Modeling Activities Related to Improving Energy Efficiency in the Public Procurement Process in Poland
Abstract
:1. Introduction
- melting of natural ice sheets and glaciers,
- rising sea and ocean levels,
- higher frequency and intensity of extreme weather events (e.g., prolonged heat, heavy rainfall and storms, strong hurricanes),
- disturbances in the circulation of water in nature (droughts and floods, including flash floods),
- extension of the vegetation period of flora,
- steppe-formation of areas previously covered with regular vegetation and an increase in the frequency and range of forest fires, and
- changes in the range of occurrence of flora and fauna species, including pests and vectors of infectious diseases.
- IT equipment—computers, displays, image processing equipment,
- vehicles and transport services,
- lighting (internal and external),
- heating, ventilation, and air conditioning,
- data center services,
- design and construction of buildings, and
- medical and catering equipment.
2. Energy Efficiency and Public Procurement
- purchase energy efficient products;
- commission services whose performance is related to energy consumption;
- purchase or rent energy-efficient buildings [27] or their parts that meet at least the minimum requirements in terms of energy savings and thermal insulation specified in the regulations issued on the basis of art. 7, sec. 2, point 1 of the Act of 7 July 1994—Construction Law;
- in used buildings belonging to the State Treasury undergoing reconstruction, ensure compliance with the recommendations referred to in Art. 10, point 3 of the Act of 29 August 2014 on the energy performance of buildings (Journal of Laws of 2021, item 497);
- implement other energy efficiency improvement measures in the field of energy performance of buildings.
3. Sustainable Public Procurement in Poland
4. Description of the Research Methods Used
5. Results
5.1. Analysis of Survey Results
- the implementation and financing of a project aimed at improving energy efficiency;
- the purchase of a device, installation or vehicle characterized by low energy consumption and low operating costs, or their replacement or modernization;
- the implementation of the thermo-modernization project;
- the implementation of the environmental management system confirmed by obtaining an entry in the EMAS register;
- the implementation of low-emission projects referred to in the Act of 21 November 2008 on supporting thermal modernization and renovation and on the central record of emissivity of buildings.
5.2. Key Factors for the Use of Energy-Efficient Public Procurement in Poland
- active factors, i.e., those that very strongly influence other factors but are practically not influenced themselves;
- critical factors, i.e., those that strongly influence other factors while they are also subject to similar influences;
- passive factors, i.e., those that weakly influence other factors but are themselves subject to strong influence;
- lazy factors, i.e., those that both weakly affect other factors and are themselves subject to weak influence.
6. Discussion and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Walker, S.B.; Van Lanen, D.; Mukherjee, U.; Fowler, M. Greenhouse Gas Emissions Reductions from Applications of Power-to-Gas in Power Generation. Sustain. Energy Technol. Assess. 2017, 20, 25–32. [Google Scholar] [CrossRef]
- Thapa, P.; Mainali, B.; Dhakal, S. Focus on Climate Action: What Level of Synergy and Trade-Off Is There between SDG 13; Climate Action and Other SDGs in Nepal? Energies 2023, 16, 566. [Google Scholar] [CrossRef]
- IPCC. Adaptation, and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p. [Google Scholar]
- Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M. McAlpine, Kalifornia Wpływ urbanizacji i zmian klimatu na temperatury w miastach: Przegląd systematyczny. Landsc. Eko. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Barbosa, P.; Dosio, A.; McCormick, N.; Bigano, A.; Füssel, H.-M. Changes of Heating and Cooling Degree-Days in Europe from 1981 to 2100. Int. J. Climatol. 2018, 38, e191–e208. [Google Scholar] [CrossRef] [Green Version]
- Dye, T. The Policy Analysis; The University of Alabama Press: Tuscaloosa, AL, USA, 1976. [Google Scholar]
- Dalmazzo-Bermejo, E.; Valenzuela-Klagges, B.; Espinoza-Brito, L. Producción de energía renovable no tradicional en América Latina: Economía y políticas públicas. Apunt. Rev. Cienc. Soc. 2017, 44, 67–87. [Google Scholar] [CrossRef]
- Armeanu, D.S.; Joldes, C.C.; Gherghina, S.C.; Andrei, J.V. Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: Quantitative assessments across different income countries’ groups. Renew. Sustain. Energy Rev. 2021, 142, 10818. [Google Scholar] [CrossRef]
- Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, A.; Sovacool, B.K. US Liquefied Natural Gas (LNG) exports: Boom or bust for the global climate? Energy 2017, 141, 1671–1680. [Google Scholar] [CrossRef]
- Asmelash, E.; Prakash, G. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation: Paper); International Renewable Energy Agency, IRENA: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Bojek, P. Solar PV; International Energy Agency IEA: Paris, France, 2021. [Google Scholar]
- Ugwoke, B.; Corgnati, S.; Leone, P.; Borchiellini, R.; Pearce, J. Low emissions analysis platform model for renewable energy: Community-scale case studies in Nigeria. Sustain. Cities Soc. 2021, 67, 102750. [Google Scholar] [CrossRef]
- Jain, A.S.; Saikia, P.; Rakshit, D. Thermal energy performance of an academic building with sustainable probing and optimization with evolutionary alg rithm. Therm. Sci. Eng. Prog. 2020, 17, 100374. [Google Scholar] [CrossRef]
- Ascione, F.; De Masi, R.F.; Gigante, A.; Vanoli, G.P. Resilience to the climate change of nearly zero energy-building designed according to the EPBD recast: Monitoring, calibrated energy models and perspective simulations of a Mediterranean nZEB living lab. Energy Build. 2022, 262, 112004. [Google Scholar] [CrossRef]
- Fouguet, R. The slow search for solutions: Lessons from historical energy transitions by sector and service. Energy Policy 2010, 38, 6586–6596. [Google Scholar] [CrossRef] [Green Version]
- Dincer, I.; Acar, C. A review on clean energy solutions for better sustainability. Int. J. Energy Res. 2015, 39, 585–606. [Google Scholar] [CrossRef]
- Srirangan, K.; Akawi, L.; Moo-Young, M.; Chou, C.P. Towards sustainable production of clean energy carriers from biomass resources. Appl. Energy 2012, 100, 172–186. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Pereira, D.S. The dynamics of the short and long-run effects of public policies supporting renewable energy: A comparative study of installed capacity and electricity generation. Econ. Anal. Policy 2019, 63, 188–206. [Google Scholar] [CrossRef]
- Visentin, C.; da Silva Trentin, A.W.; Braun, A.B.; Thomé, A. Life cycle sustainability assessment: A systematic literature review through the application perspective, indicators, and methodologies. J. Clean. Prod. 2020, 270, 122509. [Google Scholar] [CrossRef]
- Arena, U.; Mastellone, M.L.; Perugini, F. The environmental performance of alternative solid waste management options: A life cycle assessment study. Chem. Eng. J. 2003, 96, 207–222. [Google Scholar] [CrossRef]
- Gelhard, C.; Von Delft, S. The role of organizational capabilities in achieving superior sustainability performance. J. Bus. Res. 2016, 69, 4632–4642. [Google Scholar] [CrossRef] [Green Version]
- Ustawa z Dnia 20 Maja 2016 o Efektywności Energetycznej (Dz. U. z 2021 r., poz. 2166). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20210002166/T/D20212166L.pdf (accessed on 10 January 2023).
- Dyrektywa Parlamentu Europejskiego i Rady 2012/27/UE w sprawie efektywności energetycznej, zmiany dyrektyw 2009/125/WE i 2010/30/UE oraz uchylenia dyrektyw 2004/8/WE i 2006/32/WE Dz. Urz. UE L 315 z 14.11.2012 r., str. 1, z późn. Zm. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:02012L0027-20210101&from=EN (accessed on 10 January 2023).
- Ustawa z Dnia 27 Sierpnia 2009 r. o Finansach Publicznych Art. 9 Pkt. 1 (Dz. U. z 2021 r. poz.305, 1236, 1535 i 1773). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20091571240 (accessed on 10 January 2023).
- United Nations Environment Programme. 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector; Technical Report; United Nations Environment Programme: Nairobi, Kenya, 2020. [Google Scholar]
- Huse, C.; Lucinda, C.; Cardoso, A.R. Consumer Response to Energy Label Policies: Evidence from the Brazilian Energy Label Program. Energy Policy 2020, 138, 111207. [Google Scholar] [CrossRef]
- Zha, D.; Yang, G.; Wang, W.; Wang, Q.; Zhou, D. Appliance Energy Labels and Consumer Heterogeneity: A Latent Class Approach Based on a Discrete Choice Experiment in China. Energy Econ. 2020, 90, 104839. [Google Scholar] [CrossRef]
- Wang, B.; Deng, N.; Liu, X.; Sun, Q.; Wang, Z. Effect of Energy Efficiency Labels on Household Appliance Choice in China: Sustainable Consumption or Irrational Intertemporal Choice? Resour. Conserv. Recycl. 2021, 169, 105458. [Google Scholar] [CrossRef]
- UZP. Sprawozdanie Prezesa UZP z Funkcjonowania Systemu Zamówień Publicznych w 2021r, s. 42–54. Available online: https://www.gov.pl/web/uzp/sprawozdanie-prezesa-urzedu-zamowien-publicznych-z-funkcjonowania-systemu-zamowien-publicznych-w-2021-r (accessed on 10 January 2023).
