Thermal Stability of NASICON-Type Na3V2(PO4)3 and Na4VMn(PO4)3 as Cathode Materials for Sodium-ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Materials Characterization
3. Results and Discussion
3.1. Structural and Morphological Aspects
3.2. Electrochemical Properties
3.3. Differential Scanning Calorimetry
3.4. In Situ High-Temperature Powder X-ray Diffraction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, K.; Jing, X.; Zhang, Y.; Li, L.; Lang, X. A Novel Reed-Leaves like Aluminum-Doped Manganese Oxide Presetting Sodium-Ion Constructed by Coprecipitation Method for High Electrochemical Performance Sodium-Ion Battery. Int. J. Energy Res. 2022, 46, 14570–14580. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Q.; Liu, Y.; Luo, S.H.; Zhang, Y.; Liu, X. Optimize Solid-State Synthesis of P2-Na0.67Ni0.33Mn0.67O2 Cathode Materials by Using the Orthogonal Experimental Design Method. Int. J. Energy Res. 2021, 45, 16865–16873. [Google Scholar] [CrossRef]
- Nwanya, A.C.; Ndipingwi, M.M.; Anthony, O.; Ezema, F.I.; Maaza, M.; Iwuoha, E.I. Impedance Studies of Biosynthesized Na0.8Ni0.33Co0.33Mn0.33O2 Applied in an Aqueous Sodium-Ion Battery. Int. J. Energy Res. 2021, 45, 11123–11134. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Z.; Huang, K.; Tang, H. Al-Substituted Stable-Layered P2-Na0.6Li0.15Al0.15Mn0.7O2 Cathode for Sodium Ion Batteries. Int. J. Energy Res. 2021, 45, 11338–11345. [Google Scholar] [CrossRef]
- Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J.M.; Palacín, M.R. In Search of an Optimized Electrolyte for Na-Ion Batteries. Energy Environ. Sci. 2012, 5, 8572–8583. [Google Scholar] [CrossRef]
- Tarascon, J.M. Na-Ion versus Li-Ion Batteries: Complementarity Rather than Competitiveness. Joule 2020, 4, 1616–1620. [Google Scholar] [CrossRef]
- Hasa, I.; Mariyappan, S.; Saurel, D.; Adelhelm, P.; Koposov, A.Y.; Masquelier, C.; Croguennec, L.; Casas-Cabanas, M. Challenges of Today for Na-Based Batteries of the Future: From Materials to Cell Metrics. J. Power Sources 2021, 482, 228872. [Google Scholar] [CrossRef]
- Rudola, A.; Rennie, A.J.R.; Heap, R.; Meysami, S.S.; Lowbridge, A.; Mazzali, F.; Sayers, R.; Wright, C.J.; Barker, J. Commercialisation of High Energy Density Sodium-Ion Batteries: Faradion’s Journey and Outlook. J. Mater. Chem. A 2021, 9, 8279–8302. [Google Scholar] [CrossRef]
- Mikolajczak, C.; Kahn, M.; White, K.; Long, R.T. Lithium-Ion Batteries Hazard and Use Assessment; Springer Briefs in Fire; Springer: Boston, MA, USA, 2011; ISBN 978-1-4614-3485-6. [Google Scholar]
- Verdianto, A.; Lim, H.; Kang, J.G.; Kim, S.O. Scalable, Colloidal Synthesis of SnSb Nanoalloy-Decorated Mesoporous 3D NiO Microspheres as a Sodium-Ion Battery Anode. Int. J. Energy Res. 2022, 46, 4267–4278. [Google Scholar] [CrossRef]
