# An Unmanned Helicopter Energy Consumption Analysis

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Helicopter Simulation Model

#### 2.1. Overview

#### 2.2. Archer Helicopter Numerical Model

#### 2.3. Electrical Energy Consumption Model

_{e}was calculated as u

_{bat}i

_{bat}, whereas mechanical power P

_{m}from the main rotor shaft was calculated as the product of torque Q and rotational speed n. Battery power losses were determined as ${i}_{bat}^{2}{R}_{bat}$. Battery resistance (${R}_{bat}=14\mathrm{m}\mathsf{\Omega})$ was estimated separately by measuring the battery terminals’ voltage drops during loading and unloading at different battery states of charge (SOC). It must be noted that major power losses were related to the powertrain; thus, a potential error in the determination of battery losses due to possible changes in battery internal resistance [54] would have a negligible influence on the efficiency map for the whole system. The total efficiency function is shown in Figure 7.

#### 2.4. Automatic Flight Control System

_{C}), main rotor lateral and longitudinal cyclic pitch (X

_{A}and X

_{B}), and tail rotor collective pitch (X

_{P}). The main rotor thrust is controlled by its collective pitch and is used to produce the helicopter’s lift and thrust forces. The cyclic pitch of the main rotor controls the direction of its thrust vector by tilting it in the longitudinal or lateral plane. The vertical part of the thrust vector is the lift force while the horizontal part is the propulsive force, which, when combined, enable flight forward, rearward, or sideward in the horizontal plane, depending on the control signals. The tail rotor is used to compensate for the main rotor torque and control the helicopter’s yaw. This configuration of the aircraft results in the fact that the helicopter’s (fuselage) pitch and roll are involved in acceleration and deceleration, especially when a stiff rotor is used, which is typical in the design of a small UAV helicopter.

**,**for which the latter encompasses the demanded airspeed ${V}_{xD}$ and side velocity ${V}_{yD}$. The Path Control system governs the velocity, heading, and altitude control. The altitude controller calculates the main rotor’s collective pitch control signal ${X}_{C,}$ while the velocity and heading controllers provide the demanded helicopter pitch ${\mathsf{\Theta}}_{D}$ and roll ${\mathsf{\Phi}}_{D}$ values for the Attitude Control system. This system performs calculations of the main rotor’s longitudinal ${X}_{B}$ and lateral ${X}_{A}$ cyclic pitch and the collective pitch of the tail rotor ${X}_{P}$. The control vector consists of all the main and tail rotors’ control signals: $\mathrm{U}=\left[{X}_{A},{X}_{B},{X}_{C},{X}_{P}\right]$.

## 3. Energy Consumption Analysis

#### 3.1. Methodology

#### 3.2. Hover Tests

#### 3.3. Cruise Flight Tests

#### 3.4. Accelaration Tests

#### 3.5. Climbing Rate Tests

#### 3.6. Turn Rate Tests

## 4. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Nomenclature

Latin symbols | |

$E$ | energy, (J) |

${H}_{D}$ | Demanded altitude, (ft) |

${i}_{bat}$ | battery current, (A) |

$n$ | rotational speed (RPM) |

${P}_{e}$ | electric power, (W) |

${P}_{m}$ | mechanical power, (W) |

$Q$ | torque (Nm) |

${R}_{bat}$ | battery resistance, ($\mathsf{\Omega}$) |

${u}_{bat}$ | battery voltage, (V) |

$U,V,W$ | components of linear velocity in ${O}_{b}{x}_{b}{y}_{b}{z}_{b}$ reference frame, (m/s) |

${V}_{xD},{V}_{yD}$ | Demanded forward and side velocity, (ft/s) |

${V}_{D}$ | Demanded helicopter velocity, (ft/s) |

${X}_{A},{X}_{B},{X}_{C}$ | main rotor lateral and longitudinal cyclic pitch, and main rotor collective pitch |

${X}_{P}$ | tail rotor collective pitch |

Greek symbols | |

$\epsilon $ | total efficiency function |

$\mathsf{\Phi},\mathsf{\Theta},\mathsf{\Psi}$ | helicopter attitude angles, (deg) |

