53–56. [Google Scholar] [CrossRef]
- Mandade, P.; Weil, M.; Baumann, M.; Wei, Z. Environmental life cycle assessment of emerging solid-state batteries: A review. Chem. Eng. J. Adv. 2023, 13, 100439. [Google Scholar] [CrossRef]
- Hua, Y.; Liu, X.; Zhou, S.; Huang, Y.; Ling, H.; Yang, S. Toward sustainable reuse of retired lithium-ion batteries from electric vehicles. Resour. Conserv. Recycl. 2021, 168, 105249. [Google Scholar] [CrossRef]
- DeRousseau, M.; Gully, B.; Taylor, C.; Apelian, D.; Wang, Y. Repurposing used electric car batteries: A review of options. JOM 2017, 69, 1575–1582. [Google Scholar] [CrossRef]
- Xiong, S.; Ji, J.; Ma, X. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Manag. 2020, 102, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, L.; Young, S.B.; Fowler, M.; Fraser, R.A.; Achachlouei, M.A. A cascaded life cycle: Reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int. J. Life Cycle Assess. 2017, 22, 111–124. [Google Scholar] [CrossRef]
- Faria, R.; Marques, P.; Garcia, R.; Moura, P.; Freire, F.; Delgado, J.; de Almeida, A.T. Primary and secondary use of electric mobility batteries from a life cycle perspective. J. Power Sources 2014, 262, 169–177. [Google Scholar] [CrossRef]
- Hao, H.; Qiao, Q.; Liu, Z.; Zhao, F. Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production: The China 2025 case. Resour. Conserv. Recycl. 2017, 122, 114–125. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Lv, W.; Wang, Z.; Cao, H.; Sun, Y.; Zhang, Y.; Sun, Z. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain. Chem. Eng. 2018, 6, 1504–1521. [Google Scholar] [CrossRef]
- Tan, J.; Wang, Q.; Chen, S.; Li, Z.; Sun, J.; Liu, W.; Yang, W.; Xiang, X.; Sun, X.; Duan, X. Recycling-oriented cathode materials design for lithium-ion batteries: Elegant structures versus complicated compositions. Energy Storage Mater. 2021, 41, 380–394. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Fan, E.; Xue, Q.; Bian, Y.; Wu, F.; Chen, R. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem. Soc. Rev. 2018, 47, 7239–7302. [Google Scholar] [CrossRef]
- Lee, C.K.; Rhee, K.-I. Preparation of LiCoO2 from spent lithium-ion batteries. J. Power Sources 2002, 109, 17–21. [Google Scholar] [CrossRef]
- Ciez, R.E.; Whitacre, J.F. Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2019, 2, 148–156. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, H.; Yang, W.; Zhang, Q.; Wang, X. A life-cycle assessment of battery electric and internal combustion engine vehicles: A case in Hebei Province, China. J. Clean. Prod. 2019, 228, 606–618. [Google Scholar] [CrossRef]
- Wang, Y.; An, N.; Wen, L.; Wang, L.; Jiang, X.; Hou, F.; Yin, Y.; Liang, J. Recent progress on the recycling technology of li-ion batteries. J. Energy Chem. 2021, 55, 391–419. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Power range | 10 MW–3.0 GW |
Energy range | Up to 100 GWh |
Discharge time | 10–12 h |
Life cycle | Technically unlimited |
Reaction time | Some seconds–a few min |
Life duration | >80 years |
Efficiency | 70–85% |
Energy (power) density | 0.5–3 Wh/kg |
Parameter | Values | References |
---|---|---|
Power range | 5–10 kW/kg | [48] |
Energy range | 200 Wh/kg | [48] |
Life duration | Long | [50] |
Efficiency | 90–95% | [48] |
Energy storage capacity | 140 Wh | [50] |
Life cycle | Unlimited | [48] |
Discharge time | Minutes | [50] |
Parameter | Values |
---|---|
Capacity | 0.1–1000 MW |
Duration of storage | Long term (>1 year) |
Type of storage | Potential energy |
Lifetime | 30 years |
Response time | 3–15 min |
Duration of discharge at maximum power level | 4–24 h |
Round up efficiency | 60–75% |
Energy density | ~3 Wh/mol |
Cost | 517 USD/kW |
Operating temperature | Normal atmospheric |
Parameter | Value |
---|---|
Energy density | 1.06 J/m3 |
Power density | 3.13 W/m3 |
Power rating | 40–500 MW |
Discharge time | 34 s |
Storage duration | Hours-one month |
Lifetime | 30+ |
Cost | 1000 USD/kW |
Efficiency | 75–80% |
Storage Material | Melting Temperature (°C) | Specific Heat Capacity (kJ/kg·K) | Latent or Reaction Heat (kJ/kg) | Density (kg/m3) |
---|---|---|---|---|
Aluminum | 660 | 1.2 | 397 | 2380 |
Aluminum alloys (ex. Al-0.13Si) | 579 | 1.5 | 515 | 2250 |
Water | 0.0 | 4.18 | 334 | 997 |
Paraffin wax | 40–60 | 2.1–2.5 | 180–250 | 800–900 |
Nitrate salts (ex. KNO3-0.46NaNO3) | 222 | 1.5 | 100 | 1950 |
Lithium hydride | 683 | 8.04 | 2582 | 790 |
Silicon | 1414 | 0.71 | 1800 | 2300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badea, I.-C.; Șerban, B.-A.; Anasiei, I.; Mitrică, D.; Olaru, M.T.; Rabin, A.; Ciurdaș, M. The Energy Storage Technology Revolution to Achieve Climate Neutrality. Energies 2024, 17, 140. https://doi.org/10.3390/en17010140
Badea I-C, Șerban B-A, Anasiei I, Mitrică D, Olaru MT, Rabin A, Ciurdaș M. The Energy Storage Technology Revolution to Achieve Climate Neutrality. Energies. 2024; 17(1):140. https://doi.org/10.3390/en17010140
Chicago/Turabian StyleBadea, Ioana-Cristina, Beatrice-Adriana Șerban, Ioana Anasiei, Dumitru Mitrică, Mihai Tudor Olaru, Andrey Rabin, and Mariana Ciurdaș. 2024. "The Energy Storage Technology Revolution to Achieve Climate Neutrality" Energies 17, no. 1: 140. https://doi.org/10.3390/en17010140
APA StyleBadea, I. -C., Șerban, B. -A., Anasiei, I., Mitrică, D., Olaru, M. T., Rabin, A., & Ciurdaș, M. (2024). The Energy Storage Technology Revolution to Achieve Climate Neutrality. Energies, 17(1), 140. https://doi.org/10.3390/en17010140