Dry Reforming of Methane Using a Swirl-Induced Plasma Discharge Reactor
Abstract
:1. Introduction
2. Materials and Methods
Experimental Setup and Working
3. Results and Discussion
3.1. Electrical Characterization
3.2. Effect of Flow Rate on Conversion, Yield, and Energy Cost
3.3. Characterization of Carbon Particles
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amponsah, N.Y.; Troldborg, M.; Kington, B.; Aalders, I.; Hough, R.L. Greenhouse Gas Emissions from Renewable Energy Sources: A Review of Lifecycle Considerations. Renew. Sustain. Energy Rev. 2014, 39, 461–475. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zhang, X.; Mi, Z. Thermodynamic Analysis of Autothermal Steam and CO2 Reforming of Methane. Int. J. Hydrogen Energy 2008, 33, 2507–2514. [Google Scholar] [CrossRef]
- Qureshi, F.; Yusuf, M.; Kamyab, H.; Zaidi, S.; Junaid Khalil, M.; Arham Khan, M.; Azad Alam, M.; Masood, F.; Bazli, L.; Chelliapan, S.; et al. Current Trends in Hydrogen Production, Storage and Applications in India: A Review. Sustain. Energy Technol. Assess. 2022, 53, 102677. [Google Scholar] [CrossRef]
- Ekeoma, B.C.; Yusuf, M.; Johari, K.; Abdullah, B. Mesoporous Silica Supported Ni-Based Catalysts for Methane Dry Reforming: A Review of Recent Studies. Int. J. Hydrogen Energy 2022, 47, 41596–41620. [Google Scholar] [CrossRef]
- Albarazi, A.; Gálvez, M.E.; Da Costa, P. Synthesis Strategies of Ceria–Zirconia Doped Ni/SBA-15 Catalysts for Methane Dry Reforming. Catal. Commun. 2015, 59, 108–112. [Google Scholar] [CrossRef]
- Pudukudy, M.; Yaakob, Z.; Mohammad, M.; Narayanan, B.; Sopian, K. Renewable Hydrogen Economy in Asia—Opportunities and Challenges: An Overview. Renew. Sustain. Energy Rev. 2014, 30, 743–757. [Google Scholar] [CrossRef]
- Ranjekar, A.M.; Yadav, G.D. Dry Reforming of Methane for Syngas Production: A Review and Assessment of Catalyst Development and Efficacy. J. Indian Chem. Soc. 2021, 98, 100002. [Google Scholar] [CrossRef]
- Parsapur, R.K.; Chatterjee, S.; Huang, K.-W. The Insignificant Role of Dry Reforming of Methane in CO2 Emission Relief. ACS Energy Lett. 2020, 5, 2881–2885. [Google Scholar] [CrossRef]
- Fridman, A.; Fridman, A.; Kennedy, L.A.; Kennedy, L.A. Plasma Physics and Engineering; CRC Press: Boca Raton, FL, USA, 2004; ISBN 978-1-4822-9363-0. [Google Scholar]
- Fridman, A.A. Plasma Chemistry; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-281-38358-7. [Google Scholar]
- Tao, X.; Qi, F.; Yin, Y.; Dai, X. CO2 Reforming of CH4 by Combination of Thermal Plasma and Catalyst. Int. J. Hydrogen Energy 2008, 33, 1262–1265. [Google Scholar] [CrossRef]
- Bogaerts, A.; Neyts, E.C. Plasma Technology: An Emerging Technology for Energy Storage. ACS Energy Lett. 2018, 3, 1013–1027. [Google Scholar] [CrossRef] [Green Version]
- Snoeckx, R.; Zeng, Y.X.; Tu, X.; Bogaerts, A. Plasma-Based Dry Reforming: Improving the Conversion and Energy Efficiency in a Dielectric Barrier Discharge. RSC Adv. 2015, 5, 29799–29808. [Google Scholar] [CrossRef]
- Raja, R.B.; Sarathi, R.; Vinu, R. Double dielectric barrier discharge-assisted conversion of biogas to synthesis gas. In Proceedings of the 7th International Conference on Advances in Energy Research, Singapore, 18 October 2020; Bose, M., Modi, A., Eds.; Springer Proceedings in Energy. Springer: Singapore, 2021; pp. 123–129, ISBN 9789811559549. [Google Scholar]
- Michielsen, I.; Uytdenhouwen, Y.; Bogaerts, A.; Meynen, V. Altering Conversion and Product Selectivity of Dry Reforming of Methane in a Dielectric Barrier Discharge by Changing the Dielectric Packing Material. Catalysts 2019, 9, 51. [Google Scholar] [CrossRef]