${\mathsf{\Phi}}_{\mathrm{D}},{\mathsf{\Theta}}_{\mathrm{D}},{\mathsf{\Psi}}_{\mathrm{D}}$ | demanded attitude angles for inner loop of AFCS, (deg) |

Abbreviations | |

AFCS | Automatic Flight and Control System |

BLDC | Brushless Direct Current |

E-VTOL | Electric Vertical Take-off and Landing |

$\mathrm{SOC}$ | Battery State of Charge, (%) |

UAV | Unmanned Aerial Vehicle |

## References

- Magnussen, Ø.; Ottestad, M.; Hovland, G. Multicopter design optimization and validation. Model. Identif. Control.
**2015**, 36, 67–79. [Google Scholar] [CrossRef] [Green Version] - Wu, J.; Wang, H.; Huang, Y.; Su, Z.; Zhang, M. Energy management strategy for solar-powered UAV long-endurance target tracking. IEEE Trans. Aerosp. Electron. Syst.
**2019**, 55, 1878–1891. [Google Scholar] [CrossRef] - Dwivedi, V.S.; Salahudden, S.; Giri, D.K.; Ghosh, A.K.; Kamath, G.M. Optimal energy utilization for a solar-powered aircraft using sliding-mode-based attitude control. IEEE Trans. Aerosp. Electron. Syst.
**2021**, 57, 105–118. [Google Scholar] [CrossRef] - Lee, D.S.; Periaux, J.; Gonzalez, L.; Srinivas, K. Robust multi-objective and multidisciplinary design optimization of UAV using advanced evolutionary algorithms. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Zheng, X.; He, S.; Lin, D. Constrained trajectory optimization with flexible final time for autonomous vehicles. IEEE Trans. Aerosp. Electron. Syst.
**2021**, 58, 1818–1829. [Google Scholar] [CrossRef] - Bibik, P.; Narkiewicz, J.; Zasuwa, M.; Żugaj, M. Modeling of quadrotor dynamics for research and training simulator. In Proceedings of the 39th European Rotorcraft Forum, Moscow, Russia, 3–6 September 2013. [Google Scholar]
- Jacewicz, M.; Żugaj, M.; Głębocki, R.; Bibik, P. Quadrotor model for energy consumption analysis. Energies
**2022**, 15, 7136. [Google Scholar] [CrossRef] - Zhang, J.; Campbell, J.F.; Sweeney, D.C.; Hupman, A.C. Energy consumption models for delivery drones: A comparison and assessment. Transp. Res. Part D Transp. Environ.
**2021**, 90, 102668. [Google Scholar] [CrossRef] - Wu, M.; Chen, W.; Tian, X. Optimal energy consumption path planning for quadrotor UAV transmission tower inspection based on simulated annealing algorithm. Energies
**2022**, 15, 8036. [Google Scholar] [CrossRef] - Zeng, Y.; Xu, J.; Zhang, R. Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans. Wirel. Commun.
**2019**, 18, 2329–2345. [Google Scholar] [CrossRef] [Green Version] - Beigi, P.; Rajabi, M.S.; Aghakhani, S. An overview of drone energy consumption factors and models. arXiv
**2022**, arXiv:2206.10775. [Google Scholar] [CrossRef] - Jia, G.; Li, C.; Li, M. Energy-Efficient Trajectory Planning for Smart Sensing in IoT Networks Using Quadrotor UAVs. Sensors
**2022**, 22, 8729. [Google Scholar] [CrossRef] - Morbidi, F.; Cano, R.; Lara, D.; Morbidi, F.; Cano, R.; Lara, D.; Generation, M.P.; Morbidi, F.; Cano, R.; Lara, D. Minimum-Energy Path Generation for a Quadrotor UAV. In Proceedings of the International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; pp. 2–8. [Google Scholar]
- Lu, P.; Liu, M.; Zhang, X.; Zhu, G.; Li, Z.; Su, C.-Y. Neural network based adaptive event-triggered control for quadrotor unmanned aircraft robotics. Machines
**2022**, 10, 617. [Google Scholar] [CrossRef] - Xiao, S.; Tan, X.; Wang, J. A Simulated annealing algorithm and grid map-based UAV coverage path planning method for 3D reconstruction. Electronics
**2021**, 10, 853. [Google Scholar] [CrossRef] - Wu, F.; Yang, D.; Xiao, L.; Cuthbert, L. Energy consumption and completion time tradeoff in rotary-wing UAV enabled WPCN. IEEE Access
**2019**, 7, 79617–79635. [Google Scholar] [CrossRef] - Fouad, Y.; Rizoug, N.; Bouhali, O.; Hamerlain, M. Optimization of energy consumption for quadrotor UAV. In Proceedings of the International Micro Air Vehicle Conference and Flight Competition (IMAV) 2017, Toulouse, France, 18–21 September 2017; pp. 215–222. [Google Scholar]
- Steup, C.; Parlow, S.; Mai, S.; Mostaghim, S. Generic component-based mission-centric energy model for micro-scale unmanned aerial vehicles. Drones
