MIMO-SAR Interferometric Measurements for Wind Turbine Tower Deformation Monitoring
Abstract
1. Introduction
2. Measurement Principle and Methodology
2.1. MIMO-SAR
2.2. Total Station
2.3. Video Camera
- Calculating the transformation parameters of the tracked feature points: The transformation matrix describes the relationship between the initial position of all the tracked features at time with the position of all features at time and can be described bywith containing a list of coordinates for feature points at a given time. This linear equation requires at least two independent feature points to be solved. Having more points leads to an over-determined equation system, and a least-squares adjustment [39,40] was performed to obtain a unique solution for .
- Estimating the center coordinate of the tower: The video frames clearly show some parts of the cylindrical tower’s surface at the height of the nacelle (Figure 7). The first frame was used to manually select a set of points on the tower’s surface. The position of the tower’s surface for each frame was derived by applying Equation (11) and using the previously derived transformation matrix . The tower’s center was then estimated for each frame by solving the standard equation for a circle:with x and y representing coordinates on the circle, u and v representing the coordinates of the circle center, and r being the radius of the circle. Again, a least-squares adjustment for each frame was carried out to obtain a unique solution for the center coordinate. Those center coordinates will then be used as the input for Equation (9) to determine the east–west and north–south components based on Equation (10).
3. Results
3.1. MIMO-SAR Data Filtering
3.2. Deformations
3.3. Frequencies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADC | Analog-to-Digital Converter |
| AOI | Angle Of Incidence |
| FMCW | Frequency-Modulated Continuous Wave |
| FOV | Field Of View |
| GNSS | Global Navigation Satellite System |
| LOS | Line-Of-Sight |
| MIMO | Multiple-Input Multiple-Output |
| Radar | Radio detection and ranging |
| RAR | Real Aperture Radar |
| RCS | Radar Cross-Section |
| SAR | Synthetic Aperture Radar |
| SHM | Structural Health Monitoring |
| SLC | Single-Look Complex |
| TI | Texas Instruments |
| TRI | Terrestrial Radar Interferometry |
| TS | Total Station |
| VC | Video Camera |
References
- BP p.l.c. BP Statistical Review of World Energy 2022; Technical Report; 2022; Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 31 January 2023).
- Wiser, R.; Bolinger, M.; Hoen, B.; Millstein, D.; Rand, J.; Barbose, G.; Darghouth, N.; Gorman, W.; Jeong, S.; Paulos, B. Land-Based Wind MARKET Report: 2022 Edition; Technical Report; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2022. [Google Scholar]
- Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C.L.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H.; et al. Grand challenges in the science of wind energy. Science 2019, 366, eaau2027. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.L.; Abu-Siada, A.; Muyeen, S.M. Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review. Energies 2018, 11, 1309. [Google Scholar] [CrossRef]
- Kandil, K.S.A.; Saudi, G.N.; Eltaly, B.A.A.; El-khier, M.M.A. Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis. Int. J. Adv. Struct. Eng. 2016, 8, 337–349. [Google Scholar] [CrossRef]
- Ozbek, M.; Rixen, D.J. Operational modal analysis of a 2.5MW wind turbine using optical measurement techniques and strain gauges. Wind Energy 2012, 16, 367–381. [Google Scholar] [CrossRef]
- Seidel, M. Auslegung von Hybridtürmen für Windenergieanlagen - Lastermittlung und Nachweis der Ermüdungsfestigkeit am Beispiel einer 3, 6-MW-WEA mit 100 m Rotordurchmesser. Beton- Und Stahlbetonbau 2002, 97, 564–575. [Google Scholar] [CrossRef]
- Wymore, M.L.; Van Dam, J.E.; Ceylan, H.; Qiao, D. A survey of health monitoring systems for wind turbines. Renew. Sustain. Energy Rev. 2015, 52, 976–990. [Google Scholar] [CrossRef]
- Bang, H.J.; Kim, H.I.; Lee, K.S. Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors. Int. J. Precis. Eng. Manuf. 2012, 13, 2121–2126. [Google Scholar] [CrossRef]
- Wondra, B.; Malek, S.; Botz, M.; Glaser, S.D.; Grosse, C.U. Wireless high-resolution acceleration measurements for structural health monitoring of wind turbine towers. Data-Enabled Discov. Appl. 2019, 3, 4. [Google Scholar] [CrossRef]
- Botz, M.; Oberlaender, S.; Raith, M.; Grosse, C.U. Monitoring of wind turbine structures with concrete-steel hybrid-tower design. In Proceedings of the 8th European Workshop on Structural Health Monitoring (EWSHM), Bilbao, Spain, 5–8 July 2016; pp. 2301–2311. [Google Scholar]