- Saravanan, K.; Mason, C.W.; Rudola, A.; Wong, K.H.; Balaya, P.; Saravanan, K.; Mason, C.W.; Rudola, A.; Wong, K.H.; Balaya, P. The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries. Adv. Energy Mater. 2013, 3, 444–450. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, Q.; Xie, L.; Cao, X. Na3V2(PO4)3@NC Composite Derived from Polyaniline as Cathode Material for High-Rate and Ultralong-Life Sodium-Ion Batteries. Int. J. Energy Res. 2020, 44, 4586–4594. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Z.; Li, W.; Zeng, L.; Pan, F.; Wang, M.; Wei, X.; Hu, G.; Gu, L.; Yu, Y.; et al. Nanoconfined Carbon-Coated Na3V2(PO4)3 Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodium-Ion Batteries. Adv. Energy Mater. 2015, 5, 1402104. [Google Scholar] [CrossRef]
- Ling, R.; Cai, S.; Xie, D.; Li, X.; Wang, M.; Lin, Y.; Jiang, S.; Shen, K.; Xiong, K.; Sun, X. Three-Dimensional Hierarchical Porous Na3V2(PO4)3/C Structure with High Rate Capability and Cycling Stability for Sodium-Ion Batteries. Chem. Eng. J. 2018, 353, 264–272. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Weng, S.; Ding, F.; Qi, X.; Lu, J.; Li, Y.; Zhang, X.; Rong, X.; Lu, Y.; et al. Interfacial Engineering to Achieve an Energy Density of over 200 Wh Kg−1 in Sodium Batteries. Nat. Energy 2022, 7, 511–519. [Google Scholar] [CrossRef]
- Yan, G.; Mariyappan, S.; Rousse, G.; Jacquet, Q.; Deschamps, M.; David, R.; Mirvaux, B.; Freeland, J.W.; Tarascon, J.-M. Higher Energy and Safer Sodium Ion Batteries via an Electrochemically Made Disordered Na3V2(PO4)2F3 Material. Nat. Commun. 2019, 10, 585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, A.; Song, J.; Vail, S.; Pan, W.; Barker, J.; Lu, Y. The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies. Adv. Energy Mater. 2018, 8, 1702869. [Google Scholar] [CrossRef]
- Brant, W.R.; Mogensen, R.; Colbin, S.; Ojwang, D.O.; Schmid, S.; Hä Ggströ, L.; Ericsson, T.; Jaworski, A.; Pell, A.J.; Younesi, R. Selective Control of Composition in Prussian White for Enhanced Material Properties. Chem. Mater. 2019, 31, 7203–7211. [Google Scholar] [CrossRef]
- He, M.; Davis, R.; Chartouni, D.; Johnson, M.; Abplanalp, M.; Troendle, P.; Suetterlin, R.P. Assessment of the First Commercial Prussian Blue Based Sodium-Ion Battery. J. Power Sources 2022, 548, 232036. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, T.; Lee, J.Y. Does Size Matter–What Other Factors Are Limiting the Rate Performance of Na3V2(PO4)3 Cathode in Sodium-Ion Batteries. J. Power Sources 2017, 372, 91–98. [Google Scholar] [CrossRef]
- Essehli, R.; Alkhateeb, A.; Mahmoud, A.; Boschini, F.; Ben Yahia, H.; Amin, R.; Belharouak, I. Optimization of the Compositions of Polyanionic Sodium-Ion Battery Cathode NaFe2−xVx(PO4)(SO4)2. J. Power Sources 2020, 469, 228417. [Google Scholar] [CrossRef]
- Singh, B.; Wang, Z.; Park, S.; Gopalakrishnan, B.; Gautam, S.; El Chotard, J.-N.; Croguennec, L.; Carlier, D.; Cheetham, A.K.; Masquelier, C.; et al. A Chemical Map of NaSICON Electrode Materials for Sodium-Ion Batteries. J. Mater. Chem. A 2021, 9, 281–292. [Google Scholar] [CrossRef]