**2020**, 4, 63. [Google Scholar] [CrossRef] - Chang, C.-W.; Chen, S.; Wen, C.-Y.; Li, B. An actuator allocation method for a variable-pitch propeller system of quadrotor-based UAVs. Sensors
**2020**, 20, 5651. [Google Scholar] [CrossRef] - Wang, Y.; Wang, Y.; Ren, B. Energy saving quadrotor control for field inspections. IEEE Trans. Syst. Man Cybern. Syst.
**2022**, 52, 1768–1777. [Google Scholar] [CrossRef] - Chovancová, A.; Fico, T.; Duchoň, F.; Dekan, M.; Chovanec, Ľ.; Dekanová, M. Control methods comparison for the real quadrotor on an innovative test stand. Appl. Sci.
**2020**, 10, 2064. [Google Scholar] [CrossRef] [Green Version] - Aguilar-Lopez, J.M.; Garcia, R.A.; Bordons, C.; Camacho, E.F. Development of the energy consumption model of a quadrotor using voltage data from experimental flights. In Proceedings of the 2022 IEEE 17th International Conference on Control & Automation (ICCA), Naples, Italy, 27–30 June 2022; pp. 432–437. [Google Scholar] [CrossRef]
- Alyassi, R.; Khonji, M.; Karapetyan, A.; Chau, S.C.-K.; Elbassioni, K.; Tseng, C.-M. Autonomous recharging and flight mission planning for battery-operated autonomous drones. IEEE Trans. Autom. Sci. Eng.
**2022**, 1–13. [Google Scholar] [CrossRef] - Zhou, C.; Xu, A.; Wang, F.; Chen, M.; Li, W.; Yin, R. Performance optimization of helicopter rotor in hover based on CFD simulation. Math. Probl. Eng.
**2022**, 2022, 3146658. [Google Scholar] [CrossRef] - Kocjan, J.; Kachel, S.; Rogólski, R. Helicopter main rotor blade parametric design for a preliminary aerodynamic analysis supported by CFD or panel method. Materials
**2022**, 15, 4275. [Google Scholar] [CrossRef] - Xie, J.; Xie, Z.; Zhou, M.; Qiu, J. Multidisciplinary aerodynamic design of a rotor blade for an optimum rotor speed helicopter. Appl. Sci.
**2017**, 7, 639. [Google Scholar] [CrossRef] [Green Version] - Xu, A.; Chen, M.; Wang, F.; Li, L. Research on dynamic model of the small-scale compound coaxial unmanned helicopter. In Proceedings of the 2022 International Conference on Electrical, Control and Information Technology, Kunming, China, 25–27 March 2022. [Google Scholar]
- Yeo, H. Design and aeromechanics investigation of compound helicopters. Aerosp. Sci. Technol.
**2019**, 88, 158–173. [Google Scholar] [CrossRef] - Graham, B.D.; Hyeonsoo, Y. Performance and loads study of a high-speed compound helicopter. J. Am. Helicopter Soc.
**2018**, 63, 1–15. [Google Scholar] - Cao, Y.; Wang, Y.; Song, H.; Li, Q.; Zhang, H. The unidirectional auxiliary surface sliding mode control for compound high-speed helicopter. In Proceedings of the IEEE CSAA Guidance, Navigation and Control Conference, Xiamen, China, 10–12 August 2018. [Google Scholar]
- Citroni, R.; Di Paolo, F.; Livreri, P. A novel energy harvester for powering small UAVs: Performance analysis, model validation and flight results. Sensors
**2019**, 19, 1771. [Google Scholar] [CrossRef] [Green Version] - Liu, Q.; Zhang, Z.; Jia, T.; Wang, L.; Zhao, D. Energy consumption analysis of helicopter traction device: A modeling method considering both dynamic and energy consumption characteristics of mechanical systems. Energies
**2022**, 15, 7772. [Google Scholar] [CrossRef] - Trigona, C.; Andò, B.; Baglio, S. Measurements and investigations of helicopter-induced vibrations for kinetic energy harvesters. In Proceedings of the IEEE Sensors Applications Symposium, Sophia Antipolis, France, 11–13 March 2019. [Google Scholar]
- Ma, K.; Chen, L.; Luo, K. Study on energy management system of helicopter. In Proceedings of the CSAA/IET International Conference on Aircraft Utility Systems, Online, 18–21 September 2020. [Google Scholar]
- Cole, J.A.; Rajauski, L.; Loughran, A.; Karpowicz, A.; Salinger, S. Configuration study of electric helicopters for urban air mobility. Aerospace
