Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database
Abstract
:1. Introduction
2. Methodology
2.1. Overall Description
- Creation of a database for selected catalog parameters of electric vehicles;
- Using the Python environment to analyze the data for the target parameter energy consumption: uploading the data, validating the records, processing the data, visualization;
- Calculating Pearson’s correlation coefficient and creating a heatmap to better illustrate the results of the impact of selected parameters for target parameter energy consumption;
- Writing out recommendations for data analysis for electric vehicles, which can be used to further develop, for example, computational models using artificial intelligence methods.
2.2. Dataset
2.3. Data Processing
Algorithm 1: Data processing of EVs in dabl |
|
3. Results and Discussion
3.1. Results of Data Analysis
- The parameters studied are characterized by the low presence of outliers, which could affect the quality of further analysis.
- For three of the parameters studied (price (EUR), range (km), and release year), additional clusters were created for data against the plug-type parameter.
- For two of the parameters studied (acceleration to 100 (km/h) and charging speed (km/h)), additional clusters were created for the data against the parameter drivetrain type.
- Positive, negative, and no correlation instances can be observed for the data.
- Positive correlations against energy consumption occur for the parameters range (km), price (EUR), and release year.
- A negative correlation with energy consumption occurs for the acceleration parameter to 100 km/h.
- No correlation against energy consumption is for the parameter charging speed (km/h).
- EVs with AWD have the best acceleration at 100 km/h for the analyzed set of vehicles.
- For the newer vehicles in the EV data series, an increasing trend in energy consumption can be observed, especially for the group of vehicles that have Type 2 CCS.
- The highest energy consumption characterizes the analyzed vehicles of the manufacturer Audi, also for Tesla, looking at the maximum value, one can observe its highest value relative to the rest of the manufacturers.
- The smallest energy consumption is characterized by the vehicles of the manufacturers Renault, Volkswagen, and Kia.
- The highest energy consumption is attributed to the parameter max. velocity for speeds higher than 180 km/h and for the maximum value for max velocity 140 km/h.
- The highest energy consumption for average values relative to the drivetrain type parameter occurs for AWD vehicles.
- The largest energy consumption relative to the car body parameter occurs for EVs of the SUV, pickup, and SPV types, while the smallest occurs for hatchback vehicles.
- The largest energy consumption relative to the segment parameter occurs for the E and N vehicle classes.
- For the number of seats parameter, the largest energy consumption for the surveyed vehicles occurs for 6 seats, while the smallest occurs for 4 and 2 seats.
- The highest correlation value with respect to energy consumption is found for the price (EUR) and equals 0.4.
- The next parameters with the highest correlation with the energy consumption parameter are max. velocity (0.38), range (0.35), and seats (3.0).
- The negative correlation against the energy consumption parameter is for the acceleration to 100 km/h parameter and is −0.41.
3.2. Discussion
4. Conclusions
- Analysis of the variability of the parameters under study for the entire dataset, which improves the process of understanding the data.
- Analyzing the impact of the correlation of the selected target parameter against the parameters describing it, in order to find patterns and, for example, appropriate clusters of data for further analysis.
- Selection of appropriate parameters, i.e., the best predictors for a given explanatory variable in order to create machine learning models.
- For the studied parameter energy consumption, there is a high correlation with other parameters, e.g., the range of an electric vehicle or its maximum speed.
- For the examined parameter energy consumption, there is a negative correlation with respect to the parameter acceleration to 100 km/h.
- There is no correlation with energy consumption for the parameter charging speed.