- Andersen, J.A.; Christensen, J.M.; Østberg, M.; Bogaerts, A.; Jensen, A.D. Plasma-Catalytic Dry Reforming of Methane: Screening of Catalytic Materials in a Coaxial Packed-Bed DBD Reactor. Chem. Eng. J. 2020, 397, 125519. [Google Scholar] [CrossRef]
- Uytdenhouwen, Y.; Hereijgers, J.; Breugelmans, T.; Cool, P.; Bogaerts, A. How Gas Flow Design Can Influence the Performance of a DBD Plasma Reactor for Dry Reforming of Methane. Chem. Eng. J. 2021, 405, 126618. [Google Scholar] [CrossRef]
- Chun, S.M.; Hong, Y.C.; Choi, D.H. Reforming of Methane to Syngas in a Microwave Plasma Torch at Atmospheric Pressure. J. CO2 Util. 2017, 19, 221–229. [Google Scholar] [CrossRef]
- Xia, Y.; Lu, N.; Wang, B.; Li, J.; Shang, K.; Jiang, N.; Wu, Y. Dry Reforming of CO2CH4 Assisted by High-Frequency AC Gliding Arc Discharge: Electrical Characteristics and the Effects of Different Parameters. Int. J. Hydrogen Energy 2017, 42, 22776–22785. [Google Scholar] [CrossRef]
- Nunnally, T.; Gutsol, K.; Rabinovich, A.; Fridman, A.; Gutsol, A.; Kemoun, A. Dissociation of CO2 in a Low Current Gliding Arc Plasmatron. J. Phys. D Appl. Phys. 2011, 44, 274009. [Google Scholar] [CrossRef]
- Ramakers, M.; Trenchev, G.; Heijkers, S.; Wang, W.; Bogaerts, A. Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion. ChemSusChem 2017, 10, 2642–2652. [Google Scholar] [CrossRef] [PubMed]
- Cleiren, E.; Heijkers, S.; Ramakers, M.; Bogaerts, A. Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry. ChemSusChem 2017, 10, 4025–4036. [Google Scholar] [CrossRef]
- Slaets, J.; Aghaei, M.; Ceulemans, S.; Van Alphen, S.; Bogaerts, A. CO2 and CH4 Conversion in “Real” Gas Mixtures in a Gliding Arc Plasmatron: How Do N2 and O2 Affect the Performance? Green Chem. 2020, 22, 1366–1377. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Li, X.; Wang, W.; Yan, J.; Tu, X. Warm Plasma Activation of CO2 in a Rotating Gliding Arc Discharge Reactor. J. CO2 Util. 2018, 27, 472–479. [Google Scholar] [CrossRef]
- Raja, R.B.; Sarathi, R.; Vinu, R. Development of a Swirl-Induced Rotating Glow Discharge Reactor for CO2 Conversion: Fluid Dynamics and Discharge Dynamics Studies. Energy Technol. 2020, 8, 2000535. [Google Scholar] [CrossRef]
- Raja, R.B.; Sarathi, R.; Vinu, R. Selective Production of Hydrogen and Solid Carbon via Methane Pyrolysis Using a Swirl-Induced Point–Plane Non-Thermal Plasma Reactor. Energy Fuels 2022, 36, 826–836. [Google Scholar] [CrossRef]
- Zhang, X.; Cha, M.S. Electron-Induced Dry Reforming of Methane in a Temperature-Controlled Dielectric Barrier Discharge Reactor. J. Phys. D Appl. Phys. 2013, 46, 415205. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Q. Kinetic Roles of Vibrational Excitation in RF Plasma Assisted Methane Pyrolysis. J. Energy Chem. 2019, 39, 188–197. [Google Scholar] [CrossRef]
- Pinhão, N.; Moura, A.; Branco, J.B.; Neves, J. Influence of Gas Expansion on Process Parameters in Non-Thermal Plasma Plug-Flow Reactors: A Study Applied to Dry Reforming of Methane. Int. J. Hydrogen Energy 2016, 41, 9245–9255. [Google Scholar] [CrossRef]
- Wanten, B.; Maerivoet, S.; Vantomme, C.; Slaets, J.; Trenchev, G.; Bogaerts, A. Dry Reforming of Methane in an Atmospheric Pressure Glow Discharge: Confining the Plasma to Expand the Performance. J. CO2 Util. 2022, 56, 101869. [Google Scholar] [CrossRef]
- Wu, A.; Yan, J.; Zhang, H.; Zhang, M.; Du, C.; Li, X. Study of the Dry Methane Reforming Process Using a Rotating Gliding Arc Reactor. Int. J. Hydrogen Energy 2014, 39, 17656–17670. [Google Scholar] [CrossRef]