- Li, H.; Jin, T.; Chen, X.; Lai, Y.; Zhang, Z.; Bao, W.; Jiao, L. Rational Architecture Design Enables Superior Na Storage in Greener NASICON-Na4MnV(PO4)3 Cathode. Adv. Energy Mater. 2018, 8, 1801418. [Google Scholar] [CrossRef]
- Hwang, J.; Matsumoto, K.; Hagiwara, R. Na3V2(PO4)3/C Positive Electrodes with High Energy and Power Densities for Sodium Secondary Batteries with Ionic Liquid Electrolytes That Operate across Wide Temperature Ranges. Adv. Sustain. Syst. 2018, 2, 1700171. [Google Scholar] [CrossRef]
- Li, Z.; Dadsetan, M.; Gao, J.; Zhang, S.; Cai, L.; Naseri, A.; Jimenez-Castaneda, M.E.; Filley, T.; Miller, J.T.; Thomson, M.J.; et al. Revealing the Thermal Safety of Prussian Blue Cathode for Safer Nonaqueous Batteries. Adv. Energy Mater. 2021, 11, 202101764. [Google Scholar] [CrossRef]
- Ojwang, D.O.; Häggström, L.; Ericsson, T.; Angström, J.; Brant, W.R. Influence of Sodium Content on the Thermal Behavior of Low Vacancy Prussian White Cathode Material. Dalt. Trans. 2020, 49, 3570–3579. [Google Scholar] [CrossRef]
- Wang, K.; Huang, X.; Luo, C.; Zhang, Z.; Wang, H.; Zhou, T. Nanosheet-Assembled Hierarchical Petal-like Na4MnV(PO4)3@Carbonized-Polyaniline Microspheres for Stable Sodium-Ion Batteries. ACS Appl. Energy Mater. 2022. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, M.; She, Y.; Lin, X.; Yang, D.; Qin, Y.; Rui, X. Enhanced Low-Temperature Sodium Storage Kinetics in a NaTi2(PO4)3@C Nanocomposite. J. Power Sources 2020, 477, 228735. [Google Scholar] [CrossRef]
- Samigullin, R.R.; Drozhzhin, O.A.; Antipov, E.V. Comparative Study of the Thermal Stability of Electrode Materials for Li-Ion and Na-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 14–19. [Google Scholar] [CrossRef]
- Delmas, C.; Olazcuaga, R.; Cherkaoui, F.; Brochu, R.; Leflem, G. A New Family of Phosphates with Formula Na3M2(PO4)3 (M = Ti, V, Cr, Fe). C. R. Seances Acad. Sci. 1978, 287, 169–171. [Google Scholar]
- Zatovsky, I.V. NASICON-Type Na(3)V(2)(PO(4))(3). Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66, i12. [Google Scholar] [CrossRef] [Green Version]
- Jian, Z.; Zhao, L.; Pan, H.; Hu, Y.S.; Li, H.; Chen, W.; Chen, L. Carbon Coated Na3V2(PO4)3 as Novel Electrode Material for Sodium Ion Batteries. Electrochem. Commun. 2012, 14, 86–89. [Google Scholar] [CrossRef]
- Shen, L.; Li, Y.; Roy, S.; Yin, X.; Liu, W.; Shi, S.; Wang, X.; Yin, X.; Zhang, J.; Zhao, Y. A Robust Carbon Coating of Na3V2(PO4)3 Cathode Material for High Performance Sodium-Ion Batteries. Chin. Chem. Lett. 2021, 32, 3570–3574. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.; Sun, X.; Zhang, B.; He, S.; Li, L.; Wang, C. Preventing Structural Degradation from Na3V2(PO4)3 to V2(PO4)3: F-Doped Na3V2(PO4)3/C Cathode Composite with Stable Lifetime for Sodium Ion Batteries. J. Power Sources 2018, 378, 423–432. [Google Scholar] [CrossRef]
- Wang, K.; Huang, X.; Zhou, T.; Sun, D.; Wang, H.; Zhang, Z. 3D Porous Spheroidal Na4Mn0.9Ce0.1V(PO4)3@CeO2/C Cathode for High-Energy Na Ion Batteries. J. Mater. Chem. A 2022, 10, 10625–10637. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Zhu, B.; Qian, F.; Fang, Z. Mo-Doped Na3V2(PO4)3@C Composites for High Stable Sodium Ion Battery Cathode. Front. Mater. Sci. 2018, 12, 53–63. [Google Scholar] [CrossRef]