- The highest values of correlations with the energy consumption parameter are as follows: max. velocity (0.38), range (0.35), and seats (3.0).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AC | Alternating current |
AWD | All-wheel drive |
CCS | Combined charging system |
DC | Direct current |
EDA | Exploratory data analysis |
EV | Electric vehicle |
FWD | Front-wheel drive |
RWD | Rear-wheel drive |
SUV | Sport utility vehicle |
References
- Tsakalidis, A.; Gkoumas, K.; Pekár, F. Digital Transformation Supporting Transport Decarbonisation: Technological Developments in EU-Funded Research and Innovation. Sustainability 2020, 12, 3762. [Google Scholar] [CrossRef]
- Bonoli, A.; Zanni, S.; Serrano-Bernardo, F. Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling. Sustainability 2021, 13, 2139. [Google Scholar] [CrossRef]
- Miklautsch, P.; Woschank, M. A framework of measures to mitigate greenhouse gas emissions in freight transport: Systematic literature review from a Manufacturer’s perspective. J. Clean. Prod. 2022, 366, 132883. [Google Scholar] [CrossRef]
- Aminzadegan, S.; Shahriari, M.; Mehranfar, F.; Abramović, B. Factors affecting the emission of pollutants in different types of transportation: A literature review. Energy Rep. 2022, 8, 2508–2529. [Google Scholar] [CrossRef]
- Jaworski, A.; Mądziel, M.; Lew, K.; Campisi, T.; Woś, P.; Kuszewski, H.; Wojewoda, P.; Ustrzycki, A.; Balawender, K.; Jakubowski, M. Evaluation of the Effect of Chassis Dynamometer Load Setting on CO2 Emissions and Energy Demand of a Full Hybrid Vehicle. Energies 2022, 15, 122. [Google Scholar] [CrossRef]
- Kazancoglu, Y.; Ozbiltekin-Pala, M.; Ozkan-Ozen, Y.D. Prediction and evaluation of greenhouse gas emissions for sustainable road transport within Europe. Sustain. Cities Soc. 2021, 70, 102924. [Google Scholar] [CrossRef]
- Zahedi, S.; Batista-Foguet, J.M.; van Wunnik, L. Exploring the public’s willingness to reduce air pollution and greenhouse gas emissions from private road transport in Catalonia. Sci. Total Environ. 2019, 646, 850–861. [Google Scholar] [CrossRef]
- Laporte, S.; Coquery, G.; Deniau, V.; De Bernardinis, A.; Hautière, N. Dynamic wireless power transfer charging infrastructure for future evs: From experimental track to real circulated roads demonstrations. World Electr. Veh. J. 2019, 10, 84. [Google Scholar] [CrossRef]
- Jaworski, A.; Mądziel, M.; Kuszewski, H. Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions. Energies 2022, 15, 2238. [Google Scholar] [CrossRef]
- Thiel, C.; Julea, A.; Acosta Iborra, B.; De Miguel Echevarria, N.; Peduzzi, E.; Pisoni, E.; Gómez Vilchez, J.J.; Krause, J. Assessing the Impacts of Electric Vehicle Recharging Infrastructure Deployment Efforts in the European Union. Energies 2019, 12, 2409. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.; Nguyen-Tien, V.; Elliott, R.J. The electric vehicle revolution: Critical material supply chains, trade and development. World Econ. 2022. [Google Scholar] [CrossRef]
- Razmjoo, A.; Ghazanfari, A.; Jahangiri, M.; Franklin, E.; Denai, M.; Marzband, M.; Maheri, A. A Comprehensive Study on the Expansion of Electric Vehicles in Europe. Appl. Sci. 2022, 12, 11656. [Google Scholar] [CrossRef]
- Yu, J.; Yang, P.; Zhang, K.; Wang, F.; Miao, L. Evaluating the Effect of Policies and the Development of Charging Infrastructure on Electric Vehicle Diffusion in China. Sustainability 2018, 10, 3394. [Google Scholar] [CrossRef]
- Orlov, A.; Kallbekken, S. The impact of consumer attitudes towards energy efficiency on car choice: Survey results from Norway. J. Clean. Prod. 2019, 214, 816–822. [Google Scholar] [CrossRef]
- de Rubens, G.Z. Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market. Energy 2019, 172, 243–254. [Google Scholar] [CrossRef]