- Eurich, M.; Weiblen, T.; Breitenmoser, P.; Boutellier, R. A ‘Networked Thinking’ Approach to Business Model Design. In Proceedings of the The XXIV ISPIM Conference—Innovating in Global Markets: Challenges for Sustainable Growth, Helsinki, Finland, 16–19 June 2013; pp. 1–13. [Google Scholar]
- Sameera, M.A.; Shilpa, I. Developing a Conceptual Model for Voluntary Pro-Environmental Behavior of Employees; Emerald Publishing Limited: Bingley, UK, 2022; pp. 441–452. [Google Scholar]
- Bilash, K.B.; Fatimah, M.A.; Kusairi, M.N. Causal Loop Diagrams. Syst. Dyn. 2017, 37–51. [Google Scholar] [CrossRef]
- Gomez, P.; Probst, G.J.B. Vernetztes Denken im Management, w: Die Orientierung, Nr. 89; Schweizerische Volksbank: Berno, Switzerland, 1987. [Google Scholar]
- Ulrich, H.; Probst, G.J.B. Anleitung zum ganzheitlichen Denken und Handeln. In Ein Brevier für Führungskräfte; Verlag Paul Haupt: Bern–Stuttgart, Germany, 1990. [Google Scholar]
- Edvinsson, L.; Malone, M.S. Kapitał Intelektualny; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2001; p. 17. [Google Scholar]
- Gierszewska, G.; Romanowska, M. Analiza Strategiczna Przedsiębiorstwa; PWE: Warszawa, Poland, 2004. [Google Scholar]
- Klimarczyk, G.; Masadyński, M.; Wyrwicka, M. Zastosowanie analizy myślenia sieciowego do kierowania zmianą w firmie montażowej. Logistyka 2009, 2, 92. [Google Scholar]
- Thépaut, J.N.; Dick, D.; Engeler, R.; Pinty, B. The Copernicus Programme and its Climate Change Service. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
No. | Name of Factor | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. | Sum of A |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | Efficient, cost-effective public procurement | - | 1 | 0 | 2 | 1 | 0 | 1 | 2 | 2 | 1 | 0 | 0 | 3 | 0 | 3 | 16 |
2. | State policy | 3 | - | 2 | 2 | 0 | 1 | 0 | 1 | 0 | 3 | 1 | 2 | 3 | 3 | 3 | 24 |
3. | Human capital | 2 | 0 | - | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 2 | 1 | 2 | 2 | 12 |
4. | Industry group | 1 | 2 | 0 | - | 2 | 0 | 2 | 2 | 1 | 0 | 0 | 0 | 1 | 2 | 3 | 16 |
5. | Offer evaluation criteria | 2 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 6 |
6. | Mentality of ordering parties | 1 | 3 | 0 | 0 | 0 | - | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 10 |
7. | Description of the subject of the contract | 2 | 0 | 0 | 0 | 0 | 0 | - | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 8 |
8. | Trainings | 2 | 0 | 1 | 0 | 2 | 2 | 2 | - | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 11 |
9. | Life-cycle costing | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | - | 0 | 0 | 0 | 0 | 0 | 2 | 6 |
10. | Taxes | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | - | 0 | 3 | 0 | 0 | 0 | 5 |
11. | International regulations | 1 | 2 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | - | 0 | 0 | 2 | 2 | 11 |
12. | Grey economy | 2 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | - | 0 | 1 | 0 | 10 |
13. | Energy crisis | 1 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | - | 3 | 0 | 12 |
14. | National regulations | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | - | 2 | 14 |
15. | Reduction of CO2 emissions | 1 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | - | 16 |
The sum of P | 22 | 15 | 4 | 11 | 12 | 6 | 13 | 12 | 5 | 9 | 5 | 15 | 10 | 15 | 23 | - |
Factors | Scenario | ||
---|---|---|---|
Optimistic | Pessimistic | Likely | |
Human capital | People with extensive knowledge and skills will be employed in public procurement units to apply their potential in the field of energy-efficient solutions | Public procurement units will employ people who are not fully qualified to perform their tasks, thus not utilizing the potential of energy-efficient solutions | Incidentally, public procurement units will employ people who take into account the advantages of using energy-efficient tender solutions |
Industry group | Energy-efficient public procurement will be implemented with the use of industries supporting this process | Decision makers will not use the potential of industries who can provide energy-efficient solutions | Energy efficient procurement will continue to be used only occasionally |
Energy crisis | The energy crisis will lead to a revolution in the thinking of contracting authorities, consisting of the daily use of energy-efficient solutions | The energy crisis will not change the perception of tender procedures by contracting authorities | The energy crisis will lead to selective use of energy-efficient products and solutions in tender procedures |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowiec, A.T. Modeling Activities Related to Improving Energy Efficiency in the Public Procurement Process in Poland. Energies 2023, 16, 2612. https://doi.org/10.3390/en16062612
Borowiec AT. Modeling Activities Related to Improving Energy Efficiency in the Public Procurement Process in Poland. Energies. 2023; 16(6):2612. https://doi.org/10.3390/en16062612
Chicago/Turabian StyleBorowiec, Arkadiusz T. 2023. "Modeling Activities Related to Improving Energy Efficiency in the Public Procurement Process in Poland" Energies 16, no. 6: 2612. https://doi.org/10.3390/en16062612
APA StyleBorowiec, A. T. (2023). Modeling Activities Related to Improving Energy Efficiency in the Public Procurement Process in Poland. Energies, 16(6), 2612. https://doi.org/10.3390/en16062612