**2021**, 8, 54. [Google Scholar] [CrossRef] - Donateo, T.; Carla, A.; Avanzini, G. Fuel consumption of rotorcrafts and potentiality for hybrid electric power systems. Energy Convers. Manag.
**2018**, 164, 429–442. [Google Scholar] [CrossRef] - Cutler, M.; Kemal Ure, N.; Michini, B.; How, J.P. Comparison of fixed and variable pitch actuators for agile quadrotors. In AIAA Guidance; Navigation, and Control Conference (GNC): Portland, OR, USA, 2011. [Google Scholar]
- Xie, J.; Guan, N.; Zhou, M.; Xie, Z. Study on the mechanism of the variable-speed rotor affecting rotor aerodynamic performance. Appl. Sci.
**2018**, 8, 1030. [Google Scholar] [CrossRef] - Padfield, G. Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modelling, 2nd ed.; Blackwell Publishing Ltd.: Oxford, UK, 2007. [Google Scholar]
- Manimala, B.J.; Walker, D.J.; Padfield, G.D.; Voskuijl, M.; Gubbels, A.W. Rotorcraft simulation modelling and validation for control law design. Aeronaut. J.
**2007**, 111, 77–88. [Google Scholar] [CrossRef] - Xie, Y.; Savvaris, A.; Tsourdos, A. Fuzzy logic based equivalent consumption optimization of a hybrid electric propulsion system for unmanned aerial vehicles. Aerosp. Sci. Technol.
**2019**, 85, 13–23. [Google Scholar] [CrossRef] [Green Version] - Goulos, I.; Pachidis, V.; d’Ippolito, R.; Stevens, J.; Smith, C. An integrated approach for the multidisciplinary design of optimum rotorcraft operations. J. Eng. Gas Turbines Power
**2012**, 134, 091701. [Google Scholar] [CrossRef] - Zhang, B.; Song, Z.; Liu, S.; Huang, R.; Liu, C. Overview of integrated electric motor drives: Opportunities and challenges. Energies
**2022**, 15, 8299. [Google Scholar] [CrossRef] - Arellano-Quintana, V.M.; Merchán-Cruz, E.A.; Franchi, A. A novel experimental model and a drag-optimal allocation method for variable-pitch propellers in multirotors. IEEE Access
**2018**, 6, 68155–68168. [Google Scholar] [CrossRef] - Gebauer, J.; Wagnerova, R.; Smutny, P.; Podesva, P. Controller design for variable pitch propeller propulsion drive. IFAC-PapersOnLine
**2019**, 52, 186–191. [Google Scholar] [CrossRef] - Podsedkowski, M.; Konopinski, R.; Obidowski, D.; Koter, K. Variable pitch propeller for UAV-experimental tests. Energies
**2020**, 13, 5264. [Google Scholar] [CrossRef] - Henderson, T.; Papanikolopoulos, N. Power-minimizing control of a variable-pitch propulsion system for versatile unmanned aerial vehicles. In Proceedings of the 2019 International Conference Robotics and Automation—ICRA, Montreal, QC, Canada, 20–24 May 2019; pp. 4148–4153. [Google Scholar]
- Chi, C.; Yan, X.; Chen, R.; Li, P. Analysis of low-speed height-velocity diagram of a variable-speed-rotor helicopter in one-engine-failure. Aerosp. Sci. Technol.
**2019**, 91, 310–320. [Google Scholar] [CrossRef] - Han, D.; Pastrikakis, V.; Barakos, G.N. Helicopter performance improvement by variable rotor speed and variable blade twist. Aerosp. Sci. Technol.
**2016**, 54, 164–173. [Google Scholar] [CrossRef] [Green Version] - Mistry, M.; Gandhi, F. Helicopter performance improvement with variable rotor radius and rpm. J. Am. Helicopter Soc.
**2014**, 59, 17–35. [Google Scholar] [CrossRef] - Rahul, R.; Abhishek, A. Performance optimization of a variable speed and variable geometry rotor concept. J. Aircr.
**2017**, 54, 476–489. [Google Scholar] - Miste, G.; Benini, E.; Garavello, A.; Alcoy, M.G. A methodology for determining the optimal rotational speed of a variable rpm main rotor/turboshaft engine system. J. Am. Helicopter Soc.
**2013**, 60, 1–11. [Google Scholar] [CrossRef] - Bibik, P.; Bedyńska, P.; Curyło, P.; Czarnota, N.; Ceniuk, M.; Grabowski, Ł.; Lukasiewicz, M.S. ARCHER—Autonomous reconfigurable compound helicopter for education and research. In Proceedings of the 45th European Rotorcraft Forum, Warsaw, Poland, 17–20 September 2019; pp. 1448–1457. [Google Scholar]
- Chen, L.; Zhang, M.; Ding, Y.; Wu, S.; Li, Y.; Liang, G.; Li, H.; Pan, H. Estimation the internal resistance of lithium-ion-battery using a multi-factor dynamic internal resistance model with an error compensation strategy. Energy Rep.
**2021**, 7, 3050–3059. [Google Scholar] [CrossRef]