- Tran, M.-K.; Bhatti, A.; Vrolyk, R.; Wong, D.; Panchal, S.; Fowler, M.; Fraser, R. A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives. World Electr. Veh. J. 2021, 12, 54. [Google Scholar] [CrossRef]
- Dik, A.; Omer, S.; Boukhanouf, R. Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration. Energies 2022, 15, 803. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, X.P.; Wang, J.; Li, J.; Wu, C.; Hu, M.; Bian, H. A review on electric vehicle charging infrastructure development in the UK. J. Mod. Power Syst. Clean Energy 2020, 8, 193–205. [Google Scholar] [CrossRef]
- Koch, N.; Ritter, N.; Rohlf, A.; Scarazzato, F. When is the electric vehicle market self-sustaining? Evidence from Norway. Energy Econ. 2022, 110, 105991. [Google Scholar] [CrossRef]
- Zhou, W.; Hagos, D.A.; Stikbakke, S.; Huang, L.; Cheng, X.; Onstein, E. Assessment of the impacts of different policy instruments on achieving the deep decarbonization targets of island energy systems in Norway–The case of Hinnøya. Energy 2022, 246, 123249. [Google Scholar] [CrossRef]
- Lanz, L.; Noll, B.; Schmidt, T.S.; Steffen, B. Comparing the levelized cost of electric vehicle charging options in Europe. Nat. Commun. 2022, 13, 5277. [Google Scholar] [CrossRef] [PubMed]
- Falchetta, G.; Noussan, M. Electric vehicle charging network in Europe: An accessibility and deployment trends analysis. Transp. Res. Part D Transp. Environ. 2021, 94, 102813. [Google Scholar] [CrossRef]
- Talluri, G.; Grasso, F.; Chiaramonti, D. Is Deployment of Charging Station the Barrier to Electric Vehicle Fleet Development in EU Urban Areas? An Analytical Assessment Model for Large-Scale Municipality-Level EV Charging Infrastructures. Appl. Sci. 2019, 9, 4704. [Google Scholar] [CrossRef]
- Panchal, C.; Stegen, S.; Lu, J. Review of static and dynamic wireless electric vehicle charging system. Eng. Sci. Technol. Int. J. 2018, 21, 922–937. [Google Scholar] [CrossRef]
- Wu, X.; Freese, D.; Cabrera, A.; Kitch, W.A. Electric vehicles’ energy consumption measurement and estimation. Transp. Res. Part D Transp. Environ. 2015, 34, 52–67. [Google Scholar] [CrossRef]
- Yu, B.; Yang, J.; Wang, D.; Shi, J.; Chen, J. Energy consumption and increased EV range evaluation through heat pump scenarios and low GWP refrigerants in the new test procedure WLTP. Int. J. Refrig. 2019, 100, 284–294. [Google Scholar] [CrossRef]
- De Cauwer, C.; Maarten, M.; Heyvaert, S.; Coosemans, T.; Van Mierlo, J. Electric vehicle use and energy consumption based on realworld electric vehicle fleet trip and charge data and its impact on existing EV research models. World Electr. Veh. J. 2015, 7, 436–446. [Google Scholar]
- Mądziel, M.; Jaworski, A.; Savostin-Kosiak, D.; Lejda, K. The Impact of Exhaust Emission from Combustion Engines on the Environment: Modelling of Vehicle Movement at Roundabouts. Int. J. Automot. Mech. Eng. 2020, 17, 8360–8371. [Google Scholar] [CrossRef]
- Ziółkowski, A.; Fuć, P.; Lijewski, P.; Jagielski, A.; Bednarek, M.; Kusiak, W. Analysis of Exhaust Emissions from Heavy-Duty Vehicles on Different Applications. Energies 2022, 15, 7886. [Google Scholar] [CrossRef]
- Cardenas, A.; Guzman, C.; Martinez, W. EV Overnight Charging Strategy in Residential Sector: Case of Winter Season in Quebec. Vehicles 2021, 3, 557–577. [Google Scholar] [CrossRef]
- Kumar, S.; Bharj, R.S. Experimental analysis of a light weight refrigerated electric vehicle in the summer and winter season. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2021; Volume 2317, p. 030006. [Google Scholar]
- Ristiana, R.; Rohman, A.S.; Machbub, C.; Purwadi, A.; Rijanto, E. A new approach of EV modeling and its control applications to reduce energy consumption. IEEE Access 2019, 7, 141209–141225. [Google Scholar] [CrossRef]