- Li, H.; Tang, H.; Ma, C.; Bai, Y.; Alvarado, J.; Radhakrishnan, B.; Ong, S.P.; Wua, F.; Meng, Y.S.; Wu, C. Understanding the Electrochemical Mechanisms Induced by Gradient Mg2+ Distribution of Na-Rich Na3+ XV2- XMgx(PO4)3/C for Sodium Ion Batteries. Chem. Mater. 2018, 30, 2498–2505. [Google Scholar] [CrossRef] [Green Version]
- Chekannikov, A.; Kapaev, R.; Novikova, S.; Tabachkova, N.; Kulova, T.; Skundin, A.; Yaroslavtsev, A. Na3V2(PO4)3/C/Ag Nanocomposite Materials for Na-Ion Batteries Obtained by the Modified Pechini Method. J. Solid State Electrochem. 2017, 21, 1615–1624. [Google Scholar] [CrossRef]
- Aragón, M.J.; Lavela, P.; Ortiz, G.F.; Alcántara, R.; Tirado, J.L. Insight into the Electrochemical Sodium Insertion of Vanadium Superstoichiometric NASICON Phosphate. Inorg. Chem. 2017, 56, 11845–11853. [Google Scholar] [CrossRef]
- Jian, Z.; Han, W.; Lu, X.; Yang, H.; Hu, Y.-S.; Zhou, J.; Zhou, Z.; Li, J.; Chen, W.; Chen, D.; et al. Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries. Adv. Energy Mater. 2013, 3, 156–160. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, Y.; Liu, D.; Gariépy, V.; Gagnon, C.; Vijh, A.; Trudeau, M.L.; Zaghib, K. Application of Operando X-Ray Diffractometry in Various Aspects of the Investigations of Lithium/Sodium-Ion Batteries. Energies 2018, 11, 2963. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, C.; Filip, J.; Machala, L. From Prussian Blue to Iron Carbides: High-Temperature XRD Monitoring of Thermal Transformation under Inert Gases. Powder Diffr. 2017, 32, S207–S212. [Google Scholar] [CrossRef]
- Wang, W.; Gang, Y.; Peng, J.; Hu, Z.; Yan, Z.; Lai, W.; Zhu, Y.; Appadoo, D.; Ye, M.; Cao, Y.; et al. Effect of Eliminating Water in Prussian Blue Cathode for Sodium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2111727. [Google Scholar] [CrossRef]
- Dai, H.; Yang, C.; Ou, X.; Liang, X.; Xue, H.; Wang, W.; Xu, G. Unravelling the Electrochemical Properties and Thermal Behavior of NaNi2/3Sb1/3O2 Cathode for Sodium-Ion Batteries by in Situ X-Ray Diffraction Investigation. Electrochim. Acta 2017, 257, 146–154. [Google Scholar] [CrossRef]
- Lim, S.Y.; Kim, H.; Shakoor, R.A.; Jung, Y.; Choi, J.W. Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study. J. Electrochem. Soc. 2012, 159, A1393–A1397. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Asabina, E.A.; Shchelokov, I.A. Thermal Expansion of NASICON Materials. Inorg. Mater. 2013, 49, 502–506. [Google Scholar] [CrossRef]
- Forbes, R.P.; Barrett, D.H.; Rodella, C.B.; Billing, D.G. The Thermoresponsive Behaviour of Nasicon-like CuTi2(PO4)3. Mater. Charact. 2019, 155, 109795. [Google Scholar] [CrossRef]