**Figure 6.**A view of the laboratory test bed used for determination of power train efficiency (DCU—DC supply units, EM—electric motor, MC—motor controller, G1—1st stage of gearbox, TS—torque and speed sensor, CS—DC current sensor, VS—DC voltage sensing, and GE—electric generator).

Parameter | Flight Test | Simulation | Difference |
---|---|---|---|

Main rotor RPM | 1006.9 | 1000 | 0.7% |

Torque (Nm) | 6.74 | 6.77 | 0.5% |

Collective pitch angle (deg) | 7.12 | 6.86 | 3.6% |

Electric power (W) | 1034 | 994.97 | 3.77% |

Parameter | Value/Information |
---|---|

Main rotor diameter (m) | 1.78 |

No. of main rotor blades | 2 |

Main rotor nominal RPM | 1000 |

Tail rotor diameter (m) | 0.158 |

No. of tail rotor blades | 2 |

Tail rotor nominal RPM | 9000 |

Min. mass (kg) | 7.23 |

Max. mass (kg) | 12 |

Component | Symbol | Description |
---|---|---|

Supply source | TDK Lambda GEN3300W | 20 V_{max}, 167 A_{max}, two units connected in series |

Electric motor | Kontronik Pyro 650-53 L | k_{V}–530 RPM/V, 10 poles |

Electric motor controller | Castle Phoenix Edge 120 HV | U_{DC_max}–50.4 V_{,} I_{DC max}–120 A |

Gearbox | SAB SG714 21T pulley | gear ratio 10.2:1 |

Battery current sensor | LEM LF-205-S/SP1 | nominal current I_{meas_n}–200 A |

Torque and speed sensor | HBM T20WN/20NM | max torque–20 Nm, max speed–10k RPM, torque meas. accuracy 0.2% |

Case No | Demanded Altitude | Demanded Speed | Demanded Pitch Angle |
---|---|---|---|

1.1 | 33.81 ft | 0 ft/s | 0 deg |

RPM | Energy Used in Last 50 s |
---|---|

800 | 9.418 Wh |

900 | 10.019 Wh |

1000 | 11.002 Wh |

1100 | 12.348 Wh |

1200 | 14.043 Wh |

Case No | Demanded Altitude | Demanded Speed | Demanded Pitch Angle |
---|---|---|---|