- Sagaria, S.; Neto, R.C.; Baptista, P. Modelling approach for assessing influential factors for EV energy performance. Sustain. Energy Technol. Assess. 2021, 44, 100984. [Google Scholar] [CrossRef]
- Skuza, A.; Jurecki, R.S. Analysis of factors affecting the energy consumption of an EV vehicle-a literature study. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2022; Volume 1247, p. 012001. [Google Scholar]
- Wang, J.B.; Liu, K.; Yamamoto, T.; Morikawa, T. Improving estimation accuracy for electric vehicle energy consumption considering the effects of ambient temperature. Energy Procedia 2017, 105, 2904–2909. [Google Scholar] [CrossRef]
- Schücking, M.; Jochem, P.; Fichtner, W.; Wollersheim, O.; Stella, K. Influencing factors on specific energy consumption of EV in extensive operations. In Proceedings of the 29th International Electric Vehicle Symposium, Montreal, QC, Canada, 19–22 June 2016. [Google Scholar]
- Hinov, N.; Punov, P.; Gilev, B.; Vacheva, G. Model-Based Estimation of Transmission Gear Ratio for Driving Energy Consumption of an EV. Electronics 2021, 10, 1530. [Google Scholar] [CrossRef]
- Li, W.; Stanula, P.; Egede, P.; Kara, S.; Herrmann, C. Determining the main factors influencing the energy consumption of electric vehicles in the usage phase. Procedia Cirp 2016, 48, 352–357. [Google Scholar] [CrossRef]
- Elahi, M.Q.; Elsaadany, M.; Rehman, H.; Mukhopadhyay, S. Battery Energy Consumption Optimization for the EV Traction System. In Proceedings of the 2022 IEEE 16th International Conference on Compatibility, Power Electronics, and Power Engineering (CPE-POWERENG), Birmingham, UK, 29 June–1 July 2022; pp. 1–5. [Google Scholar]
- Sweeting, W.J.; Hutchinson, A.R.; Savage, S.D. Factors affecting electric vehicle energy consumption. Int. J. Sustain. Eng. 2011, 4, 192–201. [Google Scholar] [CrossRef]
- Yao, E.; Yang, Z.; Song, Y.; Zuo, T. Comparison of electric vehicle’s energy consumption factors for different road types. Discret. Dyn. Nat. Soc. 2013, 2013, 328757. [Google Scholar] [CrossRef]
- Yi, Z.; Bauer, P.H. Effects of environmental factors on electric vehicle energy consumption: A sensitivity analysis. IET Electr. Syst. Transp. 2017, 7, 3–13. [Google Scholar] [CrossRef]
- Mediouni, H.; Ezzouhri, A.; Charouh, Z.; El Harouri, K.; El Hani, S.; Ghogho, M. Energy Consumption Prediction and Analysis for Electric Vehicles: A Hybrid Approach. Energies 2022, 15, 6490. [Google Scholar] [CrossRef]
- Biová, J.; Dietz, N.; Chan, Y.O.; Joshi, T.; Bilyeu, K.; Škrabišová, M. AccuCalc: A Python Package for Accuracy Calculation in GWAS. Genes 2023, 14, 123. [Google Scholar] [CrossRef]
- Bullejos, M.; Cabezas, D.; Martín-Martín, M.; Alcalá, F.J. Confidence of a k-Nearest Neighbors Python Algorithm for the 3D Visualization of Sedimentary Porous Media. J. Mar. Sci. Eng. 2023, 11, 60. [Google Scholar] [CrossRef]
- Jena, K.K.; Bhoi, S.K.; Malik, T.K.; Sahoo, K.S.; Jhanjhi, N.Z.; Bhatia, S.; Amsaad, F. E-Learning Course Recommender System Using Collaborative Filtering Models. Electronics 2023, 12, 157. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, J.; Huang, Q.; Liu, T. A Review on Pollution Treatment in Cement Industrial Areas: From Prevention Techniques to Python-Based Monitoring and Controlling Models. Processes 2022, 10, 2682. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Li, J.; Xu, X.; Wang, B.; Zhan, X.; Xu, Y.; Ke, X.; Zeng, T.; Su, H.; et al. SAR Ship Detection Dataset (SSDD): Official Release and Comprehensive Data Analysis. Remote Sens. 2021, 13, 3690. [Google Scholar] [CrossRef]
- Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [Google Scholar] [CrossRef]