- Komarizadehasl, S.; Mobaraki, B.; Ma, H.; Lozano-Galant, J.A.; Turmo, J. Development of a Low-Cost System for the Accurate Measurement of Structural Vibrations. Sensors 2021, 21, 6191. [Google Scholar] [CrossRef]
- Zieger, T.; Nagel, S.; Lutzmann, P.; Kaufmann, I.; Ritter, J.; Ummenhofer, T.; Knödel, P.; Fischer, P. Simultaneous identification of wind turbine vibrations by using seismic data, elastic modeling and laser Doppler vibrometry. Wind Energy 2020, 23, 1145–1153. [Google Scholar] [CrossRef]
- Mitka, B.; Klapa, P.; Gniadek, J. Use of terrestrial laser scanning for measurements of wind power stations. Geomat. Environ. Eng. 2019, 13, 39–49. [Google Scholar] [CrossRef]
- Helming, P.; von Freyberg, A.; Sorg, M.; Fischer, A. Wind Turbine Tower Deformation Measurement Using Terrestrial Laser Scanning on a 3.4 MW Wind Turbine. Energies 2021, 14, 3255. [Google Scholar] [CrossRef]
- Baqersad, J.; Poozesh, P.; Niezrecki, C.; Avitabile, P. Photogrammetry and optical methods in structural dynamics—A review. Mech. Syst. Signal Process. 2017, 86, 17–34. [Google Scholar] [CrossRef]
- Ozbek, M.; Meng, F.; Rixen, D.J. Challenges in testing and monitoring the in-operation vibration characteristics of wind turbines. Mech. Syst. Signal Process. 2013, 41, 649–666. [Google Scholar] [CrossRef]
- Artese, S.; Nico, G. TLS and GB-RAR Measurements of Vibration Frequencies and Oscillation Amplitudes of Tall Structures: An Application to Wind Towers. Appl. Sci. 2020, 10, 2237. [Google Scholar] [CrossRef]
- Ma, D.; Li, Y.; Liu, Y.; Cai, J.; Zhao, R. Vibration Deformation Monitoring of Offshore Wind Turbines Based on GBIR. J. Ocean Univ. China 2021, 20, 501–511. [Google Scholar] [CrossRef]
- Baumann-Ouyang, A.; Butt, J.A.; Wieser, A. Bridge deformations during train passage: Monitoring multiple profiles using concurrently operating MIMO-SAR sensors. In Proceedings of the 5th Joint International Symposium on Deformation Monitoring (JISDM), Valencia, Spain, 20–22 June 2022. [Google Scholar] [CrossRef]
- D’Aria, D.; Falcone, P.; Maggi, L.; Cero, A.; Amoroso, G. MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications. Int. J. Struct. Constr. Eng. 2019, 13, 258–265. [Google Scholar]
- Sun, S.; Petropulu, A.P.; Poor, H.V. MIMO Radar for Advanced Driver-Assistance Systems and Autonomous Driving: Advantages and Challenges. IEEE Signal Process. Mag. 2020, 37, 98–117. [Google Scholar] [CrossRef]
- Baumann-Ouyang, A.; Butt, J.A.; Salido-Monzú, D.; Wieser, A. MIMO-SAR Interferometric Measurements for Structural Monitoring: Accuracy and Limitations. Remote Sens. 2021, 13, 4290. [Google Scholar] [CrossRef]
- Pieraccini, M.; Miccinesi, L. An Interferometric MIMO Radar for Bridge Monitoring. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1383–1387. [Google Scholar] [CrossRef]
- Tian, W.; Li, Y.; Hu, C.; Li, Y.; Wang, J.; Zeng, T. Vibration Measurement Method for Artificial Structure Based on MIMO Imaging Radar. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 748–760. [Google Scholar] [CrossRef]
- Miccinesi, L.; Consumi, T.; Beni, A.; Pieraccini, M. W-band MIMO GB-SAR for Bridge Testing/Monitoring. Electronics 2021, 10, 2261. [Google Scholar] [CrossRef]
- Hu, C.; Deng, Y.; Tian, W.; Wang, J.; Zeng, T. Novel MIMO-SAR system applied for high-speed and high-accuracy deformation measurement. J. Eng. 2019, 2019, 6598–6602. [Google Scholar] [CrossRef]
- Pham, T.H.; Kim, K.H.; Hong, I.P. A Study on Millimeter Wave SAR Imaging for Non-Destructive Testing of Rebar in Reinforced Concrete. Sensors 2022, 22, 8030. [Google Scholar] [CrossRef]
- Broussolle, J.; Kyovtorov, V.; Basso, M.; Ferraro Di Silvi E Castiglione, G.; Figueiredo Morgado, J.; Giuliani, R.; Oliveri, F.; Sammartino, P.F.; Tarchi, D. MELISSA, a new class of ground based InSAR system. An example of application in support to the Costa Concordia emergency. ISPRS J. Photogramm. Remote Sens. 2014, 91, 50–58. [Google Scholar] [CrossRef]
- Hosseiny, B.; Amini, J.; Safavi-Naeini, S. Simulation and Evaluation of an mm-Wave MIMO Ground-Based SAR Imaging System for Displacement Monitoring. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 8213–8216. [Google Scholar] [CrossRef]
- Hosseiny, B.; Amini, J.; Aghababaei, H. Structural Displacement Monitoring Using Ground-based Synthetic Aperture Radar. Int. J. Appl. Earth Obs. Geoinf. 2022, 116, 103144. [Google Scholar] [CrossRef]
- Texas Instruments Inc. Imaging Radar Using Cascaded mmWave Sensor Reference Design; Texas Instruments Inc.: Dallas, TX, USA, 2019. [Google Scholar]
- Calandawind. Windenergieanlage. Available online: https://www.calandawind.ch/windenergieanlage/ (accessed on 6 November 2022).