2.1 | 33.81 ft | 11 ft/s | 0 deg |

2.2 | 23 ft/s | ||

2.3 | 34 ft/s |

RPM | Demanded Speed | Energy Used in Last 50 s |
---|---|---|

800 | 11 ft/s | 8.194 Wh |

23 ft/s | 6.608 Wh | |

34 ft/s | 6.130 Wh | |

900 | 11 ft/s | 8.835 Wh |

23 ft/s | 7.278 Wh | |

34 ft/s | 6.807 Wh | |

1000 | 11 ft/s | 9.841 Wh |

23 ft/s | 8.323 Wh | |

34 ft/s | 7.848 Wh | |

1100 | 11 ft/s | 11.237 Wh |

23 ft/s | 9.716 Wh | |

34 ft/s | 9.248 Wh | |

1200 | 11 ft/s | 12.948 Wh |

23 ft/s | 11.422 Wh | |

34 ft/s | 10.955 Wh |

Case No | Demanded Speed | Demanded Pitch Angle |
---|---|---|

3.1 | 11 ft/s | 2 deg |

3.2 | 4.5 deg | |

3.3 | 7 deg | |

3.4 | 9.5 deg | |

3.5 | 23 ft/s | 2 deg |

3.6 | 4.5 deg | |

3.7 | 7 deg | |

3.8 | 9.5 deg | |

3.9 | 34 ft/s | 2 deg |

3.10 | 4.5 deg | |

3.11 | 7 deg | |

3.12 | 9.5 deg |

Demanded Speed | Demanded Pitch Angle | Energy Used during Maneuver | Energy Used in Last 50 s | ||
---|---|---|---|---|---|

800 RPM | 1200 RPM | 800 RPM | 1200 RPM | ||

11 ft/s | 2 deg | 3.374 Wh | 8.316 Wh | 10.637 Wh | 10.925 Wh |

4.5 deg | 2.498 Wh | 3.700 Wh | 10.538 Wh | 10.878 Wh | |

7 deg | 2.295 Wh | 2.920 Wh | 10.516 Wh | 10.867 Wh | |

9.5 deg | 2.153 Wh | 2.514 Wh | 10.504 Wh | 10.861 Wh | |

23 ft/s | 2 deg | 5.071 Wh | 9.494 Wh | 9.185 Wh | 10.087 Wh |

4.5 deg | 2.953 Wh | 5.089 Wh | 8.708 Wh | 9.849 Wh | |

7 deg | 2.471 Wh | 4.091 Wh | 8.587 Wh | 9.790 Wh | |

9.5 deg | 2.273 Wh | 3.484 Wh | 8.539 Wh | 9.767 Wh | |

34 ft/s | 2 deg | 7.023 Wh | 9.781 Wh | 8.975 Wh | 9.951 Wh |

4.5 deg | 3.626 Wh | 6.433 Wh | 8.284 Wh | 9.593 Wh | |

7 deg | 2.932 Wh | 5.262 Wh | 8.108 Wh | 9.509 Wh | |

9.5 deg | 2.661 Wh | 4.598 Wh | 8.034 Wh | 9.474 Wh |

Case No | Demanded Altitude | Demanded Climb Rate |
---|---|---|

4.1 | 66.81 ft | 2 ft/s |

4.2 | 4.5 ft/s | |

4.3 | 7 ft/s | |

4.4 | 9.5 ft/s | |

4.5 | 99.81 ft | 2 ft/s |

4.6 | 4.5 ft/s | |

4.7 | 7 ft/s | |

4.8 | 9.5 ft/s | |

4.9 | 132.81 ft | 2 ft/s |

4.10 | 4.5 ft/s | |

4.11 | 7 ft/s | |

4.12 | 9.5 ft/s |

Demanded Altitude | Demanded Vertical Speed | Energy Used during Maneuver | Energy Used in Last 50 s | ||
---|---|---|---|---|---|