- Martin-del-Campo, J.; Coulombe, S.; Kopyscinski, J. Influence of Operating Parameters on Plasma-Assisted Dry Reforming of Methane in a Rotating Gliding Arc Reactor. Plasma Chem. Plasma Process. 2020, 40, 857–881. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; p. a5606. ISBN 978-0-470-02731-8. [Google Scholar]
S. No. | Reactor Configuration | Reactor Type | Power Supply Type | Conversion (%) of CH4 and CO2 at corresponding CH4:CO2 Ratio (v%/v%) | Maximum Energy Efficiency | References |
---|---|---|---|---|---|---|
1. | Knife-shaped Gliding arc plasmatron | High-frequency AC source | 58.8, 52.3 at 40:60 | 2.21 mmol/kJ | Xia et al. (2017) [18] | |
2. | Microwave Plasma Torch | Not Specified | 68.4, 96.8 at 50:50 | Not reported | Chun et al. (2017) [17] | |
3. | Cylindrical Gliding arc plasmatron | DC High voltage | 10, 18 at 25:75 | 66% | Cleiren et al. (2017) [21] | |
4. | Coaxial DBD with alumina as dielectric | DC High voltage | 33, 22 at 50:50 | 4% | Andersen et al. (2020) [15] | |
5. | Double DBD reactor | AC high voltage | CO2 −10.1 at 50:50 | 53.8 kJ/L | Raja et al. (2020) [14] |
Equipment | Specification |
---|---|
Mass flow controller | Alicat MC-2SLPM |
High Voltage (HV) Plasma resonant driver | PVM500, Information Unlimited |
Voltage probe | Lecroy PPE 20 kV, 100 MHz |
Current probe and amplifier | Tektronix TCP312A, 100 MHz, TCPA300 |
Oscilloscope | Tektronix TBS 1102B |
Gas chromatography | Agilent 7820 GC Porapak-Q column (2 m, 80/100 mesh) Oven temperature—50 °C TCD and FID temperatures—200 and 260 °C, respectively Argon flow rate—10 mL/min |
Elemental CHNS analysis | Thermo Flash 2000 (ASTM- D5291 method) |
SEM-EDAX | Zeiss Evo-18 |
FTIR | Agilent Cary 630 4 cm−1 resolution, attenuated total reflectance (ATR) mode |
Reaction Type | Reaction | Number |
---|---|---|
Reactant conversion | CH4 + e → CH3 + H + e | (R1) |
CH4 + e → CH2 + H2 + e | (R2) | |
CH4 + e → CH + H + H2 + e | (R3) | |
CO2 + e → CO + O | (R4) | |
CH4 + O → CH3 + OH | (R5) | |
CH4 + OH → CH3 + H2O | (R6) | |
CH4 + H → CH3 + H2 | (R7) | |
CO2 + H → CO + OH | (R8) | |
H + H + M → H2 + M | (R9) | |
Competing reactions | CH3 + OH → CH3OH | (R10) |
CH3OH + OH → CH2O + H + H2O | (R11) | |
CH3 + O → CH2O + H | (R12) | |
CH2O + O → CHO + OH | (R13) | |
CH2O + OH → CHO + H2O | (R14) | |
CHO + OH → CO + H2O | (R15) | |
CHO + O → CO + OH | (R16) | |
Formation of reactants | CO + O → CO2 | (R17) |
CO + OH → CO2 + H | (R18) | |
CH3 + H → CH4 | (R19) | |
H2 consumption | H2 + O → OH + H | (R20) |
H2 + OH → H2O + H | (R21) | |
Formation of C and C2 hydrocarbons | e +CH4 → e + C + H2 | (R22) |
CH4 + CH → C2H4 + H | (R23) | |
C2H5 +H → C2H6 | (R24) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raja, R.B.; Halageri, A.C.; Sankar, R.; Sarathi, R.; Vinu, R. Dry Reforming of Methane Using a Swirl-Induced Plasma Discharge Reactor. Energies 2023, 16, 1823. https://doi.org/10.3390/en16041823
Raja RB, Halageri AC, Sankar R, Sarathi R, Vinu R. Dry Reforming of Methane Using a Swirl-Induced Plasma Discharge Reactor. Energies. 2023; 16(4):1823. https://doi.org/10.3390/en16041823
Chicago/Turabian StyleRaja, R. Bharathi, Anusha C. Halageri, R. Sankar, Ramanujam Sarathi, and Ravikrishnan Vinu. 2023. "Dry Reforming of Methane Using a Swirl-Induced Plasma Discharge Reactor" Energies 16, no. 4: 1823. https://doi.org/10.3390/en16041823
APA StyleRaja, R. B., Halageri, A. C., Sankar, R., Sarathi, R., & Vinu, R. (2023). Dry Reforming of Methane Using a Swirl-Induced Plasma Discharge Reactor. Energies, 16(4), 1823. https://doi.org/10.3390/en16041823