- Vestas Wind Systems A/S. Vestas V112 3.0 MW ONSHORE. 2011. Available online: https://www.wind-still.ch/files/windstill/files/pdf/Vestas_V112_web_DE.pdf (accessed on 6 November 2022).
- Texas Instruments Inc. mmWave Studio Cascade—User Guide; Texas Instruments Inc.: Dallas, TX, USA, 2019. [Google Scholar]
- Balestrieri, E.; Vito, L.D.; Picariello, F.; Rapuano, S.; Tudosa, I. A review of accurate phase measurement methods and instruments for sinewave signals. ACTA IMEKO 2020, 9, 52. [Google Scholar] [CrossRef]
- Yu, H.; Lan, Y.; Yuan, Z.; Xu, J.; Lee, H. Phase Unwrapping in InSAR: A Review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 40–58. [Google Scholar] [CrossRef]
- Baumann-Ouyang, A.; Butt, J.A.; Wieser, A. Estimating 3D displacement vectors from line-of-sight observations with application to MIMO-SAR. J. Appl. Geod. 2023; accepted. [Google Scholar]
- Gauss, C.F. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium; Perthes, F., Besser, I.H., Eds.; FA Perthes: Hamburg, Germany, 1809; pp. 1–227. [Google Scholar] [CrossRef]
- Legendre, A.M. Nouvelles Méthodes pour la Détermination des Orbites des Comètes: Avec un Supplément Contenant Divers Perfectionnemens de ces Méthodes et leur Application aux deux Comètes de 1805; Courcier: Paris, France, 1806. [Google Scholar]
- Ferretti, A.; Prati, C.M.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P.W. Coherence estimation for SAR imagery. IEEE Trans. Geosci. Remote Sens. 1999, 37, 135–149. [Google Scholar] [CrossRef]
- Richards, M.A.; Scheer, J.; Holm, W.A.; Melvin, W.L. Principles of Modern Radar; Citeseer: New York, NY, USA, 2010; Volume 1. [Google Scholar]
- Kingsley, S.; Quegan, S. Understanding Radar Systems; SciTech Publishing: Raleigh, NC, USA, 1999; Volume 2, ISBN 1-891-12105-7. [Google Scholar]
- IEEE Standard 952; IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. Institute of Electrical and Electronics Engineers: New York, NY, USA, 1997.















| Name | Value |
|---|---|
| Number of rotor blades (-) | 3 |
| Rotor diameter (m) | 112 |
| Hub height (m) | 119 |
| Cut-in wind speed (m/s) | 3 |
| Rated wind speed (m/s) | 13 |
| Cut-out wind speed (m/s) | 25 |
| Installed capacity (MW) | 3 |
| Name | Value |
|---|---|
| Center frequency (GHz) | 77.2 |
| Sweep bandwidth (MHz) | 300 |
| Frequency slope (MHz/) | 4.973 |
| Ramp duration () | 75 |
| Sample per chirp (-) | 512 |
| ADC sampling frequency (MHz) | 8.493 |
| Data acquisition rate () | 10 |
| Frequency (Hz) | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Name | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
| Video Camera | Tower@38m | 0.169 | 0.463 | 1.138 | 1.304 | 2.957 | 3.873 | - | - | - | - | - |
| MIMO-SAR System | Tower@38m | 0.167 | - | 1.128 | 1.291 | - | - | - | - | - | - | - |
| MIMO-SAR System | Tower@9m | 0.167 | 0.466 | 1.129 | 1.292 | 2.887 | 3.844 | 7.557 | 17.822 | 18.790 | 21.634 | 23.974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumann-Ouyang, A.; Butt, J.A.; Varga, M.; Wieser, A. MIMO-SAR Interferometric Measurements for Wind Turbine Tower Deformation Monitoring. Energies 2023, 16, 1518. https://doi.org/10.3390/en16031518
Baumann-Ouyang A, Butt JA, Varga M, Wieser A. MIMO-SAR Interferometric Measurements for Wind Turbine Tower Deformation Monitoring. Energies. 2023; 16(3):1518. https://doi.org/10.3390/en16031518
Chicago/Turabian StyleBaumann-Ouyang, Andreas, Jemil Avers Butt, Matej Varga, and Andreas Wieser. 2023. "MIMO-SAR Interferometric Measurements for Wind Turbine Tower Deformation Monitoring" Energies 16, no. 3: 1518. https://doi.org/10.3390/en16031518
APA StyleBaumann-Ouyang, A., Butt, J. A., Varga, M., & Wieser, A. (2023). MIMO-SAR Interferometric Measurements for Wind Turbine Tower Deformation Monitoring. Energies, 16(3), 1518. https://doi.org/10.3390/en16031518