- Xu, R.; Xiang, H.; Xia, X.; Han, X.; Li, J.; Ma, J. Opv2v: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 2583–2589. [Google Scholar]
- Yang, D.; Li, L.; Redmill, K.; Özgüner, Ü. Top-view trajectories: A pedestrian dataset of vehicle-crowd interaction from controlled experiments and crowded campus. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 899–904. [Google Scholar]
- Bock, J.; Krajewski, R.; Moers, T.; Runde, S.; Vater, L.; Eckstein, L. The ind dataset: A drone dataset of naturalistic road user trajectories at german intersections. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 9 October–13 November 2020; pp. 1929–1934. [Google Scholar]
- Wicki, M.; Brückmann, G.; Quoss, F.; Bernauer, T. What do we really know about the acceptance of battery electric vehicles?–Turns out, not much. Transp. Rev. 2023, 43, 62–87. [Google Scholar] [CrossRef]
- Carvalho Pinheiro, H.D.; Messana, A.; Sisca, L.; Ferraris, A.; Airale, A.G.; Carello, M. Torque Vectoring in Electric Vehicles with In-wheel Motors. In IFToMM World Congress on Mechanism and Machine Science; Springer: Cham, Switzerland, 2019; pp. 3127–3136. [Google Scholar]
- Miri, I.; Fotouhi, A.; Ewin, N. Electric vehicle energy consumption modelling and estimation—A case study. Int. J. Energy Res. 2021, 45, 501–520. [Google Scholar] [CrossRef]
- Cui, H.; Ruan, J.; Wu, C.; Zhang, K.; Li, T. Advanced deep deterministic policy gradient based energy management strategy design for dual-motor four-wheel-drive electric vehicle. Mech. Mach. Theory 2023, 179, 105119. [Google Scholar] [CrossRef]
- Brand, C.; Cluzel, C.; Anable, J. Modeling the uptake of plug-in vehicles in a heterogeneous car market using a consumer segmentation approach. Transp. Res. Part A Policy Pract. 2017, 97, 121–136. [Google Scholar] [CrossRef]
- Karaaslan, E.; Zhao, Y.; Tatari, O. Comparative life cycle assessment of sport utility vehicles with different fuel options. Int. J. Life Cycle Assess. 2018, 23, 333–347. [Google Scholar] [CrossRef]
- Lutsey, N.; Nicholas, M. Update on electric vehicle costs in the United States through 2030. Int. Counc. Clean Transp. 2019, 12. Available online: https://theicct.org/wp-content/uploads/2021/06/EV_cost_2020_2030_20190401.pdf (accessed on 29 January 2023).
- Malhotra, K. Consumer Buying Behavior and Brand Choice in Sport Utility Vehicle (SUV) Segment: A Literature Review. IUP J. Brand Manag. 2022, 19, 40–52. [Google Scholar]
- Axsen, J.; Long, Z. Sport utility vehicles and willingness-to-downsize: A mixed-method exploration of functional, symbolic, and societal consumer perceptions in Canada. Energy Res. Soc. Sci. 2022, 92, 102776. [Google Scholar] [CrossRef]
- Mouli GR, C.; Kaptein, J.; Bauer, P.; Zeman, M. Implementation of dynamic charging and V2G using Chademo and CCS/Combo DC charging standard. In Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 27–29 June 2016; pp. 1–6. [Google Scholar]
- Kang, H.C.; Kang, K.B.; Ahn, H.K.; Lee, S.H.; Ahn, T.H.; Jwa, J.W. The smart EV charging system based on the big data analysis of the power consumption patterns. Int. J. Internet Broadcast. Commun. 2017, 9, 1–10. [Google Scholar]
- Mouli GR, C.; Schijffelen, J.; van den Heuvel, M.; Kardolus, M.; Bauer, P. A 10 kW solar-powered bidirectional EV charger compatible with chademo and COMBO. IEEE Trans. Power Electron. 2018, 34, 1082–1098. [Google Scholar] [CrossRef]
- Menon, L.M.; Nithin, S. Development of a communication simulator for Electric Vehicle charging based on GB/T. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbato, India, 8–10 July 2021; pp. 177–183. [Google Scholar]
- Dobrzański, D. Overview and characteristics of the EV fast charging connector systems. Masz. Elektr. Zesz. Probl. 2017, 3, 91–96. [Google Scholar]