- Cui, G.; Wang, H.; Yu, F.; Che, H.; Liao, X.; Li, L.; Yang, W.; Ma, Z. Scalable Synthesis of Na3V2(PO4)3/C with High Safety and Ultrahigh-Rate Performance for Sodium-Ion Batteries. Chin. J. Chem. Eng. 2022, 46, 280–286. [Google Scholar] [CrossRef]
- He, X.; Ping, P.; Kong, D.; Wang, G.; Wang, D. Comparison Study of Electrochemical and Thermal Stability of Na3V2(PO4)3 in Different Electrolytes under Room and Elevated Temperature. Int. J. Energy Res. 2022, 46, 23173–23194. [Google Scholar] [CrossRef]
- Aragón, M.J.; Lavela, P.; Alcántara, R.; Tirado, J.L. Effect of Aluminum Doping on Carbon Loaded Na3V2(PO4)3 as Cathode Material for Sodium-Ion Batteries. Electrochim. Acta 2015, 180, 824–830. [Google Scholar] [CrossRef]
- Aragón, M.J.; Lavela, P.; Ortiz, G.F.; Tirado, J.L. Effect of Iron Substitution in the Electrochemical Performance of Na3V2(PO4)3 as Cathode for Na-Ion Batteries. J. Electrochem. Soc. 2015, 162, A3077–A3083. [Google Scholar] [CrossRef]
- Liu, R.; Xu, G.; Li, Q.; Zheng, S.; Zheng, G.; Gong, Z.; Li, Y.; Kruskop, E.; Fu, R.; Chen, Z.; et al. Exploring Highly Reversible 1.5-Electron Reactions (V3+/V4+/V5+) in Na3VCr(PO4)3 Cathode for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 43632–43639. [Google Scholar] [CrossRef] [PubMed]
- de Boisse, B.M.; Ming, J.; Nishimura, S.; Yamada, A. Alkaline Excess Strategy to NASICON-Type Compounds towards Higher-Capacity Battery Electrodes. J. Electrochem. Soc. 2016, 163, A1469–A1473. [Google Scholar] [CrossRef]
- Zhou, W.; Xue, L.; Lü, X.; Gao, H.; Li, Y.; Xin, S.; Fu, G.; Cui, Z.; Zhu, Y.; Goodenough, J.B. NaxMV(PO4)3 (M = Mn, Fe, Ni) Structure and Properties for Sodium Extraction. Nano Lett. 2016, 16, 7836–7841. [Google Scholar] [CrossRef]
- Zakharkin, M.V.; Drozhzhin, O.A.; Ryazantsev, S.V.; Chernyshov, D.; Kirsanova, M.A.; Mikheev, I.V.; Pazhetnov, E.M.; Antipov, E.V.; Stevenson, K.J. Electrochemical Properties and Evolution of the Phase Transformation Behavior in the NASICON-Type Na3+xMnxV2-x(PO4)3 (0 ≤ x ≤ 1) Cathodes for Na-Ion Batteries. J. Power Sources 2020, 470, 228231. [Google Scholar] [CrossRef]
- Anishchenko, D.V.; Zakharkin, M.V.; Nikitina, V.A.; Stevenson, K.J.; Antipov, E.V. Phase Boundary Propagation Kinetics Predominately Limit the Rate Capability of NASICON-Type Na3+xMnxV2-x(PO4)3 (0 ≤ x ≤ 1) Materials. Electrochim. Acta 2020, 354, 136761. [Google Scholar] [CrossRef]
- Ghosh, S.; Barman, N.; Mazumder, M.; Pati, S.K.; Rousse, G.; Senguttuvan, P. High Capacity and High-Rate NASICON-Na3.75V1.25Mn0.75(PO4)3 Cathode for Na-Ion Batteries via Modulating Electronic and Crystal Structures. Adv. Energy Mater. 2019, 10, 1902918. [Google Scholar] [CrossRef]
- Cui, G.; Dong, Q.; Wang, Z.; Liao, X.Z.; Yuan, S.; Jiang, M.; Shen, Y.; Wang, H.; Che, H.; He, Y.S.; et al. Achieving Highly Reversible and Fast Sodium Storage of Na4VMn(PO4)3/C-RGO Composite with Low-Fraction RGO via Spray-Drying Technique. Nano Energy 2021, 89, 106462. [Google Scholar] [CrossRef]