800 RPM | 1200 RPM | 800 RPM | 1200 RPM | ||

66.81 ft | 2 ft/s | 3.277 Wh | 3.732 Wh | 7.867 Wh | 9.410 Wh |

4.5 ft/s | 1.945 Wh | 2.009 Wh | 7.881 Wh | 9.411 Wh | |

7 ft/s | 1.536 Wh | 1.548 Wh | 7.892 Wh | 9.414 Wh | |

9.5 ft/s | 1.347 Wh | 1.338 Wh | 7.906 Wh | 9.418 Wh | |

99.81 ft | 2 ft/s | 5.726 Wh | 6.431 Wh | 8.178 Wh | 9.594 Wh |

4.5 ft/s | 3.337 Wh | 3.388 Wh | 8.203 Wh | 9.596 Wh | |

7 ft/s | 2.600 Wh | 2.516 Wh | 8.226 Wh | 9.600 Wh | |

9.5 ft/s | 2.243 Wh | 2.094 Wh | 8.248 Wh | 9.607 Wh | |

132.81 ft | 2 ft/s | 8.088 Wh | 9.083 Wh | 8.491 Wh | 9.781 Wh |

4.5 ft/s | 4.658 Wh | 4.739 Wh | 8.524 Wh | 9.780 Wh | |

7 ft/s | 3.620 Wh | 3.487 Wh | 8.557 Wh | 9.787 Wh | |

9.5 ft/s | 3.116 Wh | 2.877 Wh | 8.589 Wh | 9.798 Wh |

Case No | Demanded Heading | Demanded Bank Angle |
---|---|---|

5.1 | 45 deg | 2 deg |

5.2 | 8 deg | |

5.3 | 14 deg | |

5.4 | 20 deg | |

5.5 | 135 deg | 2 deg |

5.6 | 8 deg | |

5.7 | 14 deg | |

5.8 | 20 deg | |

5.9 | 180 deg | 2 deg |

5.10 | 8 deg | |

5.11 | 14 deg | |

5.12 | 20 deg |

Demanded Heading | Demanded Bank Angle | Energy Used during Maneuver | Energy Used in Last 200 s | ||
---|---|---|---|---|---|

800 RPM | 1200 RPM | 800 RPM | 1200 RPM | ||

45 deg | 2 deg | 21.215 Wh | 2.919 Wh | 24.524 Wh | 43.825 Wh |

8 deg | 0.473 Wh | 2.490 Wh | 24.530 Wh | 43.826 Wh | |

14 deg | 0.370 Wh | 1.975 Wh | 24.532 Wh | 43.827 Wh | |

20 deg | 0.324 Wh | 1.392 Wh | 24.533 Wh | 43.830 Wh | |

135 deg | 2 deg | 17.449 Wh | 11.521 Wh | 24.523 Wh | 43.831 Wh |

8 deg | 1.145 Wh | 7.001 Wh | 24.544 Wh | 43.834 Wh | |

14 deg | 0.821 Wh | 5.185 Wh | 24.553 Wh | 43.837 Wh | |

20 deg | 0.674 Wh | 3.251 Wh | 24.561 Wh | 43.846 Wh | |

180 deg | 2 deg | 15.143 Wh | 17.469 Wh | 24.523 Wh | 43.832 Wh |

8 deg | 1.481 Wh | 9.263 Wh | 24.550 Wh | 43.838 Wh | |

14 deg | 1.041 Wh | 6.732 Wh | 24.563 Wh | 43.842 Wh | |

20 deg | 0.841 Wh | 4.164 Wh | 24.576 Wh | 43.854 Wh |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Żugaj, M.; Edawdi, M.; Iwański, G.; Topczewski, S.; Bibik, P.; Fabiański, P.
An Unmanned Helicopter Energy Consumption Analysis. *Energies* **2023**, *16*, 2067.
https://doi.org/10.3390/en16042067

**AMA Style**

Żugaj M, Edawdi M, Iwański G, Topczewski S, Bibik P, Fabiański P.
An Unmanned Helicopter Energy Consumption Analysis. *Energies*. 2023; 16(4):2067.
https://doi.org/10.3390/en16042067

**Chicago/Turabian Style**

Żugaj, Marcin, Mohammed Edawdi, Grzegorz Iwański, Sebastian Topczewski, Przemysław Bibik, and Piotr Fabiański.
2023. "An Unmanned Helicopter Energy Consumption Analysis" *Energies* 16, no. 4: 2067.
https://doi.org/10.3390/en16042067