- Biyani, N.; Righetto, R.D.; McLeod, R.; Caujolle-Bert, D.; Castano-Diez, D.; Goldie, K.N.; Stahlberg, H. Focus: The interface between data collection and data processing in cryo-EM. J. Struct. Biol. 2017, 198, 124–133. [Google Scholar] [CrossRef]
- Chu, X.; Ilyas, I.F.; Krishnan, S.; Wang, J. Data cleaning: Overview and emerging challenges. In Proceedings of the 2016 International Conference on Management of Data, San Francisco, CA, USA, 26 June 2016–1 July 2016; pp. 2201–2206. [Google Scholar]
- Prasser, F.; Kohlbacher, O.; Mansmann, U.; Bauer, B.; Kuhn, K.A. Data integration for future medicine (DIFUTURE). Methods Inf. Med. 2018, 57, e57–e65. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, S.; Wood, C.M.; Teague, D.P. Performance of different transformation techniques for MASW data processing considering various site conditions, near-field effects, and modal separation. Surv. Geophys. 2021, 42, 1197–1225. [Google Scholar] [CrossRef]
- Khalid, Z.M.; Zeebaree, S.R. Big data analysis for data visualization: A review. Int. J. Sci. Bus. 2021, 5, 64–75. [Google Scholar]
- Qin, X.; Luo, Y.; Tang, N.; Li, G. Making data visualization more efficient and effective: A survey. VLDB J. 2020, 29, 93–117. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Cosentino, V.; Luis, J.; Cabot, J. Findings from GitHub: Methods, datasets and limitations. In Proceedings of the 13th International Conference on Mining Software Repositories, Austin, TX, USA, 14–22 May 2016; pp. 137–141. [Google Scholar]
- Cosentino, V.; Izquierdo, J.L.C.; Cabot, J. A systematic mapping study of software development with GitHub. IEEE Access 2017, 5, 7173–7192. [Google Scholar] [CrossRef]
- Subha, T.; Ranjana, R.; Aarthi, B.; Pavithra, S.; Srinidhi, M.S. Skill Analysis and Scouting Platform Using Machine Learning. In Proceedings of the 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT), Chennai, India, 10–11 March 2022; pp. 1–6. [Google Scholar]
- Wang, Z.; Zhang, W.; Guo, Y.; Han, M.; Wan, B.; Liang, S. A multi-objective chicken swarm optimization algorithm based on dual external archive with various elites. Appl. Soft Comput. 2022, 133, 109920. [Google Scholar] [CrossRef]
- Hao, J.; Ho, T.K. Machine learning made easy: A review of scikit-learn package in python programming language. J. Educ. Behav. Stat. 2019, 44, 348–361. [Google Scholar] [CrossRef]
- Bac, J.; Mirkes, E.M.; Gorban, A.N.; Tyukin, I.; Zinovyev, A. Scikit-dimension: A python package for intrinsic dimension estimation. Entropy 2021, 23, 1368. [Google Scholar] [CrossRef]
- Sahoo, K.; Samal, A.K.; Pramanik, J.; Pani, S.K. Exploratory data analysis using Python. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019, 8, 2019. [Google Scholar] [CrossRef]
- Verbeeck, N.; Caprioli, R.M.; Van de Plas, R. Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry. Mass Spectrom. Rev. 2020, 39, 245–291. [Google Scholar] [CrossRef]
- Majumder, M.G.; Gupta, S.D.; Paul, J. Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis. J. Bus. Res. 2022, 150, 147–164. [Google Scholar]
- Javed, U.; Ijaz, K.; Jawad, M.; Ansari, E.A.; Shabbir, N.; Kütt, L.; Husev, O. Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis. Energies 2021, 14, 5510. [Google Scholar] [CrossRef]
- Mukherjee, M.; Khushi, M. SMOTE-ENC: A novel SMOTE-based method to generate synthetic data for nominal and continuous features. Appl. Syst. Innov. 2021, 4, 18. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Shao, M.; Qian, Y.; Chen, D. Fuzzy rough attribute reduction for categorical data. IEEE Trans. Fuzzy Syst. 2019, 28, 818–830. [Google Scholar] [CrossRef]
- Wu, L.; Huang, G.; Fan, J.; Zhang, F.; Wang, X.; Zeng, W. Potential of kernel-based nonlinear extension of Arps decline model and gradient boosting with categorical features support for predicting daily global solar radiation in humid regions. Energy Convers. Manag. 2019, 183, 280–295. [Google Scholar] [CrossRef]