- Gao, X.; Lian, R.; He, L.; Fu, Q.; Indris, S.; Schwarz, B.; Wang, X.; Chen, G.; Ehrenberg, H.; Wei, Y. Phase Transformation, Charge Transfer, and Ionic Diffusion of Na4MnV(PO4)3 in Sodium-Ion Batteries: A Combined First-Principles and Experimental Study. J. Mater. Chem. A 2020, 8, 17477–17486. [Google Scholar] [CrossRef]
- Chen, F.; Kovrugin, V.M.; David, R.; Mentré, O.; Fauth, F.; Chotard, J.-N.; Masquelier, C. A NASICON-Type Positive Electrode for Na Batteries with High Energy Density: Na4MnV(PO4)3. Small Methods 2018, 3, 1800218. [Google Scholar] [CrossRef]
- Buryak, N.S.; Anishchenko, D.V.; Levin, E.E.; Ryazantsev, S.V.; Martin-Diaconescu, V.; Zakharkin, M.V.; Nikitina, V.A.; Antipov, E.V. High-Voltage Structural Evolution and Its Kinetic Consequences for the Na4MnV(PO4)3 Sodium-Ion Battery Cathode Material. J. Power Sources 2022, 518, 230769. [Google Scholar] [CrossRef]
- Ghosh, S.; Barman, N.; Patra, B.; Senguttuvan, P. Structural and Electrochemical Sodium (De)Intercalation Properties of Carbon-Coated NASICON-Na3+yV2−yMny(PO4)3 Cathodes for Na-Ion Batteries. Adv. Energy Sustain. Res. 2022, 3, 2200081. [Google Scholar] [CrossRef]
- Zakharkin, M.V.; Drozhzhin, O.A.; Tereshchenko, I.V.; Chernyshov, D.; Abakumov, A.M.; Antipov, E.V.; Stevenson, K.J. Enhancing Na+ Extraction Limit through High Voltage Activation of the NASICON-Type Na4MnV(PO4)3 Cathode. ACS Appl. Energy Mater. 2018, 1, 5842–5846. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Song, Y.; Li, Q.; Liu, Y.; Chen, J.; Xing, X. Understanding the Superior Sodium-Ion Storage in a Novel Na3.5Mn0.5V1.5(PO4)3 Cathode. Energy Storage Mater. 2019, 23, 25–34. [Google Scholar] [CrossRef]
- Chotard, J.N.; Rousse, G.; David, R.; Mentré, O.; Courty, M.; Masquelier, C. Discovery of a Sodium-Ordered Form of Na3V2(PO4)3 below Ambient Temperature. Chem. Mater. 2015, 27, 5982–5987. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, Y.; Tang, F.; Li, K.; Rong, X.; Lu, Y.; Chen, L.; Hu, Y.-S. Thermal Stability of High Power 26650-Type Cylindrical Na-Ion Batteries. Chin. Phys. Lett. 2021, 38, 076501. [Google Scholar] [CrossRef]
- Perfilyeva, T.I.; Drozhzhin, O.A.; Alekseeva, A.M.; Zakharkin, M.V.; Mironov, A.V.; Mikheev, I.V.; Bobyleva, Z.V.; Marenko, A.P.; Marikutsa, A.V.; Abakumov, A.M.; et al. Complete Three-Electron Vanadium Redox in NASICON-Type Na3VSc(PO4)3 Electrode Material for Na-Ion Batteries. J. Electrochem. Soc. 2021, 168, 110550. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Orlova, A.I. Crystal-Chemical Approach to Predicting the Thermal Expansion of Compounds in the NZP Family. Inorg. Mater. 2003, 39, 1013–1023. [Google Scholar] [CrossRef]
- Deng, Y.; Eames, C.; Nguyen, L.H.B.; Pecher, O.; Griffith, K.J.; Courty, M.; Fleutot, B.; Chotard, J.N.; Grey, C.P.; Islam, M.S.; et al. Crystal Structures, Local Atomic Environments, and Ion Diffusion Mechanisms of Scandium-Substituted Sodium Superionic Conductor (NASICON) Solid Electrolytes. Chem. Mater. 2018, 30, 2618–2630. [Google Scholar] [CrossRef]
- Qui, D.T.; Capponi, J.J.; Joubert, J.C.; Shannon, R.D. Crystal Structure and Ionic Conductivity in Na4Zr2Si3O12. J. Solid State Chem. 1981, 39, 219–229. [Google Scholar] [CrossRef]