- Yu, H.; Hutson, A.D. Inferential procedures based on the weighted Pearson correlation coefficient test statistic. J. Appl. Stat. 2022, 1–16. [Google Scholar] [CrossRef]
- Fraihat, H.; Almbaideen, A.A.; Al-Odienat, A.; Al-Naami, B.; De Fazio, R.; Visconti, P. Solar Radiation Forecasting by Pearson Correlation Using LSTM Neural Network and ANFIS Method: Application in the West-Central Jordan. Future Internet 2022, 14, 79. [Google Scholar] [CrossRef]
- Al-Jaafreh, T.M.; Al-Odienat, A. The Solar Energy Forecasting by Pearson Correlation using Deep Learning Techniques. WSEAS Trans. Earth Sci. Hum. Constr. 2022, 2, 158–163. [Google Scholar] [CrossRef]
- Sugianela, Y.; Ahmad, T. Pearson correlation attribute evaluation-based feature selection for intrusion detection system. In Proceedings of the 2020 International Conference on Smart Technology and Applications (ICoSTA), Surabaya, Indonesia, 20 February 2020; pp. 1–5. [Google Scholar]
- Liao, Y.; Liu, S.; Li, G.; Wang, F.; Chen, Y.; Qian, C.; Li, B. A real-time cross-modality correlation filtering method for referring expression comprehension. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 10880–10889. [Google Scholar]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Sharifzadeh, M.; Sikinioti-Lock, A.; Shah, N. Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renew. Sustain. Energy Rev. 2019, 108, 513–538. [Google Scholar] [CrossRef]
- Mądziel, M.; Jaworski, A.; Kuszewski, H.; Woś, P.; Campisi, T.; Lew, K. The Development of CO2 Instantaneous Emission Model of Full Hybrid Vehicle with the Use of Machine Learning Techniques. Energies 2022, 15, 142. [Google Scholar] [CrossRef]
- Lv, Z.; Qiao, L.; Cai, K.; Wang, Q. Big data analysis technology for electric vehicle networks in smart cities. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1807–1816. [Google Scholar] [CrossRef]
- Sadeghianpourhamami, N.; Refa, N.; Strobbe, M.; Develder, C. Quantitive analysis of electric vehicle flexibility: A data-driven approach. Int. J. Electr. Power Energy Syst. 2018, 95, 451–462. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Lee, C. Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption? Sustainability 2017, 9, 1783. [Google Scholar] [CrossRef]
- Van den Hoed, R.; Helmus, J.R.; De Vries, R.; Bardok, D. Data analysis on the public charge infrastructure in the city of Amsterdam. World Electr. Veh. J. 2013, 6, 829–838. [Google Scholar] [CrossRef]
- Basso, R.; Kulcsár, B.; Egardt, B.; Lindroth, P.; Sanchez-Diaz, I. Energy consumption estimation integrated into the electric vehicle routing problem. Transp. Res. Part D Transp. Environ. 2019, 69, 141–167. [Google Scholar] [CrossRef]
- Zhao, X.; Ye, Y.; Ma, J.; Shi, P.; Chen, H. Construction of electric vehicle driving cycle for studying electric vehicle energy consumption and equivalent emissions. Environ. Sci. Pollut. Res. 2020, 27, 37395–37409. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mądziel, M.; Campisi, T. Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database. Energies 2023, 16, 1437. https://doi.org/10.3390/en16031437
Mądziel M, Campisi T. Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database. Energies. 2023; 16(3):1437. https://doi.org/10.3390/en16031437
Chicago/Turabian StyleMądziel, Maksymilian, and Tiziana Campisi. 2023. "Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database" Energies 16, no. 3: 1437. https://doi.org/10.3390/en16031437
APA StyleMądziel, M., & Campisi, T. (2023). Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database. Energies, 16(3), 1437. https://doi.org/10.3390/en16031437