- Huang, C.Y.; Agrawal, D.K.; McKinstry, H.A. Thermal Expansion Behaviour of M′Ti2P3O12 (M′=Li, Na, K, Cs) and M″Ti4P6O24 (M″=Mg, Ca, Sr, Ba) Compounds. J. Mater. Sci. 1995, 30, 3509–3514. [Google Scholar] [CrossRef]
- Woodcock, D.A.; Lightfoot, P. Comparison of the Structural Behaviour of the Low Thermal Expansion NZP Phases MTi2(PO4)3 (M = Li, Na, K). J. Mater. Chem. 1999, 9, 2907–2911. [Google Scholar] [CrossRef]
- Park, S.; Wang, Z.; Deng, Z.; Moog, I.; Canepa, P.; Fauth, F.; Carlier, D.; Croguennec, L.; Masquelier, C.; Chotard, J.-N. Crystal Structure of Na2V2(PO4)3, an Intriguing Phase Spotted in the Na3V2(PO4)3–Na1V2(PO4)3 System. Chem. Mater. 2022, 34, 451–462. [Google Scholar] [CrossRef]
- Gauthier, M.; Carney, T.J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H.H.; Fenning, D.P.; Lux, S.F.; Paschos, O.; Bauer, C.; et al. Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights. J. Phys. Chem. Lett. 2015, 6, 4653–4672. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, K.Y.; Park, I.; Yoo, J.K.; Hong, J.; Kang, K. Thermal Stability of Fe-Mn Binary Olivine Cathodes for Li Rechargeable Batteries. J. Mater. Chem. 2012, 22, 11964–11970. [Google Scholar] [CrossRef]
- Yoshida, J.; Nakanishi, S.; Iba, H.; Abe, H.; Naito, M. Thermal Behavior of Delithiated Li1-XMnPO4 (0 ≤ x < 1) Structure for Lithium-Ion Batteries. Int. J. Appl. Ceram. Technol. 2013, 10, 764–772. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, Y.C.; Jenkins, D.M.; Chernova, N.A.; Chung, Y.; Radhakrishnan, B.; Chu, I.H.; Fang, J.; Wang, Q.; Omenya, F.; et al. Thermal Stability and Reactivity of Cathode Materials for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 7013–7021. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Richardson, T.J. Thermal Instability of Olivine-Type LiMnPO4 Cathodes. J. Power Sources 2010, 195, 1221–1224. [Google Scholar] [CrossRef]
Sample | Peak Temperature, °C | Enthalpy, J g−1 | HoE Factor | |
---|---|---|---|---|
Na3V2(PO4)3 | 3.8 V | 415 | 78 | 0.3 |
4.5 V | 370, 385 | 151 | 0.45 | |
Na4VMn(PO4)3 | 3.8 V | 287 | 163 | 0.58 |
4.5 V | 266, 283 | 239 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samigullin, R.R.; Zakharkin, M.V.; Drozhzhin, O.A.; Antipov, E.V. Thermal Stability of NASICON-Type Na3V2(PO4)3 and Na4VMn(PO4)3 as Cathode Materials for Sodium-ion Batteries. Energies 2023, 16, 3051. https://doi.org/10.3390/en16073051
Samigullin RR, Zakharkin MV, Drozhzhin OA, Antipov EV. Thermal Stability of NASICON-Type Na3V2(PO4)3 and Na4VMn(PO4)3 as Cathode Materials for Sodium-ion Batteries. Energies. 2023; 16(7):3051. https://doi.org/10.3390/en16073051
Chicago/Turabian StyleSamigullin, Ruslan R., Maxim V. Zakharkin, Oleg A. Drozhzhin, and Evgeny V. Antipov. 2023. "Thermal Stability of NASICON-Type Na3V2(PO4)3 and Na4VMn(PO4)3 as Cathode Materials for Sodium-ion Batteries" Energies 16, no. 7: 3051. https://doi.org/10.3390/en16073051